当前位置:文档之家› 2010年北京大学生数学建模与计算机应用竞赛

2010年北京大学生数学建模与计算机应用竞赛

2010年北京大学生数学建模与计算机应用竞赛
2010年北京大学生数学建模与计算机应用竞赛

附件1:

2010年北京大学生数学建模与计算机应用竞赛

获奖名单

大学生数学建模竞赛组队方案

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):成都纺织高等专科学校 参赛队员(打印并签名) :1. XXX(机电XXX) 2. XXX国贸XXX) 3. XXX(电商XXX) 指导教师或指导教师组负责人(打印并签名): 日期: 2014 年 06 月 06 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

目录 一、问题的重述 (1) 1.1 背景资料与条件 (1) 1.2 需要解决的问题 (1) 二、问题的分析 (2) 2.1 问题的重要性分析 (2) 2.2问题的思路分析 (3) 三、模型的假设 (4) 四、符号及变量说明 (4) 五、模型的建立与求解 (4) 5.1建立层次结构模型 (4) 5.2构造成对比较矩阵 (5) 5.3成对比较矩阵的最大特征根和特征向量的实用算法 (6) 5.4一致性检验 (7) 5.5层次分析模型的求解与分析 (8) 5.5.1 构造成对比较矩阵 (8) 5.5.2计算25优秀大学生的综合得 (9) 六、模型的应用与推广 (11) 七、模型的评价与改进 (12) 7.1模型的优点分析 (12) 7.2模型的缺点分析 (12) 7.3模型的进一步改进 (12) 八、参考文献 (13) 附件一 (14) 附件二 (16)

第四届全国大学生数学竞赛决赛(数学类)获奖名单

第四届高等数学竞赛决赛赛区参赛学生名单(数学类)序号赛区姓名参赛类别学校名称奖项S2013001北京苏钧数学类北京大学一等奖S2013002北京韦东奕数学类北京大学一等奖S2013003北京肖经纬数学类北京大学一等奖S2013004北京张文钟数学类北京大学一等奖S2013005山东项首先数学类济南大学一等奖S2013006四川陈攀数学类电子科技大学一等奖S2013007江苏陈阳洋数学类苏州大学一等奖S2013008河南王瑞鑫数学类河南师范大学一等奖S2013009天津杨成果数学类南开大学一等奖S2013010北京孙宗汉数学类清华大学一等奖S2013011福建钟齐先数学类厦门大学一等奖S2013012福建吴 璇数学类厦门大学一等奖S2013013江西李金禄数学类赣南师范学院一等奖S2013014上海潘剑阳数学类复旦大学一等奖S2013015国防科大陈玺数学类国防科学技术大学一等奖S2013016浙江邱敦数学类浙江大学一等奖S2013017山东张辉数学类曲阜师范大学一等奖S2013018上海钱华杰数学类复旦大学一等奖S2013019江苏钱欣洁数学类江苏师范大学一等奖S2013020甘肃王国栋数学类兰州大学二等奖S2013021黑龙江张兴松数学类东北林业大学 二等奖S2013022湖南袁名波数学类湖南工业大学二等奖S2013023四川王宇数学类四川大学二等奖S2013024浙江李特数学类浙江师范大学二等奖S2013025湖北李江涛数学类湖北大学二等奖S2013026河北周壮数学类河北师范大学二等奖S2013027河南程建峰数学类河南大学二等奖S2013028吉林倪嘉琪数学类东北师范大学二等奖S2013029安徽段文哲数学类中国科学技术大学二等奖S2013030四川孔祥飞数学类电子科技大学二等奖S2013031安徽万捷数学类中国科学技术大学二等奖S2013032江西李秀梅数学类江西师范大学二等奖S2013033上海尹豪数学类复旦大学二等奖S2013034天津刘春凯数学类南开大学二等奖S2013035浙江李婷数学类宁波大学二等奖S2013036安徽刘慧康数学类中国科学技术大学二等奖S2013037北京许文昌数学类北京大学二等奖

全国大学生数学建模竞赛的准备方法

全国大学生数学建模竞赛的准备方法 全国大学生数学建模竞赛于每年9月上旬(今年是9月7日)举行。但是在此之前,需要做好哪些准备,让各个参赛队员在竞赛中做到有备无患呢?在总结过去多年培训指导各种数学建模竞赛的基础上,仅就个人观点,介绍一些关于如何准备数学建模竞赛的经验和体会,仅供参考。在这里主要向大家介绍竞赛的基本情况,包括如何组队、如何选题以及在竞赛中如何合理分配时间。通过本次学习,希望大家能够了解数学建模竞赛的基本情况,为全国大学生数学建模竞赛以及其他各类数学建模竞赛做好准备。 一、如何组建优秀数学建模队伍 进入大学阶段参加各种科技竞赛,可以体会到一种和中学竞赛不同的感受,这种感受来自团队合作。以前的各项赛事都是以个人为单位参加竞赛,它们都是考查个人的能力。但是在大学中,由于难度和任务量的加重以及对团队合作精神的关注,因此大部分的赛事都是以团队为单位参加的。竞赛在考查个人能力的同时,还考查团队成员的合作精神。在数学建模竞赛中,团队合作精神是能否取得好成绩的最重要的因素,一队三个人要分工合作、相互支持、相互鼓励。从历年的统计数据可以看出,竞赛成绩优秀的队员往往并不是每个人在各个方面都特别擅长的队伍,而是团队相处得最融洽的队伍。从这一点也可以看出团队合作的重要性。 在竞赛的过程中,切勿自己只管自己的那一部分,一定要记住这是一个集体的竞赛。很多时候,往往一个人的思考是不全面的,只有大家一起讨论才有可能把问题搞清楚。因此无论做任何事情,三个人一定要齐心才行,只靠一个人

的力量,要在3天之内写出一篇高水平的论文几乎是不可能的。让三人一组参赛一方面是为了培养合作精神,其实更为重要的原因是这项工作确实需要多人合作,因为一个人的能力是有限的,知识掌握也往往是不全面的。一个人做题,经常会走向极端,得不到正确的解决方案。而三个人相互讨论、取长补短,可以弥补一个人所带来的不足。 在队伍组建的时候,需要强调“队长”这个名词概念。虽然在全国大学生数学建模竞赛中并没有设立队长,作为队长在获得的证书上也没有特别标注。但是在队内设立“队长”是非常有必要的。因为在比赛中可能会碰到各种突发状况,队长是很重要的,他的作用就相当于计算机中的CPU,是全队的核心。如果一个队的队长不得力,往往影响一个队的正常发挥。竞赛是非常残酷的,在3天3夜(72h)的比赛中,大家睡眠时间都得不到保障,怎样合理安排团队时间就是队长需要做的事情。在比赛过程中,由于睡眠不足,大家脾气都会很急躁。在这种情况,往往会为了一些小事而发生争吵,如果没有适当的处理,有些队伍将会放弃比赛,而队长就应该在这个时候担起责任。 在明确“队长”这个概念后,接下去谈谈怎样科学选择队友。在数学建模竞赛中,题目要求完成的工作量是很大的,因此这项任务是必须分工完成的,各有侧重、相互帮助,这样才能获得好成绩。而科学地选择队友则显得非常重要,也是走向成功的第一步。一般情况下选择队友可以从以下几个方面考虑着手: 1. 在组队的时候需要考虑队伍成员的多元化,尽量和不同专业、不同特长的同学组队。因为同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。因为数学建模题有可能出现在各个领域,这也是数学建模适合各个专业学生参加的原因所在,也是数学建模竞赛赛事的魅力所在。

第四届全国大学生数学竞赛决赛试题及解答

1 x ? ? ? ? a ? 第四届全国大学生数学竞赛决赛试题标准答案 一、(本题15分): 设A 为正常数,直线?与双曲线x 2 ? y 2 = 2 (x > 0) 所围的有 限部分的面积为A . 证明: (i) 所有上述?与双曲线x 2 ? y 2 = 2 (x > 0) 的截线段的中点的轨迹为双曲线. (ii)?总是(i)中轨迹曲线的切线. 证明:将双曲线图形进行45度旋转,可以假定双曲线方程为y = 1 , x > 0. 设 直线?交双曲线于(a, 1/a )和(ta, 1/ta ), t > 1, 与双曲线所围的面积为A . 则有 1 1 ∫ ta 1 1 1 1 1 A = 2 (1 + t )(t ? 1) ? dx = + )(t 1) log t = t ) log t. x 2 t 2 t 令f (t ) = 1 (t ? 1 ) ? log t . 由于 2 t 1 1 2 f (1) = 0, f (+∞) = +∞, f ′ (t ) = 2 (1 ? t ) > 0, (t > 1), 所以对常数A 存在唯一常数t 使得A = f (t ) (5分). ?与双曲线的截线段中点 坐标 为 1 1 1 1 x = 2 (1 + t )a, y = 2 (1 + t ) a . 于是,中点的轨迹曲线为 1 1 xy = 4 (1 + t )(1 + t ). (10分) 故中点轨迹为双曲线, 也就是函数y = 1 (1 + t )(1 + 1 ) 1 给出的曲线. 该 曲线在上述中点处的切线斜率 4 t x 1 1 1 1 k = ? 4 (1 + t )(1 + t ) x 2 = ? ta 2 , 它恰等于过两交点(a, 1/a )和(ta, 1/ta )直线?的斜率: 1 1 1 故?为轨迹曲线的切线. (15分) ta ? a ta ? a = . 二、(本题15分): 设函数f (x )满足条件: 1) ?∞ < a ≤ f (x ) ≤ b < +∞, a ≤ x ≤ b ; 2) 对于任意不同的x, y ∈ [a, b ]有|f (x ) ? f (y )| < L |x ? y |, 其中L 是大

最新全国大学生数学竞赛简介

全国大学生数学竞赛 百度简介

中国大学生数学竞赛

该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 编辑本段竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分

一、集合与函数 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

第十九届北京市大学生数学竞赛本科甲乙组试题与解答

第十九届北京市大学生数学竞赛本科甲、乙组试题解答 一、填空题(每小题3分,共30分) 1. ?? ????+-+-+∞→1)2(lim 61 23x e x x x x x = 1/6 . 2.设)(x f 连续,在1=x 处可导,且满足 ,0,)(8)sin 1(3)sin 1(→+=--+x x o x x f x f 则曲线)(x f y =在1=x 处的切线方程为 y =2x -2 . 3. 设243),(lim 2 20 =+-+→→y x y x y x f y x , 则 ='+')0,0()0,0(2y x f f -2 . 4.设函数()u ?可导且(0)1?=,二元函数()xy z x y e ?=+满足 0z z x y ??+=??,则()u ?=2 4u e - . 5. 设D 是由曲线x y sin = )22(π≤≤π- x 和直线2 π -=x , 1=y 所围成的区域, f 是连续函数, 则=++=??D dxdy y x f y x I )](1[223 -2 . 6. 123ln 1ln 1ln 1ln 1lim 123n n n n n n n n n n n n n n n →+∞??????????++++ ? ? ? ? ????????? ?++++= ?++++ ??? L 2ln 21- . 7. 数项级数 ∑∞ =--1 )! 2()! 2()1(n n n n n n 的和=S -1+cos1+ln2. 8. 计算积分???++π= 1 021 01 0)](6[cos dz z y x dy dx I = 1/2 . 9. 已知入射光线的路径为23 1 41-=-=-z y x , 则此光线经过平面01752=+++z y x 反射后的反射线 方程为 4 1537-= +=+z y x . 10. 设曲线2 2 2 :a y xy x C =++的长度为L , 则=++?C y x y x ds e e e b e a )sin()sin() sin()sin(L b a 2 + . 二、(10分) 设()f x 在[,)a +∞上二阶可导,且,0)(,0)(<'>a f a f 而当a x >时, ,0)(≤''x f 证明在(,)a +∞内,方程()0f x =有且仅有一个实根. 证明 由于当x a >时,,0)(≤''x f 因此'()f x 单调减,从而'()'()0f x f a ≤<,于是又有()f x 严格单调减.再由()0f a >知,()f x 最多只有一个实根. 下面证明()0f x =必有一实根.当x a >时,

为什么要参加大学生数学建模竞赛

为什么要参加大学生数学建模竞赛 大学生数学建模竞赛是培养学生创新能力和竞争能力的极好的、具体的载体。 1.对于学校的领导(校长、教务处长等)来说,全心全意把学校搞好(高质量的教学、高百分比的就业率、高水平的教师队伍以及提高知名度等)肯定是他们追求的办学目标而且会采取各种措施。但是就选派学生参加大学生数学建模竞赛来说,不少领导(甚至数学教师)会非常犹豫:我们数学课时少,教学任务重,即使参加了,拿不到奖的话,不但不能提高学校的知名度,甚至会招致一些负面的议论等等。实际上,领导们有三个问题考虑不够,它们是: ⑴对数学的极端重要性要有充分的认识。学生将来的发展和成就是和他们坚实的数学基础密切相关的。但是现在的数学教学确实有许多不足之处有待改革,特别是怎么做到不仅教知识,而且要教知识是怎样用来解决实际问题的能力是有待加强的。让部分师生参加到数学建模活动,特别是大学生数学建模竞赛肯定是有利于推动教学改革的。 ⑵ 办好学校的关键之一是提高教师的教学水平。怎样提高呢?鼓励教师组织学生参加大学生数学建模竞赛等数学建模活动,既可以帮助教师进一步了解怎样用数学来解决实际问题,更有助于数学教师到其他专业系科了解他们要用什么样的数学以及怎样用这些数学,互相学习,进行切磋,从而对怎样提高自己的教学水平,数学教学怎样更好为其他专业后继课,甚至对专业课题研究服务产生具体的想法,提出切实可行的措施,最终能够提高教师的专业水平和教学水平,从而也就提高了学校的水平。 ⑶ 学生要求参加大学生数学建模竞赛的积极性是很高的,关键是怎样组织好,培训好。实际上,即使是高职高专院校,也一定有一部分学生的数学基础是相当坚实的,他们之间又有一部分对数学,特别是用数学来解决实际问题有强烈的兴趣。为什么不组织他们参赛呢?培养一些数学基础好对应用又有能力的高职高专院校的学生,今后他们在工作中做出好成绩的可能性肯定会比较大。毕业生事业有成者多也标志了学校办得好、有水平。此外,对于怎样贯彻因材施教也会产生一些很好的想法。 2.对于数学教师来说,组织、指导学生参加大学生数学建模竞赛对自己也会有极大的好处。

山东省大学生数学竞赛(专科)试题及答案

山东省大学生数学竞赛(专科)试卷及标准答案 (非数学类,2010) 考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分. 一、填空(每小题5分,共20分). (1)计算) cos 1(cos 1lim 0 x x x x -- + →= . (2)设()f x 在2x =连续,且2 ()3lim 2 x f x x →--存在,则(2)f = . (3)若tx x x t t f 2) 11(lim )(+ =∞ →,则=')(t f . (4)已知()f x 的一个原函数为2ln x ,则()xf x dx '?= . (1) 2 1. (2) 3 . (3)t e t 2)12(+ . (4)C x x +-2 ln ln 2. 二、(5分)计算dxdy x y D ??-2 ,其中 1010≤≤≤≤y x D ,:. 解:dxdy x y D ??-2 = dxdy y x x y D )(2 1:2 -??<+ ??≥-2 2:2 )(x y D dxdy x y -------- 2分 =dy y x dx x )(2 210 -??+dy x y dx x )(1 210 2 ??- -------------4分 = 30 11 -------------5分. 姓名: 身份证号 所在院校: 年级 专业 线 封 密 注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关标记.

三、(10分)设)](sin[2x f y =,其中f 具有二阶 导数,求 2 2 dx y d . 解:)],(cos[)(22 2x f x f x dx dy '=---------------3分 )](sin[)]([4)](cos[)(4)](cos[)(22 2222222222 x f x f x x f x f x x f x f dx y d '-''+'=-----7分 =)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分. 四、(15分)已知3 123ln 0 = -? ?dx e e a x x ,求a 的值. 解:) 23(232 1 23ln 0 ln 0 x a x a x x e d e dx e e --- =-? ?? ---------3分 令t e x =-23,所以 dt t dx e e a a x x ? ? -- =-? 231 ln 0 2 123---------6分 =a t 231 2 33 221-?-------------7分 =]1)23([3 13 --?- a ,-----------9分 由3 123ln 0 = -? ? dx e e a x x ,故]1)23([3 13 --?- a = 3 1,-----------12分 即3)23(a -=0-----------13分 亦即023=-a -------------14分 所以2 3= a -------------15分.

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

04北京大学生数学建模与计算机应用竞赛获奖名单

2004北京大学生数学建模与计算机 应用竞赛获奖名单 附件2:2004北京大学生数学建模与计算机应用竞赛获奖名单全国一等奖甲组学校名称北京大学北京工业大学北京工业大学北京工业大学北京师范大学北京邮电大学北京邮电大学北京邮电大学北京邮电大学北京邮电大学北京语言大学清华大学清华大学石油大学中国地质大学中国地质大学中国地质大学中央财经大学装备指挥技术学院乙组北京物资学院北京物资学院北京物资学院中央财经大学中央财经大学参赛队员姓名刘知海李璇张博文刘增科梁知陈旭彬宋扬肖红江张力周搏王妍谢必克胡笳糜芳饶刚杨洋霍振中李园王琦彭婷唐文兰张晶王璐江珊珊孙宗晓刘婧杨旭山金玲玲李聪王彪林小

敏史巨伟崔建伟田耘张璐毛燕杰刘明杜婧汪洋张彦华詹昊凯吴昊陈源胡元红吴隽谢琼邓伟王继凯指导教师指导小组指导小组指导小组指导小组指导小组贺祖国贺祖国贺祖国贺祖国贺祖国指导小组指导小组指导小组指导小组黄光东郭翠萍黄光东李冬红指导小组田德良田德良李珍萍指导小组李冬红陈礼昕刘经纬魏磊王雅静黄力李晨旸王雅娟张晓璐牛冠杰孙霏菲张颖史戈宇符非刘国昌刘晓蕾张兵史川北刘俊周张华金娜安丽雅陈芳莲张新雨王莎莎全国二等奖甲组北方工业大学北京大学北京大学北京大学北京电子科技学院北京工业大学北京工业大学张永涛周一凡李荟陈璐王熹朱丹高鹏朱秀玲林霖王奇瑄曾宪乙周轩刘颖楠吴莹宋禹忻孙幼弘贺鹏骆俊徐尧李奇超胡斌指导小组指导小组指导小组指导小组指导小组指导小组指导小组

北京工业大学北京工业大学北京化工大学北京化工大学北京机械工业学院北京交通大学北京交通大学北京理工大学北京理工大学北京林业大学北京师范大学北京邮电大学北京邮电大学北京邮电大学北京邮电大学北京邮电大学北京邮电大学北京邮电大学清华大学清华大学清华大学清华大学清华大学清华大学清华大学清华大学中国地质大学中国地质大学中国地质大学中国地质大学中国矿业大学中国人民大学中国人民大学中央民族大学装甲兵工程学院乙组北京电子科技职业学院北京市机械局职工大学北京物资学院中央财经大学北京一等奖甲组北京大学王新郭楠马辰威刘天煜王丽亚李旭王振中马立娟朱泉江郭延辉余家新丁丁叶忻刘刚张倩周晓晗李彬殷俊王乐唐扬谭谔罗欢褚昆王方刚杨振黄玮张静王朱伟丁宗睿乔健张丽娜柯平廖昕范勇哲罗啸喻纯

全国大学生数学竞赛决赛试题(非数学类)

首届全国大学生数学竞赛决赛试卷 (非数学类) 考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分. 一、 计算下列各题(共20分,每小题各5分,要求写出重要步骤). (1) 求极限1 21lim (1)sin n n k k k n n π-→∞=+∑. (2) 计算 2∑其中∑ 为下半球面z =0a >. (3) 现要设计一个容积为V 的一个圆柱体的容器. 已知上下两底的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最少? (4) 已知()f x 在11,42?? ???内满足 331()sin cos f x x x '=+,求()f x .

二、(10分)求下列极限 (1) 1lim 1n n n e n →∞????+- ? ? ?????; (2) 111lim 3n n n n n a b c →∞??++ ? ? ???, 其中0,0,0a b c >>>. 三、(10分)设()f x 在1x =点附近有定义,且在1x =点可导, (1)0,(1)2f f '==. 求 220(sin cos )lim tan x f x x x x x →++. 四、(10分) 设()f x 在[0,)+∞上连续,无穷积分0()f x dx ∞?收敛. 求 0 1lim ()y y xf x dx y →+∞?.

五、五、(12分)设函数()f x 在[0,1]上连续,在(0,1)内可微,且 1(0)(1)0,12f f f ??=== ???. 证明:(1) 存在 1,12ξ??∈ ???使得()f ξξ=;(2) 存在(0,)ηξ∈使得()()1f f ηηη'=-+. 六、(14分)设1n >为整数, 20()1...1!2!!n x t t t t F x e dt n -??=++++ ????. 证明: 方程 ()2n F x =在,2n n ?? ???内至少有一个根.

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

大学生数学竞赛辅导材料

浙江省首届高等数学竞赛试题(2002.12.7) 一. 计算题(每小题5分,共30分) 1 .求极限lim x →。 2.求积分 |1|D xy dxdy -??,11{(,)2,2}22D x y x y =≤≤≤≤。 3.设2x y x e =是方程hx y ay by ce '''++=的一个解,求常数,,,a b c h 。 4.设()f x 连续,且当1x >-时,20()[()1]2(1)x x xe f x f t dt x +=+? ,求()f x 。 5.设21 1arctan 2n n k S k ==∑,求lim n n S →∞。 6.求积分1 2121(1)x x x e dx x ++ -?。 2003年浙江省大学生高等数学竞赛试题(2003.12.6) 一.计算题 7.求20 50sin()lim x x xt dt x →?。 8.设31()sin x G x t t dt =?,求21()G x dx ?。 9.求2401x dx x ∞+?。 10. 求∑=∞→++n k n k n k n 12lim 。 浙江省大学生第三届高等数学竞赛试题 1.计算:( )()2 00cos 2lim tan 1x t x x e tdt x x x →----?。 2.计算:20cos 2004 x dx x x π ππ+-+?。

3.求函数()22,415f x y x y y =++在 (){}22,41x y x y Ω=+≤上的最大、小值。 4.计算:()3max ,D xy x d σ?? ,其中(){},11,01D x y x y =-≤≤≤≤。 5. 设()1tan 1x f x arc x -=+,求)0()(n f 。 天津市竞赛题 1.证明??+≤?+020220 21cos 1sin dx x x dx x x ππ. 2. 设函数)(x f 在闭区间]2,2[-上具有二阶导数,,1)(≤x f 且 ,4)]0([)]0([22='+f f 证明:存在一点),2,2(-∈ξ使得0)()(=''+ξξf f . 3. (1)证明:当x 充分小时,不等式422tan 0x x x ≤-≤成立. (2)设,1tan 12 k n x n k n +=∑=求.lim n x x ∞ → 4. 计算??????+-??? ??+-∞→61231e 2lim n n n n n n 。5. 设()x x x f +-=11arctan ,求()()05f 。 6. 对k 的不同取值,分别讨论方程01323=+-kx x 在区间()+∞,0内根的个数。 7. 设a ,b 均为常数且2->a ,0≠a ,问a ,b 为何值时,有 ()()??-=?? ????-+++∞ +10212d 1ln d 122x x x a x x a bx x 。 8.设121-≥a , ,,,n ,a a n n 321121=+=+,证明:n n a ∞ →lim 存在并求其值。 9.设()x f 是区间[]2+a,a 上的函数,且()1≤x f ,()1≤''x f ,证明:()2≤'x f ,[]2+∈a,a x 。 北京市竞赛试题(2008、2007、2006) .______,111,1.11 =-+++-→-m x x x m x m 则的等价无穷小是时设当 .________)1(,) ()2)(1()()2)(1()(.2='+++---=f n x x x n x x x x f 则设

全国大学生数学建模竞赛b题

全国大学生数学建模竞赛 b题 Prepared on 22 November 2020

“互联网+”时代的出租车资源配置 摘要 随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。 对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日哈尔滨市南岗区出租车资源“供求匹配”程度。通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为,根据“供求匹配”标准,得出哈尔滨市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。同理,也得到了哈尔滨市不同区县、不同时间的供求匹配程度,最后作出哈尔滨市出租车“供求匹配”程度图。 对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。

第十九届北京市大学生数学竞赛本科丙组试题及解答

第十九届北京市大学生数学竞赛本科丙组试题及解答 一、填空题(每小题3分,共30分) 1.?? ????+-+-+∞→1)2(lim 6 1 23x e x x x x x = 1/6 . 2.设)(x f 连续,在1=x 处可导,且满足 )0(,)(8)sin 1(3)sin 1(→+=--+x x o x x f x f 则曲线)(x f y =在1=x 处的切线方程为 y =2x -2 . 3.设)(x y y =是由0sin ) ln(2 =- ? +-y y x t dt e y 所确定的函数,则 ==0 y dx dy -1 . 4. 设243),(lim 2 20 0=+-+→→y x y x y x f y x , 则='+')0,0()0,0(2y x f f -2 . 5. 1sin 1cos x x e dx x +=+?tan 2 x x e C + . 6.设函数()u ?可导且(0)1?=,二元函数()xy z x y e ?=+满足 0z z x y ??+=??,则()u ?=24 u e - . 7. = += +≤+??D dxdy y x I y x y x D )32(,:22则设π4 5 . 8. 数项级数 ∑∞ =--1 )! 2()! 2()1(n n n n n n 的和=S -1+cos1+ln2. 9. 123ln 1ln 1ln 1ln 1lim 123n n n n n n n n n n n n n n n →+∞?? ????????++++ ? ? ? ? ? ???????? ? ++++= ?++++ ??? 2ln21- . 10.= ='==+'+''? ∞+0 )(1)0(,0)0(044)(dx x y y y y y y x y 则,,且满足方程函数设4 1 .

大学生数学知识竞赛试题及答案

趣味数学知识竞赛复习题 一、填空题 1、(苏步青)是国际公认的几何学权威,我国微分几何派的创始人。 2、(华罗庚)是一个传奇式的人物,是一个自学成才的数学家。 3、编有《三角学》,被称为“李蕃三角”且自称为“三书子”的是(李锐夫)。 4、世界上攻克“哥德巴赫猜想”的第一个人是(陈景润)。 5、(姜立夫)是现代数学在中国最早而又最富成效的播种人”,这是《中国大百科全书》和《中国现代数学家传》对他的共同评价。 6. 设有n个实数,满足|xi|<1(I=1,2,3,…,n), |x1|+|x2|+…+|xn|=19+|x1+x2+… +xn| ,则n的最小 值20 7. 三角形的一个顶点引出的角平分线,高线及中线恰将这个顶点的角四等分,则这个 顶角的度数为 ___90°___ 8. 某旅馆有2003个空房间,房间钥匙互不相同,来了2010们旅客,要分发钥匙,使得其中任何2003个人都能住进这2003个房间,而且每人一间(假定每间分出的钥匙数及每人分到的钥匙数都不限),最少得发出_16024______把钥 匙. 9. 在凸1900边形内取103个点,以这2003个点为顶点,可将原凸1900边形分割成小三角形的个数为 ______2104 _____. 10. 若实数x满足x4+36<13x2,则f(x)=x3-3x的最大值为______18_____

11 ."我买鸡蛋时,付给杂货店老板12美分,"一位厨师说道,"但是由于嫌它们太小,我又叫他无偿添加了2只鸡蛋给我。这样一来,每打(12只)鸡蛋的价钱就比当初的要价降低了1美分。" 厨师买了_18只鸡蛋? 12.已知f(x)∈[0,1],则y=f(x)+1的取值范围 为___[7/9,7/8]____ 13. 已知函数f(x)与g(x)的定义域均为非负实数集,对任意的x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3-x,g(x)=,则f(x)*g(x)的最大值为____(2√3- 1)_____ 14.已知a,b,cd∈N,且满足342(abcd+ab+ad+cd+1)=379(bcd+b+d),设M=a×103+b×102+c×10+d,则M的值为 ______ 1949 ___. 15. 用E(n)表示可使5k是乘积112233…nn的约数为最大的整数k,则E(150)= __2975_________ 16. 从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有_2500________种不同的取 法. 17. 从正整数序列1,2,3,4,…中依次划去3的倍数和4的倍数,但是其中是5的倍数均保留,划完后剩下的数依次构成一个新的序列:A1=1,A2=2,A3=5,A4=7,…,则A2003的值为____3338_____. 18. .连接凸五边形的每两个顶点总共可得到十条线段(包括边在内),现将其中的几条线段着上着颜色,为了使得该五边形中任意三个顶点所构成的三角形都至少有一条边是有颜色的则n的最小值是_ 4 19. 已知x0=2003,xn=xn-1+ (n>1,n∈N),则x2003的整数部分为 _______2003___ 21. 已知ak≥0,k=1,2,…,2003,且a1+a2+…+a2003=1,则S=max{a1+a2+a3, a2+a3+a4,…, a2001+a2002+a2003}的最小值为 ________3/2007 _.

第七届全国大学生数学竞赛非数学类决赛试题整理

第七届全国大学生数学竞赛决赛试题 答案(非数学类) 2016年3月27日 一填空题(5×6分=30分) 1.程微分方 0)(y 3 ' '' ''=-y 的通解是_______ 解:令p ='y ,则'''y p =,则dx p dp 3=,积分得到12 2 1- c x p -=-,即 () x c y p -±= =1'21 ,积分得)(2y 12x c c -±=(2,1c 为常数). 2.设D:412 2 ≤+≤y x ,则积分()( )dxdy e y x I x D 4 y 2 22-+-??+=的值是_______ 解:)52(2 2sin e 434 1 4 20 2 1 2 2 4 2 -= ==? ? ?--e du ue e rdr e r d I u r π π θθπ(对称性和极坐标). ()ds s f x t ?=0 3.设()t f 二阶连续可导,且()t f 0≠,若 ()t f y = , 则 ______2 2=dx y d 解:()dt t f dx =,() dt t f dy ' =,所以()() t f t f dx 'dy = ,则得 ()()()()()() t f t f t f t f dx dt t f t f dt d dx y d 32 ''''22-=???? ??= 4.设1λ,2λ,…,n λ是n 阶方阵A 的特征值,()x f 为多项式,则矩阵() A f 的行列式的值为_______ 解: ()()()()n f f f A f λ λλ 2 1 = 5.极限[])!sin(lim e n n n π∞ →的值为________

相关主题
文本预览
相关文档 最新文档