当前位置:文档之家› 椭圆及其性质讲义1(题)

椭圆及其性质讲义1(题)

椭圆及其性质讲义1(题)
椭圆及其性质讲义1(题)

椭圆

PF=5,则

2

高中数学椭圆讲义及例题

7.椭圆 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是 以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对 称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆1 22 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点, 坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=, b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

椭圆的特殊性质

一、椭圆的几何性质(以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 2、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M ,则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F , 连接OM 由已知有1PF FP =, M 为1F F 中点 ∴212OM FF ==()121 2 PF PF +=a 所以M 的轨迹方程为 222 x y a +=。 3、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 4、过焦点F 的弦AB , )(2112定值b a BF AF =+ 5、AB 是椭圆的任意一弦,P 是AB 中点,则22 a b K K OP AB -=?(定值) 证明:令()()1122,,,A x y B x y ,()00,P x y 则()1202 x x x += ()1202 y y y += x x

22 1122 22 222211x y a b x y a b ?+=????+=?? ()()()()1212121222 ..0x x x x y y y y a b +-+-?+= ∵ ()()1212AB y y k x x -=-,00OP y k x =, ∴ 2 2A B O P b k k a ?=-。 6、椭圆的长轴端点为A 1、A 2,P 是椭圆上任一点,连结A 1P 、A 2P 并延长,交一准线于N 、M 两点,则M 、N 与对应准线的焦点张角为900 证明:令()221200,,,,,a a M y N y P x y c c ???? ? ????? ,()1,0A a -,()2,0A a ∴()()100200,,,,A P x a y A P x a y =+=-uuu r uuu r 221122,,,a a A M a y A N a y c c ???? =+=- ? ????? uuuu r uuu u r ∵ 由于1A 、P 、M 共线 ,∴ 2 0001210() a y a x a y c y a y x a a c ?++=?=++ ∵ 由于2,,A P N 共线 ,∴ 2 0002220() a y a x a y c y a y x a a c ?--=?=-- ∴ 22 242200012222 000()() a a y a y a y a a c c c y y x a x a x a c ?-?+-==?-+-, ∵ 2222 0002222201x y y b a b x a a +=?=-- ∴ 2422 1222 b a a c y y a c -=-?42b c =-, ∵ 2122,,a F M c y c a F N c y c ? ??=-? ???????? =- ?? ??? uuu r uuu r 4 122b FM FN y y c ??=+uuu r uuu r ∴ 0FM FN ?=u u u r u u u r , ∴ M 、N 与对应准线的焦点张角为900 7、圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定 x

椭圆的讲义

海豚教育个性化简案 海豚教育个性化教案(真题演练)

海豚教育个性化教案

A . 45 B .23 C .22 D .2 1 例2:已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 例3:在ABC △中,3,2||,300===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率 e = . 【变式训练】 1. 椭圆的两个焦点把两条准线间距离三等分,则椭圆离心率为( ) A. 63 B.33 C.2 3 D. 不确定 2. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( ) 3. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于___________。 2:求离心率的取值范围 例1:已知椭圆12222=+b y a x (0>>b a ),F 1,F 2是两个焦点,若椭圆上存在一点P ,使3 221π =∠PF F ,求 其离心率e 的取值范围。 例2:已知椭圆122 22=+b y a x (0>>b a )与x 轴的正半轴交于A ,0是原点,若椭圆上存在一点M ,使MA ⊥MO , 求椭圆离心率的取值范围。 例3:已知椭圆12222=+b y a x (0>>b a ),以a ,b ,c 为系数的关于x 的方程02 =++c bx ax 无实根,求 其离心率e 的取值范围。 题型四:椭圆的其他几何性质的运用(范围、对称性等) 例1:已知实数y x ,满足12 42 2=+y x ,求x y x -+22的最大值与最小值

椭圆及其性质

第十章 圆锥曲线 本章知识结构图 第一节 椭圆及其性质 考纲解读 1. 了解圆锥曲线的实际背景及其在刻画现实世界和解决实际问题中的作用. 2. 掌握椭圆的定义,标准方程,几何图形及其简单性质 3. 了解椭圆的简单应用 4. 理解数形结合的思想 命题趋势研究 椭圆是圆锥曲线的重要内容,高考主要考查椭圆的基本性质,椭圆方程的求法,椭圆定义的运用和椭圆中各个量的计算,尤其是对离心率的求解,更是高考的热点问题,在各种题型中均有题型 预测2019年高考对本节考查内容为: (1) 利用标准方程研究几何性质,尤其是离心率的求值及取值范围问题. (2) 利用已知条件求出椭圆的方程,特别是与向量结合求方程更是重点.椭圆的定义,标 准方程和几何性质及直线相交问题的考查以中档题目为主,每年高考分值大多保持在5分. 知识点精讲 曲线与方程 轨迹方程的求法:直接法、定义法、相关点法 圆锥曲线 椭圆 双曲线 抛物线 定义及标准方程 性质 范围、对称性、顶点、焦点、长轴(实轴)、短轴(虚轴)、渐近线(双曲线)、准线(只要求抛物线) 离心率 对称性问题 中心对称 轴对称 点(x 1,y 1) ───────→关于点(a ,b )对称点(2a -x 1,2b -y 1 ) 曲线f (x ,y ) ───────→ 关于点(a ,b )对称曲线f (2a -x ,2b -y ) ? ????A ·x 1+x 22+B ·y 1+y 2 2+C =0y 2-y 1x 2-x 1·(-A B )=-1 特殊对称轴 x ±y +C =0 直接代入法 点(x 1,y 1)与点(x 2,y 2)关于 直线Ax +By +C =0对称

最新椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大 (一)椭圆的定义及椭圆的标准方程: ?椭圆定义:平面内一个动点P 到两个定点F 1、 F 2的距离之和等于常数 (二)椭圆的简单几何性: ?标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 2 2 x 2 y 2 =1 (a b O) a b (PF 1 + PF 2 =2a ■ F1F 2),这个动点P 的轨迹叫椭圆?这两个定点叫椭圆的 焦 点,两焦点的距离叫作椭圆的 焦距. 注意:①若(PF 1 + |PF 2 |=F I F 2),则动点P 的轨迹为线段F 1F 2 ; ②若(PF 1 + PF ^<|F 1F 2 ),则动点P 的轨迹无图形 2 2 y 2 X 2 =1 (a ■ b ■ O) a b 图形 性质 焦占 八焦距 范围 F i (-c,O),F 2(C ,0) F I (O,-C ),F 2(0,C ) F 1F 2 =2C F 1 F 2 = 2c x^b, | y| 对称性 关于x 轴、y 轴和原点对称 标准方程 (_a,0) , (0,-b) (0,-a), (_b,0) 顶点

?椭圆标准方程为 =1 (a b - 0),椭圆焦点三角形: 设P 为椭圆上任意一点, F i ,F 2为焦点且/ F 1PF 2 ?,则△ F i PF 2为焦点三角形,其面积为 轴长 长轴长 AA 2, AAj =2a ,短轴长 BB 2, EB 2 =2b 离心率 ① e = C (0cec1),② e =』1—(b )2 ③ c 2 = a 2_b 2 a V a (离心率越大,椭圆越扁) 【说明】: 1?方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点 F i ,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数 a ,b ,c 都大于零,其中 a 最大且 a 2 = b 2+ c 2. 2 2 2.方程Ax By 二C 表示椭圆的充要条件是:ABC 工0,且A ,B ,C 同号,A 2 2 S PF I F 2 = b 2 tan 。 2 (四)通径:如图:通径长 2 2 ?椭圆标准方程:笃? — =1 a 2 b 2 (五)点与椭圆的位置关系: C 1) 点 P(x o ,y o )在椭圆外= a b a b x =1;

椭圆的第一定义与基本性质的练习题

椭圆的第一定义与基本性质的练习题 1.椭圆2x 2 +3y 2 =6的焦距是 A.2 B.2(3-2) C.25 D.2(3+2) 2.方程4x 2+Ry 2=1的曲线是焦点在y 轴上的椭圆,则R 的取值范围是 A.R >0 B.0

椭圆的第二定义与性质的练习题 16.点M 到一个定点F (0,2)的距离和它到一条定直线y =8的距离之比是1∶2,则M 点的轨迹方程是__________. 17.如果椭圆的两个焦点将长轴三等分,那么这个椭圆的两条准线间的距离是焦距的 A.4倍 B.9倍 C.12倍 D.18倍 18.设点A (-2,3),椭圆16 2 x + 12 2 y =1的右焦点为F ,点P 在椭圆上移动.当|P A |+2|PF |取最小值时,P 点的坐 标是__________. 19.设椭圆 2 2a x + 2 2b y =1(a >b >0)的左焦点为F 1(-2,0),左准线l 1与x 轴交于点N (-3,0),过点N 且倾斜角为30° 的直线l 交椭圆于A 、B 两点. (1)求直线l 和椭圆的方程; (2)求证:点F 1(-2,0)在以线段AB 为直径的圆上. 20.已知椭圆的两焦点为F 1(0,-1)、F 2(0,1),直线y =4是椭圆的一条准线. (1)求椭圆方程; (2)设点P 在椭圆上,且|PF 1|-|PF 2|=1,求tan ∠F 1PF 2的值. 21.设椭圆的中心为坐标原点,它在x 轴上的一个焦点与短轴两端点连成60°的角,两准线间的距离等于83,求椭圆方程.

椭圆性质总结及习题

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θθ s i n c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0; |PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0;c a PF c a PF -=+=min max ,

椭圆标准方程及其性质知识点大全(供参考)

【专题七】椭圆标准方程及其性质知识点大全 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦 点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121 F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: 标准方程 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2 离心率 ①(01)c e e a = << ,②21()b e a =-③2 22b a c -= (离心率越大,椭圆越扁) 1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中 a 最大且a 2= b 2+ c 2.

2. 方程22 Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠B 。A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。 (三)焦点三角形的面积公式:122tan 2 PF F S b θ ?=如图: ●椭圆标准方程为:122 22=+b y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点, 12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan 2 PF F S b θ ?=。 (四)通径 :如图:通径长 2 2b MN a = ●椭圆标准方程:122 22=+b y a x )0(>>b a , (五)点与椭圆的位置关系: (1)点00(,)P x y 在椭圆外?22 00 221x y a b +>;(2)点00(,)P x y 在椭圆上?220220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< (六)直线与椭圆的位置关系: ●设直线l 的方程为:Ax+By+C=0,椭圆122 22=+b y a x (a ﹥b ﹥0),联立组成方程 组,消去y(或x)利用判别式△的符号来确定: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>b a 相交于两点 11(,)A x y 、22(,)B x y , 把AB 所在直线方程y=kx+b ,代入椭圆方程122 22=+b y a x 整理得:Ax 2+Bx+C=0。 ●弦长公式: ① 212212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1(含M N F x y

椭圆的基本性质

课题:12.4椭圆的基本性质(二课时) 教学目标: 1、掌握椭圆的对称性,顶点,范围等几何性质. 2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形. 3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等. 4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用 教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆 (1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习 1) 圆的定义: 到一定点的距离等于______的图形的轨迹。 椭圆的定义: _______________________________的图形的轨迹。 2) 椭圆的标准方程: 1。焦点在x 轴上____________( ) 2。焦点在y 轴上____________( ) 若125 162 2=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________ 二.教学过程设计 一、引入课题 “曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性 问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性? x -代x 后方程不变,说明椭圆关于y 轴对称; y -代y 后方程不变,说明椭圆曲线关于x 轴对称; x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称; 问题2:从对称性的本质上入手,如何探究曲线的对称性? 以把x 换成-x 为例,如图在曲线的方程中,把x 换

椭圆的几何性质讲义

8.1 椭圆方程及性质 一、明确复习目标 1.掌握椭圆的定义、标准方程,了解椭圆的参数方程 2.掌握椭圆的简单几何性质;掌握a ,b ,c ,e 等参数的几何意义及关系. 二.建构知识网络 1. 椭圆的两种定义: (1)平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集 M ={P | |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨 迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 (2)平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M ={P | e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2. 标准方程:(1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) 《 (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= (3)两种标准方程可用统一形式表示:Ax 2 +By 2 =1 (A >0,B >0,A ≠B 当A <B 时, 椭圆的焦点在x 轴上,A >B 时焦点在y 轴上),这种形式用起来更方便。 3.性质:对于椭圆:122 22=+b y a x (a >b >0)如下性质必须熟练掌握: ①范围; ②对称轴,对称中心; ③顶点; ④焦点; ⑤准线方程; ⑥离心率; (参见课本)

椭圆的定义与性质

椭圆的定义与性质 1.椭圆的定义 (1) 第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于 |F1F2|)的点的轨迹叫做椭圆,这两个 定点叫做椭圆的焦点,两个焦点的距离叫做焦距. (2) 第二定义:平面内与一个定点 F 和一条定直线l 的距离的比是常数e(0

(2)椭圆上一点P 与两焦点F1,F2构成△ PF1F2的周长为2a+2c(其中a为椭圆的长半轴长, c 为椭圆的半焦距).( )

典例 1】 (1)(2014 ·全国大纲卷改编 )已知椭圆 C : x a 2+ y b 2= 1(a>b>0)的左、右焦点为 F 1 、F 2,离心率 (3) 椭圆的离心率 e 越大,椭圆就越圆. ( ) (4) 已知点 F 为平面内的一个定点, 直线 l 为平面内的一条定直线. 设 d 为平面内一动点 P 到定直线 l 的 5 距离,若 d = 4|PF |,则点 P 的轨迹为椭圆. ( ) [解析] (1)错误, |PA|+|PB|=|AB|=4,点 P 的轨迹为线段 AB ;(2)正确,根据椭圆的第一定义知 PF 1+ PF 2=2a ,F 1F 2=2c ,故△ PF 1F 2的周长为 2a +2c ;(3)错误,椭圆的离心率越大,椭圆越扁. (4)正确,根据 椭圆的第二定义. [答案 ] (1)× (2)√ (3)× (4)√ 3.椭圆的焦点坐标为 (0,-6),(0,6),椭圆上一点 P 到两焦点的距离之和为 20,则椭圆的标准方程为 ___ x 2 y 2 [解析] 椭圆的焦点在 y 轴上,且 c =6,2a =20,∴ a =10,b 2 =a 2 -c 2 =64,故椭圆方程为 64+ 100= 1. x 2 y 2 [答案 ] x + y =1 64 100 x 2 y 2 4.(2014 无·锡质检 )椭圆4 + 3 =1的左焦点为 F ,直线 x =m 与椭圆相交于点 A ,B ,当△ FAB 的周长最大 时, △ FAB 的面积是 ______ [解析] 直线 x =m 过右焦点 (1,0)时,△ FAB 的周长最大,由椭圆定义知,其周长为 4a =8, 此时, |AB|=2× b a 2× 3 22 C : x a 2+b y 2=1(a>b>0)相交于 A ,B 两点,若 M 是 y 1-y 2 b 2 x 1+ x 2 =- 2 · x 1- x 2 a y 1+ y 2 12 ,x 1+x 2=2,y 1+y 2=2,∴- a b 2=- 12, ∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴ a 2=2c 2,∴a c = 22.[答案 ] 考向 1 椭圆的定义与标准方程 2. (教材习题改编 )焦点在 x 轴上的椭圆 x +y =1 的离心率为 10,则 m = 5 m 5 [解析] 由题设知 a 2= 5,b 2=m ,c 2 =5-m , 1 2 =3,∴S △FAB =2×2×3=3.[答案 ] 3 5. (2014 ·江西高考 )过点 1 M(1,1) 作斜率为- 12的直线与椭圆 线段 AB 的中点,则椭圆 C 的离心率等于 [解析] 设 A(x 1,y 1), B(x 2, y 2),则 x 1-x 2 x 1+ x 2 y 1- y 2 y 1+y 2 = 0, a 2 b 2 ∵ y 1-y 2= x 1- x 2 5- m 5 2 5 ,∴5-m =2,∴m =3.[答 案] b y 122 =1

椭圆的复习专题

椭圆 一、椭圆的定义、基本性质 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 ,即__________________________ 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;②若)(2121F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: 标准方程 12 2 22=+b y a x )0(>>b a 12 2 22=+b x a y )0(>>b a 图形 性质 焦点 焦距 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 轴长 离心率 (离心率越大,椭圆越______) 1.方程中的两个参数a 与b,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a,b,c 都大于零,其中a 最大且a 2 =b 2 +c 2 .

2. 方程22 Ax By C +=表示椭圆的充要条件是:AB C≠0,且A,B ,C 同号,A ≠B 。A >B 时,焦点在y 轴上,A<B时,焦点在x 轴上。 练习 题型一 椭圆的定义 1、已知椭圆 上一点到椭圆的一个焦点的距离为,则到另一焦点 距离为________ 2、已知、为椭圆的两个焦点,过的直线交椭圆于、两点, 若,则=__________. 3、在平面直角坐标中,椭圆的中心为原点,焦点,在轴上,离心率为,过 的直线交C于,两点,且△ 的周长为,那么的方程为( ) A. B. C. D. 题型二 椭圆的方程 1、已知 ,则椭圆的标准方程是( ) A.B. C . 或 D. 2、如果 表示焦点在轴上的椭圆,那么实数k 的取值范围是( ) A. B . C. D. 3、已知椭圆的中心在原点,焦点在轴上,若其离心率为,焦距为,则该椭圆的方程是__________. 4、已知 两点,动点满足 .求动点 的轨迹方程. 5、求与椭圆 有相同焦点,且过点的椭圆方程.

椭圆专题复习讲义

题型1:椭圆定义的运用 [例1 ] (湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 【名师指引】考虑小球的运行路径要全面 【新题导练】 1.短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24 [解析]C. 长半轴a=3,△ABF 2的周长为4a=12 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 [解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来 [解析]设椭圆的方程为122 22=+b y a x 或)0(12222>>=+b a a y b x , 则?? ? ??+=-=-=222)12(4c b a c a c b , 解之得:24=a ,b =c =4.则所求的椭圆的方程为 116322 2=+y x 或132 1622=+y x . 【名师指引】准确把握图形特征,正确转化出参数c b a ,,的数量关系.

椭圆定义及性质整合

椭圆定义及性质的应用 一、椭圆的定义 椭圆第一定义 第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. ★过点1F 作12PF F ?的P ∠的外角平分线的垂线,垂足为Q ,则Q 的轨迹方程为222 x y a +=. 推导过程:延长1F Q 交2F P 于M ,连接OQ , 由已知有PQ 为1MF 的中垂线,则1PF PM =,Q 为1 F M 中点,212OQ F M ==()121 2 PF PF +=a ,所以Q 的轨迹方程为 222 x y a +=.(椭圆的方程与离心率学案第5题) 椭圆第二定义 第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<

推导过程: 2 200 a PF ed e x a ex c ?? ==-=- ? ?? ;同理得 10 PF a ex =+. 简记为:左加右减a在前.由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数. (离心率、焦点弦问题)例1:(2010全国卷Ⅱ理数12题)已知椭圆 22 22 :1(0) x y C a b a b +=> >的离心率为 3 ,过右焦点F且斜率为(0) k k>的直线与C相交于,A B两点.若3 AF FB = u u u r u u u r ,则k=() A.1 D.2 B【解析】解法一:1122 (,),(,) A x y B x y,∵3 AF FB = u u u r u u u r ,∴12 3 y y =-,∵ 2 e=,设2, a t c ==,b t=,∴222 440 x y b +-=,直线AB方程为x my =.代入消去x,∴222 (4)0 m y b ++-=,∴ 2 1212 22 , 44 b y y y y m m +=-=- ++ ,则 2 2 22 22 2,3 44 b y y m m -=--=- ++ ,解得2 1 2 m=,则k= 0 k>. 解法二:设直线l为椭圆的右准线,e为离心率,过,A B别作11 , AA BB垂直于l, 11 , A B为垂足,过B作BH垂直于1 AA与H,设BF m =,由第二定义得, 11 , AF BF AA BB e e ==,由3 AF FB = u u u r u u u r ,得 1 3m AA e =, 2m AH e =,4 AB m =,则 2 1 cos 42 m AH e BAH AB m e ∠====,则sin BAH ∠=tan BAH ∠=,则k=0 k>.故选B. (离心率、焦点弦问题)例2:倾斜角为 6 π 的直线过椭圆)0 (1 2 2 2 2 > > = +b a b y a x 的左焦点F,交椭圆于,A B 两点,且有3 AF BF =,求椭圆的离心率.

椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x 的位置关系: 当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系 直线与椭圆相交0>??;直线与椭圆相切0=??;直线与椭圆相离0

之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23- ,2 5) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0). (4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2. 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为 122 22=+b y a x )0(>>b a 9 454 ,582,10222222=-=-=∴==∴==c a b c a c a 所以所求椭圆标准方程为 19 252 2=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为 122 22=+b x a y )0(>>b a 由椭圆的定义知, 22)225()23(2++-=a +22)22 5 ()23(-+- 102 11023+= 102= 10=∴a 又2=c 6410222=-=-=∴c a b 所以所求标准方程为 6 102 2=+x y 另法:∵ 42 222-=-=a c a b ∴可设所求方程14 2 2 22=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程 (3)∵椭圆的焦点在x 轴上,所以设它的标准方程为:

椭圆的定义及几何性质

椭圆的定义及几何性质 椭圆 【教学目标】(1)掌握椭圆的定义 (2)掌握椭圆的几何性质 (3)掌握求椭圆的标准方程 【教学重难点】(1)椭圆的离心率有关的问题 (2)椭圆焦点三角形面积的求法 【教学过程】 一、知识点梳理 知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆。这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。 注意:若,则动点的轨迹为线段;若,则动点的轨迹无图形。 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: .只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐1 椭圆的定义及几何性质 标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有和; 3.椭圆的焦点总在长轴xx.当焦点在轴xx时,椭圆的焦点坐标为,;

当焦点在轴xx时,椭圆的焦点坐标为,。 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。 讲练结合: (2)范围 椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。 (3)顶点 ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0),A2(a,0),B1(0,―b),B2(0,b)。 ③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,分别叫做椭圆的长半轴长和短半轴长。b和a。|B1B2|=2b 椭圆的定义及几何性质(4)离心率表示,记exx的比叫做椭圆的离心率,用①椭圆的焦距与长轴作。,则1。e越接近10 ②因为a>c>,所以e的取值范围是0<e<就0,cac就越接近,从而越小,因此椭圆越扁;反之,e越接近于a=b当且仅当这时椭圆就越接近于圆。越

椭圆的方程及性质

椭圆的方程及性质 一、椭圆的定义 1、一动圆与已知圆1)3(:221=++y x O 及圆81)3(:222=+-y x O 相内切,则动圆圆心M 的轨迹方程为 变式:(1)已知圆1)2(:22=-+y x M 及圆0774:22=-++y y x N ,动圆C 与二圆 相内切,则动圆圆心C 的轨迹方程为 (2)方程10 )4()4(2222=+-+ ++y x y x 化简后得到的曲线方程为 2、已知21,F F 为椭圆19 252 2=+y x 的两个焦点,过1F 的直线与椭圆交于B A ,两点,若1222=+B F A F , 则AB 的长为 变式:(1)已知椭圆12 :2 2=+y x C 的两焦点为21,F F ,点),(00y x P 满足1202020<+>=+b a b y a x C 的离心率为23,双曲线12 2=-y x 的渐近线与椭圆C 有四

椭圆的定义及几何性质

【教学目标】(1)掌握椭圆的定义 (2)掌握椭圆的几何性质 (3)掌握求椭圆的标准方程 【教学重难点】(1)椭圆的离心率有关的问题 (2)椭圆焦点三角形面积的求法 【教学过程】 一、知识点梳理 知识点一:椭圆的定义 平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆。这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。 注意:若,则动点的轨迹为线段; 若,则动点的轨迹无图形。 知识点二:椭圆的标准方程 1.当焦点在轴上时,椭圆的标准方程:,其中; 2.当焦点在轴上时,椭圆的标准方程:,其中; 注意: 1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有和; 3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。 知识点三:椭圆的简单几何性质 椭圆的的简单几何性质 (1)对称性 对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

讲练结合: (2)范围 椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。 (3)顶点 ①椭圆的对称轴与椭圆的交点称为椭圆的顶点。 ②椭圆(a>b>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(―a,0), A2(a,0),B1(0,―b),B2(0,b)。 ③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长和短半轴长。 (4)离心率 ①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。 ②因为a>c>0,所以e的取值范围是0<e<1。e越接近1,则c就越接近a,从而越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2 椭圆的图像中线段的几何特征(如下图): (1),,; (2),,; (3),,; 知识点四:椭圆与(a>b>0)的区别和联系

相关主题
文本预览
相关文档 最新文档