当前位置:文档之家› 变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析
变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析

漏感与分布电容对输出波形的影响开关电源变压器一般可以等效成图2-43所示电路。在图2-43中,Ls为漏感,也可称为分布电感,Cs为分布电容,为励磁电感,R为等效负载电阻。其中分布电容Cs还应该包括次级线圈等效到初级线圈一侧的分布电容,即次级线圈的分布电容也可以等效到初级线圈回路中。图2-43 开关电源变压器等效电路设次级线圈的分布电容为C2,等效到初级线圈后的分布电容为C1,则有下面关系式:上式中,Wc2为次级线圈分布电容C2存储的能量,Wc1为C2等效到初级线圈后的分布电容C1存储的能量;U1、U2分别为初、次级线圈的电压,U2 = nU1,n = N2/N1为变压比,N1 、N2分别为初、次级线圈的匝数。由此可以求得C1为:C1 = n2C2 (2-121)(2-120)式不但可以用于对初、次级线圈分布电容等效电路的换算,同样可以用于对初、次级线圈电路中其它电容等效电路的换算。所以,C2亦可以是次级线圈电路中的任意电容,C1为C2等效到初级线圈电路中的电容。由此可以求得图2-43中,变压器的总分布电容Cs为:Cs = Cs1 + C1 = Cs1 +n2C2 (2-122)(2-122)式中,Cs为变压器的总分布电容,Cs1为变压器初级线圈的分布电容;C1为次级线圈电路中总电容C2(包括分布电容与电路中的电容)等效到

初级线圈电路中的电容;n = N2/N1为变压比。图2-43开关变压器的等效电路与一般变压器的等效电路,虽然看起来基本没有区别,但开关变压器的等效电路一般是不能用稳态电路进行分析的;即:图2-43中的等效负载电阻不是一个固定参数,它会随着开关电源的工作状态不断改变。例如,在反激式开关电源中,当开关管导通时,开关变压器是没有功率输出的,即负载电阻R等于无限大;而对于正激式开关电源,当开关管导通时,开关变压器是有功率输出的,即负载电阻R既不等于无限大,也不等于0 。因此,分布电感与分布电容对正激式开关电源和反激式开关电源工作的影响是不一样的。图2-44和图2-45分别是开关电源变压器与电源开关管连接时的工作原理图和各点工作电压的波形图。在图2-44中,当开关管Q1导通时,无论是对正激式开关电源或反激式开关电源,分布电感Ls都会对流过开关管Q1的电流Id起到限制作用,即降低Id的电流上升率,这对保护开关管是有好处的;因为,开关管刚导通的时候,电流在管芯内部是以扩散的形式由一个点向整个面扩散的,如果电流上升率太大,很容易使开关管因局部面积电流密度过大造成损伤。分布电感Ls和分布电容Cs可以看成是一个串联振荡回路,当开关管Q1开始导通的时候,输入脉冲电压的上升率大于串联振荡回路自由振荡电压的上升率,因此,振荡回路开始吸收能量,输入电压对Ls和Cs进行充电,此时,振荡

回路会抑制输入电流上升率的增长;当开关管Q1完全导通以后,脉冲进入平顶阶段,相当于输入脉冲电压的上升率为0,此时,输入脉冲电压的上升率小于串联振荡回路自由振荡电压的上升率,因此,振荡回路开始释放能量,振荡回路产生阻尼振荡。当开关管Q1导通过后,开关管开始关断,相当于输入脉冲电压的上升率为负,脉冲进入反冲阶段,此时,输入脉冲电压的上升率小于串联振荡回路自由振荡电压的上升率,因此,振荡回路又开始再次释放能量,振荡回路再次产生阻尼振荡。

高频逆变器中高频变压器的绕制方法

高频逆变器中高频变压器的绕制方法 用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已. 以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T. 要制作好它就要注意两点: 一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的

单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可. 二是高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是: ①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半. ②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同.然后又包一层绝缘纸,准备绕次级高压绕组

开关变压器漏感分析

开关变压器第一讲变压器基本概念与工作原理现代电子设备对电源的工作效率、体积以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用下,周围的物体也都会被感应产生磁通。现代磁学研究表明:一切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。在电磁场理论中,磁场强度H的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F跟电流I和导线长度的乘积I 的

变压器的漏感与分布电容影响分析

变压器的漏感与分布电容影响分析 漏感与分布电容对输出波形的影响开关电源变压器一般可以等效成图2-43所示电路。在图2-43中,Ls为漏感,也可称为分布电感,Cs为分布电容,为励磁电感,R为等效负载电阻。其中分布电容Cs还应该包括次级线圈等效到初级线圈一侧的分布电容,即次级线圈的分布电容也可以等效到初级线圈回路中。图2-43 开关电源变压器等效电路设次级线圈的分布电容为C2,等效到初级线圈后的分布电容为C1,则有下面关系式:上式中,Wc2为次级线圈分布电容C2存储的能量,Wc1为C2等效到初级线圈后的分布电容C1存储的能量;U1、U2分别为初、次级线圈的电压,U2 = nU1,n = N2/N1为变压比,N1 、N2分别为初、次级线圈的匝数。由此可以求得C1为:C1 = n2C2 (2-121)(2-120)式不但可以用于对初、次级线圈分布电容等效电路的换算,同样可以用于对初、次级线圈电路中其它电容等效电路的换算。所以,C2亦可以是次级线圈电路中的任意电容,C1为C2等效到初级线圈电路中的电容。由此可以求得图2-43中,变压器的总分布电容Cs为:Cs = Cs1 + C1 = Cs1 +n2C2 (2-122)(2-122)式中,Cs为变压器的总分布电容,Cs1为变压器初级线圈的分布电容;C1为次级线圈电路中总电容C2(包括分布电容与电路中的电容)等效到

初级线圈电路中的电容;n = N2/N1为变压比。图2-43开关变压器的等效电路与一般变压器的等效电路,虽然看起来基本没有区别,但开关变压器的等效电路一般是不能用稳态电路进行分析的;即:图2-43中的等效负载电阻不是一个固定参数,它会随着开关电源的工作状态不断改变。例如,在反激式开关电源中,当开关管导通时,开关变压器是没有功率输出的,即负载电阻R等于无限大;而对于正激式开关电源,当开关管导通时,开关变压器是有功率输出的,即负载电阻R既不等于无限大,也不等于0 。因此,分布电感与分布电容对正激式开关电源和反激式开关电源工作的影响是不一样的。图2-44和图2-45分别是开关电源变压器与电源开关管连接时的工作原理图和各点工作电压的波形图。在图2-44中,当开关管Q1导通时,无论是对正激式开关电源或反激式开关电源,分布电感Ls都会对流过开关管Q1的电流Id起到限制作用,即降低Id的电流上升率,这对保护开关管是有好处的;因为,开关管刚导通的时候,电流在管芯内部是以扩散的形式由一个点向整个面扩散的,如果电流上升率太大,很容易使开关管因局部面积电流密度过大造成损伤。分布电感Ls和分布电容Cs可以看成是一个串联振荡回路,当开关管Q1开始导通的时候,输入脉冲电压的上升率大于串联振荡回路自由振荡电压的上升率,因此,振荡回路开始吸收能量,输入电压对Ls和Cs进行充电,此时,振荡

高频变压器工作原理及用途解析

高频变压器工作原理及用途 简介 是作为开关电源最主要的组成部分。开关电源中的拓扑结构有很多。比如半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行变压,输出交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于35mm。而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。 工作原理 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 用途 高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次: 10kHz- 50kHz、50kHz-100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的情况下,功率器件一般采用 IGBT,由于IGBT存在关断电流拖尾现象,所以工作频率比较低;传送功率比较小的,可以采用MOSFET,工作频率就比较高。 制造工艺 高频变压器的制造工艺要点一。 绕线 A 确定BOBBIN的参数 B 所有绕线要求平整不重叠为原则 C 单组绕线以单色线即可,双组绕线必需以双色线或开线浸锡来分脚位,以免绕错 D 横跨线必需贴胶带隔离 1. 疏绕完全均匀疏开

开关变压器第十四讲 分布电容分析

开关变压器第十四讲分布电容分析 作者:康佳集团彩电技术开发中心总体技术设计所所长/高级工程师陶显芳 开关电源电压输入回路的滤波电感,其分布电容的大小对EMC指标的影响非常大,因此也需要对滤波电感线圈的分布电容构成以及原理有充分的理解。从原理上来说,滤波电感线圈的分布电容与开关变压器线圈的分布电容基本上是没有根本区别的;因此,对分布电容的分析与计算方法,对滤波电感线圈同样有效。 开关变压器初、次级线圈的分布电容,对开关电源性能指标的影响也很重要,它会与变压器线圈的漏感组成振荡回路产生振荡。当输入脉冲电压的上升或下降率大于振荡波形的上升或下降率的时候,振荡回路就吸收能量,使输入脉冲波形的前、后沿都变差;而当输入脉冲电压的上升或下降率小于振荡波形的上升或下降率的时候,振荡回路就会释放能量,使电路产生振荡。如果振荡回路的品质因数比较高,电路就会产生寄生振荡,并产生EMI干扰。 另外,开关电源电压输入回路的滤波电感,其分布电容的大小对EMC指标的影响非常大,因此在这里也需要对滤波电感线圈的分布电容构成以及原理有充分的理解。从原理上来说,滤波电感线圈的分布电容与开关变压器线圈的分布电容基本上是没有根本区别的,因此,对变压器线圈分布电容的分析与计算方法,对滤波电感线圈同样有效。 开关变压器初、次级线圈的分布电容与结构有关,因此,要精确计算不同结构的开关变压器初、次级线圈的分布电容难度比较大。下面我们先以最简单的双层线圈结构的开关变压器为例,计算它们的初级或次级线圈的分布电容。 图2-41是分析计算开关变压器线圈之间分布电容的原理图。 设圆柱形两层线圈之间的距离为d,高度为h,平均周长为g 。假定两层线圈之间沿高度的电位差为线性变化,即: 设两个线圈相对应的两表层间的电场近似均匀分布,即近似平板电容器的电场,那么,根据(2-112)式就可以求得该电场贮存

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该如何来计算高频变压器的匝数,从而解决这个问题?接下来,晨飞电子就为大家介绍下匝数的计算方法:

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算 作者:陶显芳发布时间:2011-07-04文章来源:华强北·电子市场价格指数浏览量:50466 下面是开关电源设计务必掌握的知识 1、开关电源占空比的选择与计算 2、开关变压器初次级线圈匝数比的计算 希望从事开关电源设计的工程师对此感兴趣 概述:占空比是脉冲宽度调制(PWM)开关电源的调制度,开关电源的稳压功能就是通过自动改变占空比来实现的,开关电源的输出电压与占空比成正比,开关电源输出电压的变化范围基本上就是占空比的变化范围。由于开关电源输出电压的变化范围受到电源开关管击穿电压的限制,因此,正确选择占空比的变化范围是决定开关电源是否可靠工作的重要因素;而占空比的选择主要与开关电源变压器初、次级线圈的匝数比有关,因此,正确选择开关电源变压器初、次级线圈的匝数比也是一个非常重要的因素。 开关电源占空比和开关电源变压器初、次级线圈的匝数比的正确选择涉及到对开关电源变压器初、次级线圈感应电动势的计算。因此,下面我们先从分析开关电源变压器初、次级线圈感应电动势开始。 1.1占空比的定义 占空比一般是指,在开关电源中,开关管导通的时间与工作周期之比,即: (1)式中:D为占空比,Ton为开关管导通的时间,Toff为开关管关断的时间,T为开关电源的工作周期。 对于一个脉冲波形也可以用占空比来表示,如图1所示。 在反激式开关电源中,开关管导通的时候,变压器次级线圈是没有功率输出的,如果把(1)中的D记为D1,(2)式中的D记为D2,则D1、D2有下面关系: 1.2开关变压器初次级线圈的输出波形

图2a是输出电压为交流的开关电源工作原理图。为了便于分析,我们假说变压器初次级线圈的变压比为1:1(即N1=N2,L1=L2),当开关K又导通转断开时,变压器初级、次 级线圈产生感应电动势为: (6)式中:为变压器初级线圈的励磁电流,由此可知,变压器初、次级线圈产生 的反电动势主要是由励磁电流产生的。我们从(5)可以看出,当变压器初、次级线圈的负载电阻R很大或者开路的情况下,变压器初、次级线圈产生的感应电动势峰值是非常高的,如果这个电压直接加到电源开关管两端,电源开关管一定会被击穿。 为了便于分析,我们引进一个半波平均值的概念,我们把Upa、Upa-分别定义为变压器初、次级线圈感应电动势正、负半周的半波平均值。半波平均值就是把反电动势等效成一 个幅度等于Upa或Upa-的方波,如图2b中的Upa-所示。

高频高压变压器分布电容的分析与处理0

高频高压变压器分布电容的分析与处理 曾光1,金舜1,史明2 (1.西安理工大学,西安710048; 2.西安电信分公司,西安710003) 摘要:在分析高频变压器分布参数机理的基础上,以高压直流LCC谐振变换器为例,阐述了高频高压变压器分布电容给电路带来的不利影响,提出了一种补偿方法,并进行了仿真和实验。介绍了高频高压变压器分布电容的测试方法,推导了补偿电感的计算公式,综合使用了两种针对分布电容的处理方法。实验证明该方法是正确的。 关键词:高频;变压器/分布电容;LCC谐振 中图分类号:T M433文献标识码:A文章编号:1000-100X(2002)06-0054-04 Analysis and Disposal of Distributed Capacitance in High-frequency and High-voltage Transformer ZENG Guang1,JIN Shun1,SHI Ming2 (1.X i.an Univer sity of T echnology,X i.an710048,China;2.Xi.an T elecom,Xi.an710003,China) Abstract:On the basis of analyzing the mechanism of distributed parameters in hig h frequency transformer,and w ith an instance of LCC resonant converter,the disadvantages of distributed capacitance in high-frequency and high-v oltage tr ansformer are described.T he compensat ion met hod,the waveforms o f bot h simulation and ex periment,and the method of measur ing distr ibuted capacitance ar e g iven.F ormula for calculat ion compensation inductance is derived.T wo methods are used in solving the trouble.Experimental results verify the correctness of the t heory. Keywords:hig h frequency;transformer;distributed capacitance;LCC resonant 1前言 随着开关电源频率的不断增加,在满足了减小开关电源体积要求的同时,也带来了一系列新的问题。例如分布参数在高频情况下对电路的影响不能再被忽略。在开关型电源电路中,高频变压器是电气隔离、传输能量、电压变换的重要元件。在高频情况下,许多应用于工频的变压器设计方法不再适用,解决好高频变压器的分布参数问题非常重要。 2高频变压器分布参数模型及对分布参数问题的一般解决办法 文献[1]指出:变压器的分布参数主要是漏感和分布电容。分布电容主要是匝间电容和层间电容。建立了一个绕组的分布参数模型(图1),再经过叠加折算得到整个变压器的分布参数模型。 根据图1a经计算可得绕组的等效并联电容C c =Ci/(N-1)(N>1)。等效电容C c一般是皮法数量级,在工频时可忽略,但在高频时其对变压器的影响不容忽视。该分布电容由变压器结构、材料、体积、绕制工艺等因素决定,目前不可能完全消除。 收稿日期:2002-06-13 定稿日期:2002-08-08 作者简介:曾光(1957-),男,江西人,副教授,研究方 向为电力电子与电力传动 。 图1绕组的分布参数模型 对待该电容的处理主要有两种方法,一是利用,二是补偿。如果系统需要在变压器端口并联一个电容,正好可以利用分布电容作为该并联电容,不仅解决了分布电容带来的危害,还减少了元器件的数量。这是最为积极有效的办法。反之,若在变压器端口并联电容会给系统带来危害,则必须减弱其影响。主要是通过工艺上的改进和在变压器外部对其进行补偿。下面通过工程中实例高压直流LCC谐振变换器,详细阐述两种方法的应用。 3LCC主电路原理介绍 该电源输入工频220V电源,输出直流电压0~ 10000V,输出最大功率500W。 主电路由两级变换电路组成,前级为Buck降压电路,用以稳压;后级为LCC谐振电路,为开关器件提供零电压开通条件。变压器次级采用高压硅堆整 54

高频变压器漏感与分布电容

摘要:反激变换器的高频运行表明功率变压器寄生参数对变换器的性能影响很大。变压器的寄生参数主要是漏感和分布电容,而设计过程中往往很少考虑分布电容。该文给出了适用于工程分析的变压器高频简化模型,分析高频高压场合变压器寄生参数对反激变换器的影响。继而给出寄生参数的确定方法,并基于此分析,提出控制寄生参数的工程方法,研究不同的绕组绕制方法和绕组位置布局对分布电容大小的影响,并通过实验验证了文中分析的正确性及抑制方法的实用性。 关键词:电力电子;分布电容;反激变换器;变压器;高频高压 0 引言 单端反激变换器具有拓扑结构简单,输入输出隔离,升降压范围宽,易于实现多路输出等优点,在中小功率场合具有一定优势,特别适合作为电子设备机内辅助电源的拓扑结构。变压器作为反激变换器中的关键部件,对变换器的整机性能有着很大影响。随着变换器小型化的发展趋势,需要进一步提高变换器的开关频率以减小变压器等磁性元件的体积、重量[1-3]。但高频化的同时,变压器的寄生参数对变换器工作的影响却不容忽视[4-12]。变压器的寄生参数主要是漏感和分布电容。以往,设计者在设计反激变压器时,往往只对变压器的漏感加以重视。然而,在高压小功率场合,变压器分布电容对反激变换器的运行特性及整机效率会有很大影响,不可忽视[8-13]。对设计者而言,正确的理解这些寄生参数对反激变换器的影响,同时掌握合理控制寄生参数的方法,对设计出性能良好的变压器,进而保证反激变换器高性能的实现颇为重要。为此,文中首先给出变压器寄生参数对反激变换器的影响分析,同时给出这些寄生参数的确定方法,并对变压器的不同绕法以及绕组布局对分布电容的影响进行了研究,对绕组分布电容及绕组间分布电容产生的影响作了分析,最后进行了实验验证。1 变压器寄生参数对反激变换器的影响如图1,给出考虑寄生参数后的高压输入低压输出RCD 箝位反激变换器拓扑。其中,Ll、Lm 分别表示原边漏感和磁化电感,C11 为原边绕组分布电容,C13、C24 表示原边与副边绕组不同接线端之间的分布电容。根据反激变换器的工作原理,反激变压器铁心工作于单向磁化状态,且需要一定的储能能力。为防止铁心饱和,通常在变压器磁路中留有较大气隙,但这会使得变压器有较大漏磁,造成较大的漏感。当功率开关管关断时,由于漏感的存 在,会在开关管上激起很高的电压尖峰[12-14]。漏感能量吸收方法有多种,图1 电路是采用RCD 箝位

开关变压器第十三讲开关变压器漏感分析

开关变压器第一讲变压器基本概念与工作原理 现代电子设备对电源的工作效率、体积以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用下,周围的物体也都会被感应产生磁通。现代磁学研究表明:一切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。在电磁场理论中,磁场强度H的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F跟电流I和导线长度的

如何根据电力变压器容量选择无功补偿电容器的大小

如何根据电力变压器容量选择无功补偿电容器的大小 怎样正确选用电力电容器,如下几点供用户参考: 1、用户购买电力电容器最好直接到生产厂家或由生产厂家授权的代理商处购买,这样防止购买假冒伪劣的产品。 2、用户在选用电力电容器时,应注意电力电容器的产品外观是否完整,有无碰损,及生产厂家的名牌、厂址、质保卡、合格证、说明书等是否齐全。(厂名不全,如“威斯康电气公司”就是厂名不全,齐全的厂名应如“上海威斯康电气有限公司”。通讯地址等不详的产品,用户最好不要购买,以防发生意外事故。)购买前最好与生厂厂家联系证实一下产品售后服务等情况。 3、用户在购买电力电容器时,还应注意标牌上的各种数据:如额定电量KVAR、电容量uf、电流是否对,最好用UF表测量一下,用兆欧表测一下绝缘电阻,生产成套装置的厂家有条件的话可抽查耐压是否符合国家标准。 用户购买电力电容器时,不能只讲究价格便宜,俗话说“便宜没好货、好货不便宜”。一般电容器产品的价格差异是基于其成本的高低。如原材料的优劣:制造电力电容器的电容膜,有铝膜与锌铝膜两种,两者的价格相差很大,用锌铝膜制造的电容器相对成本高,当然质量也不同。此外,电容膜的优质一等品与二等品的价格不同,质量也不同。因此,用户在购买电容器时,价格是次要的,产品的质量才是最重要的。 4、安装使 用电力电容器,安全可靠的方法是:安装之前,将每台电力电容器测量后,将产品序号做好纪录,再依次安装。值得注意的一点,生产成套装置的厂家应考虑到电容补偿柜的运输问题。如果将电容器安装好后运输,很容易造成电容器因运输途中的路面颠簸而碰撞损坏(特别是容量大的电容器因其自身高度和重量,最易因此受到损坏)。方便而有效的解决办法是:在起始点对电容补偿柜装上电容器进行测试后,将电容补偿柜(空柜)和电力电容器分开运输,直到最终目的地(直接用户处)再进行安装。 用户只要对电力电容器选用得当,可为企业提高经济效益,为设备运行与人身财产提供安全的保证。 二、对环境的原因直接影响到电力电容器的寿命。电压过高与冲击电流对电力电容器是致命损害。所以选用电力电容器时,应向生产厂家提供下列几点情况,这样生产厂家可为用户生产专用的电容器。 1、电力电容器设计温度标准45℃,超过45℃对电容器影响很大。(如上海虹桥机场国内候机楼配电房,其里面温度比外界的自然温度高出许多,普通电容器被封闭在柜子里,温度则更高。导致电容器在高温状态下发热过度,引起膨胀、漏液。而

高频高压变压器分布电容的分析与处理解析

高频高压变压器分布电容的分析与处理 摘要:本文在分析高频变压器分布参数机理的基础上,以高压直流LCC谐振变换器为实例,阐述了高频高压变压器分布电容对电路带来的不利影响,提出了一种补偿的方法,进行了仿真和实验,提出了高频高压变压器分布电容的测试方法,推导了补偿电感的计算公式,综合使用了两种针对分布电容的处理方法。实验结果表明该方法的正确性。 关键词:分布电容高频变压器 LCC谐振 Analysis and Disposal of Distributed Capacitance in High-Frequency and High-Voltage Transformer Jin Shun1 , Zheng Guang1 ,Shi Ming2 (Xi’an University of Technology, Xi’an 710048, China; Xi’an Telecom, Xi’an 710003,China) Abstract: On the base of analyzing of mechanism of distributed parameters in high frequency transformer, and with a instance of LCC resonant converter , the disadvantage of distributed capacitance in high-frequency and high-voltage transformer is described .A compensation method ,waveforms of both simulation and experiment, and a method of measuring distributed capacitance are given .Formula for calculation compensation inductance is derived .Two methods are used in solving the trouble . Experimental results are presented to verify the theory. Key words: Distributed Capacitance High Frequency Transformer LCC Resonant 1 前言

多次级高压变压器的分布电容

多次级高压变压器的分布电容 摘要:分布电容是多次级高压变压器固有的寄生参数,它直接影响电路的工作性能。本文从分布电容的产生机理出发,通过传统绕制和pcb迭绕两种工艺的比较,最后以实测波形来说明了分布电 容对电路性能的影响。 关键词:分布电容;多次级高压变压器;传统绕制; pcb迭绕 中图分类号:tm433 文献标识码:a 文章编号:2095-1302(2012)02-0036-03 distributed capacitance of multi-level high-voltage transformer xie fei-yan, zhang ling-di (state key laboratory of electronic thin films and integrated devices, university of electronic science and technology of china, chengdu 610054, china) abstract: the distributed capacitance is inherent in the multi-level high-voltage transformer parasitic parameters, which directly affects the circuit performance. according to the generation mechanism of distributed capacitance, through comparing the traditional method of winding and the technology of pcb diego around, the measured waveform is used to illustrate the influence of distributed capacitance

开关电源变压器的漏感

开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原 理和减少漏感的产生也是开关变压器设计的重要内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。 图2-30是分析计算开关变压器线圈之间漏感的原理图。下面我们就用图2-30来简单分析开关变压器线圈之间产生漏感的原理,并进行一些比较简单的计算。 在图2-30中,N1、N2分别为变压器的初、次级线圈,Tc 是变压器铁芯。r 是变压器铁芯的半径,r1、r2分别是变压器初、次级线圈的半径;d1为初级线圈到铁芯的距离,d2为初、次级线圈之间的距离。为了分析计算简单,这里假设变压器初、次级线圈的匝数以及线大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

径相等,流过线圈的电流全部集中在线径的中心;因此,它们之间的距离全部是两线圈之间的中心距离,如虚线所示。 设铁芯的截面积为S ,S=πr2;初级线圈的截面积为S1,S1=πr 21;次级线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S ;次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1, 在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量 为φ1';电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。 图2.30 由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为:大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

高频高压变压器分布电容的分析与处理

高频高压变压器分布电容的分析与处理 金舜1 曾光1 史明2 (1.西安理工大学,西安 710048;2.西安电信分公司,西安 710003) 摘要:本文在分析高频变压器分布参数机理的基础上,以高压直流LCC谐振变换器为实例,阐述了高频 高压变压器分布电容对电路带来的不利影响,提出了一种补偿的方法,进行了仿真和实验,提出了高频高 压变压器分布电容的测试方法,推导了补偿电感的计算公式,综合使用了两种针对分布电容的处理方法。 实验结果表明该方法的正确性。 关键词:分布电容高频变压器 LCC谐振 Analysis and Disposal of Distributed Capacitance in High-Frequency and High-Voltage Transformer Jin Shun1 , Zheng Guang1 ,Shi Ming2 (Xi’an University of Technology, Xi’an 710048, China; Xi’an Telecom, Xi’an 710003,China)Abstract: On the base of analyzing of mechanism of distributed parameters in high frequency transformer, and with a instance of LCC resonant converter , the disadvantage of distributed capacitance in high-frequency and high-voltage transformer is described .A compensation method ,waveforms of both simulation and experiment, and a method of measuring distributed capacitance are given .Formula for calculation compensation inductance is derived .Two methods are used in solving the trouble . Experimental results are presented to verify the theory. Key words: Distributed Capacitance High Frequency Transformer LCC Resonant 1 前言 随着开关电源频率的不断增加,在满足了减小开关电源体积要求的同时,也带来了一系列新的问题。例如 分布参数在高频情况下对电路的影响就不能再被忽略。在开关型电源电路中,高频变压器是电气隔离,传

分布电容

0 引言 近年来,开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。 但是,由于开关电源工作过程中的高频率、高d i/d t和高d v/d t使得电磁干扰问题 非常突出。国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电 源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的 EMI问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的 问题。本文讨论了开关电源电磁干扰形成的原因以及常用的EMI抑制方法。 1 开关电源的干扰源分析 开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高d i/d t和高 d v/d t,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大电 容充电放电、开关管高频工作时的电压切换、输出整流二极管的反向恢复电流都 是这类干扰源。开关电源中的电压电流波形大多为接近矩形的周期波,比如开关 管的驱动波形、MOSFET漏源波形等。对于矩形波,周期的倒数决定了波形的基 波频率;两倍脉冲边缘上升时间或下降时间的倒数决定了这些边缘引起的频率分 量的频率值,典型的值在MHz范围,而它的谐波频率就更高了。这些高频信号 都对开关电源基本信号,尤其是控制电路的信号造成干扰。 开关电源的电磁噪声从噪声源来说可以分为两大类。一类是外部噪声,例如, 通过电网传输过来的共模和差模噪声、外部电磁辐射对开关电源控制电路的干扰 等。另一类是开关电源自身产生的电磁噪声,如开关管和整流管的电流尖峰产生 的谐波及电磁辐射干扰。 如图1所示,电网中含有的共模和差模噪声对开关电源产生干扰,开关电源在受到电磁干扰的同时也对电网其他设备以及负载产生电磁干扰(如图中的返回噪声、输出噪声和辐射干扰)。进行开关电源EMI/EMC设计时一方面要防止开关电源对电网和附近的电子设备产生干扰,另一方面要加强开关电源本身对电磁骚扰环境的适应能力。下面具体分析开关

高频变压器

高频变压器 高频变压器是作为开关电源最主要的组成部分。开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W 以上的电源,其磁芯直径(高度)就不得小于35mm。而辅助变压器,在电源功率不超过3 00W时其磁芯直径达到16mm就够了。 变压器的工作原理 变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。 变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。 高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz-50kHz、50kHz-100kHz、100kHz~500kHz、5 00kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。[1] 高频变压器 悬赏分:0 - 解决时间:2009-1-15 15:35 高频变压器中的EC42型和EE42有什么区别,42前面的字母分别代表什么? 提问者:hbt0090 - 初学弟子一级最佳答案 EC42型和EE42型是用于高频变压器或电感的两种铁氧体磁芯的型号,这种磁芯由两个“E”形磁体组成,这两种型号磁芯的区别(亦即42前面字母的含义)在于:EC型的磁芯中芯柱为圆形,EE型的磁芯中芯柱为方形。

详解开关电源变压器的漏感

详解开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响 特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈 的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要 内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈 之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线 圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场 强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计 算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理 或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。 在设铁芯的截面积为S,S=πr2;初级线圈的截面积为S1,S1=πr21;次级 线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S; 次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1,在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量为φ1’;电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。 由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为: 电流I2流过变压器次级线圈N2产生的磁通量 (2-95)、(2-96)式中,μ0sd2H2=φ2就是变压器次级线圈N2对初级线圈 N1的漏磁通;因为,这一部分磁通没有穿过变压器初级线圈N1。漏磁通可以等

相关主题
文本预览
相关文档 最新文档