当前位置:文档之家› 事件的相互独立性试题及答案

事件的相互独立性试题及答案

事件的相互独立性试题及答案
事件的相互独立性试题及答案

1

事件的互相独立性

1.若A 与B 相互独立,则下面不相互独立事件有( )

A.A 与A

B.A 与B

C.A 与B D A 与B

2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )

A.0.12

B.0.88

C.0.28

D.0.42

3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( )

A.P 1P 2

B.P 1(1-P 2)+P 2(1-P 1)

C.1-P 1P 2

D.1-(1-P 1)(1-P 2)

4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为

31,视力合格的概率为61,其他几项标准合格的概率为5

1,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.90

1 C.54 D. 95 5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为4

1,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________.

6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是3

1,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________. 7.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响.

(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(2)求这三人该课程考核都合格的概率(结果保留三位小数).

事件的相互独立性教案定稿

2.2.2 事件的相互独立性 一、教学目标 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 二、教学重难点 教学重点:独立事件同时发生的概率。 教学难点:有关独立事件发生的概率计算。 三、教学过程 复习引入: 1. 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件。 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;

4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形。 5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件。 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现 的可能性都相等,那么每个基本事件的概率都是1 n ,这种事件叫等可能性事件。 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率 ()m P A n =。 讲解新课: 1.相互独立事件的定义: 设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立. 事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件. 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 2.相互独立事件同时发生的概率:()()()P A B P A P B ?=? 问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ?.(简称积事件) 从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54?种等可能的结果。同时摸出白球的结果有32?种所以从这两个坛子里分别摸出1个球,它们

人教版高中数学高二选修2-3 第二章《事件的相互独立性》教案

2.2.2事件的相互独立性 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结 果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件 12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,, ,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++ 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这 两个坛子里分别摸出1个球,它们都是白球的概率是多少? 事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球, 得到白球

04事件的相互独立性(教案)

2. 2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:4课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A ++ +=12()()()n P A P A P A +++

事件的相互独立性试题及答案

1 事件的互相独立性 1.若A 与B 相互独立,则下面不相互独立事件有( ) A.A 与A B.A 与B C.A 与B D A 与B 2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( ) A.0.12 B.0.88 C.0.28 D.0.42 3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( ) A.P 1P 2 B.P 1(1-P 2)+P 2(1-P 1) C.1-P 1P 2 D.1-(1-P 1)(1-P 2) 4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为 31,视力合格的概率为61,其他几项标准合格的概率为5 1,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.90 1 C.54 D. 95 5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为4 1,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________. 6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是3 1,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________. 7.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响. (1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三人该课程考核都合格的概率(结果保留三位小数).

选修2-3教案2.2.2 事件的独立性

§2.2.2 事件的独立性 教学目标 (1)理解两个事件相互独立的概念; (2)能进行一些与事件独立有关的概率的计算. 教学重点,难点:理解事件的独立性,会求一些简单问题的概率. 教学过程 一.问题情境 1.情境:抛掷一枚质地均匀的硬币两次. 在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少? 2.问题:第一次出现正面向上的条件,对第二次出现正面向上的概率是否产生影响. 二.学生活动 设B 表示事件“第一次正面向上”, A 表示事件“第二次正面向上”,由古典概型知 ()12P A = ,()12P B =,()1 4 P AB =, 所以() ()() 1 2 P AB P A B P B = = . 即()() P A P A B =,这说明事件B 的发生不影响事件A 发生的概率. 三.建构数学 1.两个事件的独立性 一般地,若事件A ,B 满足() ()P A B P A =,则称事件A ,B 独立. 当A ,B 独立时,若()0P A >,因为() ()()()P AB P A B P A P B = =, 所以 ()()()P AB P A P B =,反过来() ()() ()P AB P B A P B P A = =, 即B ,A 也独立.这说明A 与B 独立是相互的,此时事件A 和B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即 ()()()P AB P A P B =.(*) 若我们认为任何事件与必然事件相独立,任何事件与不可能事件相独立,那么两个事件 A , B 相互独立的充要条件是()()()P AB P A P B =.今后我们将遵循此约定. 事实上,若B φ=,则()0P B =,同时就有()0P AB =,此时不论A 是什么事件,都有(*)式成立,亦即任何事件都与φ独立.同理任何事件也与必然事件Ω独立. 2. 个事件的独立性可以推广到(2)n n >个事件的独立性,且若事件12,,,n A A A 相互独立, 则这n 个事件同时发生的概率()()()()1212n n P A A A P A P A P A = .

人教A版(2019)数学必修(第二册):10.2 事件的相互独立性 教案

事件的相互独立性 【教学过程】 一、问题导入 预习教材内容,思考以下问题: 1.事件的相互独立性的定义是什么? 2.相互独立事件有哪些性质? 3.相互独立事件与互斥事件有什么区别? 二、基础知识 1.相互独立的概念 设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2.相互独立的性质 若事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立. ■名师点拨 (1)必然事件Ω,不可能事件?都与任意事件相互独立. (2)事件A ,B 相互独立的充要条件是P (AB )=P (A )·P (B ). 三、合作探究 1.相互独立事件的判断 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既 有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:

(1)家庭中有两个小孩; (2)家庭中有三个小孩. 【解】(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)}, 它有4个基本事件,由等可能性知概率都为1 4. 这时A={(男,女),(女,男)}, B={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)}, 于是P(A)=1 2,P(B)= 3 4,P(AB)= 1 2. 由此可知P(AB)≠P(A)P(B), 所以事件A,B不相互独立. (2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}. 由等可能性知这8个基本事件的概率均为1 8,这时A中含有6个基本事件,B中含有4个 基本事件,AB中含有3个基本事件. 于是P(A)=6 8= 3 4,P(B)= 4 8= 1 2,P(AB)= 3 8, 显然有P(AB)=3 8=P(A)P(B)成立. 从而事件A与B是相互独立的. 判断两个事件是否相互独立的两种方法 (1)根据问题的实质,直观上看一事件的发生是否影响另一事件发生的概率来判断,若没有影响,则两个事件就是相互独立事件; (2)定义法:通过式子P(AB)=P(A)P(B)来判断两个事件是否独立,若上式成立,则事件A,B相互独立,这是定量判断. 2.相互独立事件同时发生的概率 王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;

人教新课标版数学高二-选修2-3练习 事件的相互独立性

第二章 2.2 2.2.2 一、选择题(每小题5分,共20分) 1.袋内有3个白球和2个黑球,从中不放回地摸球,用A 表示“第一次摸得白球”,用B 表示“第二次摸得白球”,则A 与B 是( ) A .互斥事件 B .相互独立事件 C .对立事件 D .不相互独立事件 解析: 根据互斥事件、对立事件和相互独立事件的定义可知,A 与B 不是相互独立事件.故选D. 答案: D 2.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是1 2,从两袋各摸出一个球, 则2 3 等于( ) A .2个球不都是红球的概率 B .2个球都是红球的概率 C .至少有1个红球的概率 D .2个球中恰有1个红球的概率 解析: 分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P (A )=13,P (B )=1 2,由于A ,B 相 互独立,所以1-P (A )P (B )=1-23×12=2 3 .根据互斥事件可知C 正确. 答案: C 3.(2014·江西省赣州市第二学期高二期末考试)如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( ) A.49 B.29 C.23 D.13 解析: “左边转盘指针落在奇数区域”记为事件A ,则P (A )=46=2 3 ,“右边转盘指针落在奇

数区域”记为事件B ,则P (B )=2 3,事件A ,B 相互独立,所以两个指针同时落在奇数区域的概率为 23×23=4 9 ,故选A. 答案: A 4.如图,已知电路中4个开关闭合的概率都是1 2 ,且是互相独立的,灯亮的概率为( ) A.316 B.34 C.1316 D.14 解析: 记A ,B ,C ,D 这4个开关闭合分别为事件A ,B ,C ,D ,又记A 与B 至少有一个不闭合为事件E , 则P (E )=P (A B )+P (A B )+P (A B )=3 4 , 则灯亮的概率为P =1-P (E C D )=1-P (E )P (C )P (D )=1-316=13 16. 答案: C 二、填空题(每小题5分,共10分) 5.有一个数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是1 3,2人试图独立地 在半小时内解决它,则2人都未解决的概率为________,问题得到解决的概率为________. 解析: 甲、乙两人都未能解决为 ????1-12????1-13=12×23=13 , 问题得到解决就是至少有1人能解决问题. ∴P =1-13=2 3. 答案: 13 2 3 6.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则3人都达标的概率是________,三人中至少有一人达标的概率是________. 解析: 由题意可知三人都达标的概率为P =0.8×0.6×0.5=0.24;三人中至少有一人达标的概

事件的相互独立性的教案

事件的相互独立性的教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.2.2事件的相互独立性 一、教学目标: 1、知识与技能: ①理解事件独立性的概念 ②相互独立事件同时发生的概率公式 2、过程与方法: 通过实例探究事件独立性的过程,学会判断事件相 互独立性的方法。 3、情感态度价值观:通过本节的学习,体会数学来源于实践又服务于 实践,发现数学的应用意识。 二、教学重点:件事相互独立性的概念 三、教学难点:相互独立事件同时发生的概率公式 四,教学过程: 1、复习回顾:(1)条件概率 (2)条件概率计算公式 (3)互斥事件及和事件的概率计算公式 2、思考探究: 三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A 为“第一位同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”。 事件A 的发生会影响事件B 发生的概率吗? 分析:事件A 的发生不会影响事件B 发生的概率。于是: 3、事件的相互独立性 设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。 即事件A (或B )是否发生,对事件B (或A )发生的概率没有影响,这样两个事件叫做相互独立事件。 注:①如果A 与B 相互独立,那么A 与B ,B 与A ,A 与B 都是相互独立的。(举例说明) ②推广:如果事件12,,...n A A A 相互独立,那么 1212(...)()()...()n n P A A A P A P A P A = (|)()P B A P B =()()(|)P AB P A P B A =()()() P AB P A P B ∴=

人教版选修第二章离散型随机变量教案事件的相互独立性

数学:人教版选修2-3第二章离散型随机变量教案(2.2.2事件的相互独立性) 2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不 发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就

把这个常数叫做事件的概率,记作. 3.概率的确定方法:通过进行大量的重复试验,用这个事件 发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的 两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有个, 而且所有结果出现的可能性都相等,那么每个基本事件的概 率都是,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果 有个,而且所有结果都是等可能的,如果事件包含个结果, 那么事件的概率 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A和事件B是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件. 一般地:如果事件中的任何两个都是互斥的,那么就说事件 彼此互斥 11.对立事件:必然有一个发生的互斥事件. 12.互斥事件的概率的求法:如果事件彼此互斥,那么=

2020-2021学年高中新教材人教A版数学必修第二册 10.2 事件的相互独立性 教案 (1)

10.2 事件的相互独立性 本节《普通高中课程标准数学教科书-必修二(人教A 版)第十章《10.2 事件的相互独立性》,本节课主要事在已学互斥事件和对立事件基础上进一步了解事件之间的关系,相互独立性是另一种重要的事件关系,注意对概率思想方法的理解。发展学生的直观想象、逻辑推理、数学建模的核心素养。 课程目标 学科素养 A .理解两个事件相互独立的概念. B .能进行一些与事件独立有关的概念的计算. C. 通过对实例的分析,会进行简单的应用. 1.数学建模: 相互独立事件的判定 2.逻辑推理:相互独立事件与互斥事件的关系 3.数学运算:相互独立事件概率的计算 4.数据抽象:相互独立事件的概念 1.教学重点:理解两个事件相互独立的概念 2.教学难点:事件独立有关的概念的计算 多媒体 教学过程 教学设计意图 核心素养目标 一、 探究新知 前面我们研究过互斥事件,对立事件的概率性质,还研究过和事件的概率计算方法,对于积事件的概率,你能提出什么值得研究的问题吗? 我们知道积事件AB 就是事件A 与事件B 同时发生,因此,积 由知识回顾,提

() A A B B AB AB () ()()P A P AB P AB []()()()(()1()P AB P A P AB P P A P B P ∴=-==-=

AB 根据概率的加法公式和事件独立性定义,得 ) AB AB )() P B P ?+ ?+? 0.10.2

AB AB + AB P AB AB AB)() () +0.72 P AB AB = :由于事件“至少有一人中靶 根据对立事件的性质,得事件“至少有一人中靶 = 0.020.98

(2019新教材)人教A版高中数学必修第二册:事件的相互独立性 课时同步练习

事件的相互独立性 [A 基础达标] 1.坛子中放有3个白球,2个黑球,从中进行不放回地取球两次,每次取一球,用A 1表示第一次取得白球,A 2表示第二次取得白球,则A 1和A 2是( ) A .互斥事件 B .相互独立事件 C .对立事件 D .不相互独立的事件 解析:选D.因为P (A 1)=35,若A 1发生了,P (A 2)=24=12;若A 1不发生,P (A 2)=3 4,所以 A 1发生的结果对A 2发生的结果有影响,所以A 1与A 2不是相互独立事件. 2.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为( ) A .0.2 B .0.8 C .0.4 D .0.3 解析:选D.由相互独立事件同时发生的概率可知,问题由乙答对的概率为P =0.6×0.5=0.3,故选D. 3.某种开关在电路中闭合的概率为p ,现将4只这种开关并联在某电路中(如图所示),若该电路为通路的概率为65 81 ,则p =( ) A.12 B.13 C.23 D.34 解析:选B.因为该电路为通路的概率为6581,所以该电路为不通路的概率为1-65 81,只有当 并联的4只开关同时不闭合时该电路不通路,所以1-6581=(1-p )4,解得p =13或p =5 3(舍去).故 选B . 4.(2019·重庆检测)荷花池中,有一只青蛙在成品字形的三片荷叶上跳来 跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( ) A.13 B.29 C.49 D.8 27 解析:选A.由已知得逆时针跳一次的概率为23,顺时针跳一次的概率为1 3 ,则逆时针跳三

事件的独立性教案

事件的相互独立性 数学与统计学学院芮丽娟2009212085 一、教学目标: 1、知识与技能: (1)了解独立性的定义(即事件A的发生对事件B的发生没有影响); (2)掌握相互独立事件的概率乘法公式P(AB)=P(A)P(B) 2、过程与方法: 通过对现实生活中不同事件问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力 3、情感态度与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点. 二、重点与难点: 正确理解独立性的定义与互斥事件的差别,掌握并运用独立事件概率公式 三、教学设想: 1、创设情境:通过回顾上节课学习的条件概率,引入本节课独立性的定义 例:3张奖券中只有一张能中奖,现分别由3名同学无放回的抽取,事件A为“第一名同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”。则问事件A的发生会影响事件B发生的概率吗?若条件改为有放回,这时又是什么情况? 解:显然无放回时,A的发生影响着B,即是条件概率。而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B发生的概率。于是P(B|A)=P(B),代入条件概率公式得P(AB)=P(B|A)P(A)=P(A)P(B) 2、基本概念: 独立性定义:设A,B为两个事件,如果满足P(AB)=P(A)P(B),则称事件A与事件B 相互独立。 例1:分别抛掷两枚质地均匀的硬币,设A是事件“第1枚为正面”,B是事件“第2枚为正面”,C是事件“2枚结果相同”。问:A,B,C中哪两个相互独立? 分析:理解相互独立的定义,即是一事件的发生对另一事件的发生与否没有影响,由于A事件抛掷第一枚硬币为正面,对B事件第二枚硬币为正面没有影响,故A与B独立,而

高二数学 事件的相互独立性练习题

C B A 高二数学 事件的相互独立性练习题 1.在一段时间内,甲去某地的概率是1/4,乙去此地的概率是1/5,假定两人的行动相互之间没有影响,那么在这段时间内至少有1 人去此地的概率是 ( ) ()A 3/20 ()B 1/5 ()C 2/5 ()D 9/20 2.从甲口袋内摸出1个白球的概率是1/3,从乙口袋内摸出1个白球的概率是1/2,从两个口袋内各摸出1个球,那么5/6等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率 ()C 2个球不都是白球的概率 ()D 2个球中恰好有1个是白球的概率 3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是 ( ) ()A 0.128 ()B 0.096 ()C 0.104 ()D 0.384 4.某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是 ( ) ()A 35/192 ()B 25/192 ()C 35/576 ()D 65/192 5.甲、乙、丙三人独立地去破译一个密码,他们能译出的概率分别为15、13、1 4 ,则此密码能译出的概率为 ( ) () A 35 () B 25 () C 5960 () D 160 6.甲、乙两歼击机飞行员向同一架敌机射击,设击中的概率分别为0.4、0.5,则恰有一人击中敌机的概率为 ( ) ()A 0.9 ()B 0.2 ()C 0.7 ()D 0.5 7.甲、乙两人独立地解决一道数学题,已知甲能解对的概率为m ,乙能解对的概率为n ,那么这道数学题被得到正确解答的概率为( ) ()A m n + ()B m n ? ()C 1(1)(1)m n --- ()D 1m n -? 8.有n 个相同的电子元件并联,每个电子元件能正常工作的概率为0.5,要使整个线路正常工作的概率不小于0.95,n 至少为 ( ) ()A 3 ()B 4 ()C 5 ()D 6 9.(1)将一个硬币连掷5次,5次都出现正面的概率是 ; (2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是 . 10.棉籽的发芽率为0.9,发芽后发育为壮苗的概率为0.6,(1)每穴播两粒,此穴缺苗的概率为 ;此穴无壮苗的概率为 .(2)每穴播三粒,此穴有苗的概率为 ;此穴有壮苗的概率为 . 11.如图所示,有通往东、南、西、北的道路,在各个交叉点掷一次骰子设出现一点时向北前

事件的相互独立性教案

§2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教学过程: 一、复习引入: 1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m 总是接近某个常数,在它附近摆动,这时就把这个常数叫 n 做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1 ≤≤,必然事件和不可能事件看作随机事件的两 P A 个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A)称

为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就 说事件12,,,n A A A L 彼此互斥 11.对立事件:必然有一个发生的互斥事件. ()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么 12()n P A A A +++L =12()()()n P A P A P A +++L 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?

相互独立事件教案

相互独立事件同时发生的概率 数学组 焦婵女 教学目标 1知识目标:相互独立事件的定义,相互独立事件的概率的计算 2能力目标:会计算相互独立事件的概率 3情感目标:培养学生的数学概率思维,团结互助的精神。 教学重点 相互独立事件的定义及计算同时发生的概率 教学难点 相互独立事件的定义及计算同时发生的概率 对简单事件的表述及间接法(“正繁则反”)的解题思想 教学方法 启发式教学 教学过程 一、创设情境,故事引入 大家都听过三个臭皮匠赛过诸葛亮这个俗语吧?今天我们将来用概率计算的手段给大家一个圆满的解释。 问题: 已知诸葛亮解决某个问题的把握为0.8,臭皮匠老大、老二解决的把握分别为0.55,0.5。假如臭皮匠老三解出的把握只有0.4,那么规定三个臭皮匠中至少有一人解决的把握真的能赛过诸葛亮吗? 为了解决这个问题我们还是先来学个新知识点——相互独立事件 二、探索新知 阅读课本,回答问题: 1、相互独立事件定义? 事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件交相互独立事件。 请大家来判断下面两个事件是否相互独立: (1)、“明天北京地区有小雨”和“明天香港地区有小雨” (是) (2)、射击比赛中,“甲命中9环”和“乙命中8环” (是) 2、相互独立事件同时发生的概率? 两个相互独立事件同时发生的概率,等于每个事件发生的概率的乘积,即)()()(B P A P AB P ?= 放松一下,做个游戏,规则:摸出一个球为白球则中奖 (1) 甲坛子中有3个白球,2个黑球,中奖的概率是多少? 5 3)(=A P 中奖率很高 (2)乙坛子中有2个白球,2个黑球,中奖的概率是多少?

随机事件独立性概念的引入

(下转第108页 )摘要 事件的独立性是概率论中重要的概念之一。本文分析了两个随机事件相互独立的直观解释与公式形式的定义之间的关系,指出了公式形式的定义与直观解释不完全一致的情形,并通过引入三个事件相互独立的直观解释来加强学生对三个事件相互独立的定义的理解。关键词随机事件独立性两两独立 The Way to Introduce the Concept of the Independency of Random Events //Ji Wei Abstract The independency of random events is one of the most important concepts in probability theory.The relationship betw-een the quick look interpretation and formulaic definition of the independency between two random events is discussed.Especi-ally,an example is given to show the discrepancy between the quick look interpretation and formulaic definition.Moreover,a quick look interpretation of the independency among three random events is given to make the definition more understandable. Key words random event;independence;mutual independent Author 's address College of Science,Guilin University of Technology,541004,Guilin,Guangxi,China 随机事件的独立性是概率论中重要的概念之一,它的引进极大地推动了概率论的发展,概率论前期最重要的一些结论大都是在独立性假定下获得的。独立性不仅在理论上具有重要意义,而且在实际中有着广泛的应用。要掌握好独立性的定义,首先必须深刻理解事件独立性的定义。 1两个事件独立性的定义 国内大多数概率论与数理统计教材在引入两个事件独立性定义的时候,通常是先给出描述性的直观解释:事件B 的发生与否的概率不受事件A 是否发生的影响,再将直观解释表示成数学语言。事实上,事件B 发生与否的概率不受事件A 的影响,也就意味着有 P (B )=P (B |A ),这时,由乘法公式可得P (AB )=P (A )P (B )。定义1[1-3]:对任意两个事件A 、B,若P (AB )=P (A )P (B )成立,则称事件A 与B 是相互独立的。 采用这样一种方式,不免给学生留下了疑问:为什么不采用第一种更直观的P (B)=P (B |A )来定义?由于大多数教材在定义条件概率P (B |A )时,都假定P (A )≠0,如果选取该式作为定义,就将满足P (A )=0的情况排除在外了。而由独立性的直观解释可以得到,当A 为不可能事件时,A 与任何事件独立。因此,采用P (B)=P (B |A )作为独立性的定义有一定的局限性。而定义1涵盖了“不可能事件与任何事件独立” 这一命题,并且具有良好的对称性。因此,大多数教材采用定义1作为独立性的定义。 但定义1也与独立性的直观解释有一定的出入,我们看下面的例子。 例1:Ω={全体整数},A={1,2},B={1},则P (A )=P (B )=P (AB )=0。由定义1可知,事件与事件是独立的。但在事件A 发生的情况下,事件发生的概率为0.5,而不是0;即事件B 发生的概率受到事件A 是否发生的影响。类似地,在事件B 发生的情况下,事件A 发生的概率为1,而不是0;即事件A 发生的概率也受到事件B 是否发生的影响。 幸运的是,这种不一致的情形只有在所讨论的事件中含有概率为0的事件时才会发生,而且定义1是一个公式形式的定义,给独立性的数学处理带来了极大的方便。因此,国内大多数教材都是采用该定义。但也有一些教材直接采用描述性的语言来定义两个独立性。 定义2[5]:两个事件A 与B,如果其中任何一个事件发生的概率不受另外一个事件发生与否的影响,则称事件A 与B 是相互独立的。 由于该定义没有转化为明确的数学公式,使用起来没有定义1方便,因而采用该定义的教材较少。随机事件独立性的公式形式定义与直观解释之间的差别,在一定程度上反映了数学定义来源于实践,但又不完全与实践相同的特点。将实践中产生的数学思想经过适当的加工,得到更易于数学处理的定义比直观解释更有生命力。定义与直观解释这种不一致,也是数学魅力的一种体现,可以启发学生思考是否存在一个与独立性的直观解释更吻合同时又易于数学处理的公式形式的定义。 2三个事件独立性的定义 大部分概率论教材中两个事件独立性概念的是从事件B 的发生与否不受事件A 是否发生的影响来引入独立性的概念,这种引入方式比较容易被学生接受。而三个事件独立性的定义,国内概率论的教材大多采用直接给出的方式。 定义3[1-4]:对于任意三个事件A,B,C,如果(1)P (AB )=P (A )P (B ),P (AC )=P (A )P (C ),P(BC )=P(B )P (C ); (2)P (ABC )=P (A )P (B )P (C ),则称事件A,B,C 相互独立。 采用这一种方式,读者自然会提出这样的一个问题:三个事件两两独立,能否保证它们相互独立呢?虽然教材举出反例证明了答案是否定的,依然会有许多读者疑惑:为何不采用三个事件两两独立的形式作为三个事件独立性的定义呢?为了解决这个疑惑,我们可以采用先给出三个事件独立性的描述性的直观解释:三个事件A 、B 、C 相互独立,如果其中任何一个事件发生的概率不受另外两个事件发生与否的影响,三个事件两两独立能否保证某一事件不受另外两个 中图分类号:O211 文献标识码:A 文章编号:1672-7894(2012)15-0088-02 88

独立性检验教学案

独立性检验教学案 班级:_______ 姓名:_________ 学号: 面批时间:________ 课前预习案 【学习目标】通过案例,了解独立性检验及它们的初步应用. 【教学重点与难点】独立性检验的基本思想与初步应用. 【自主学习】 1.事件A 与B 相互独立: (1)定义:一般地,对于两个事件A,B,若满足 ,则称事件A 与B_________,简称A 与B 独立. (2)性质:一般情况下,当事件A 与B 独立时,事件 、 、 也独立. 2.独立性检验:(即判断是否相关) 设两个变量A,B,每一个变量都可以取两个值,统计数据如下列22?列联表: 1B 2B 合计 1A a b a b + 2A c d c d + 合计 a c + b d + n a b c d =+++ 则进行检验变量A 与B 是否相关的步骤如下: (1)由公式2 2 () ()()()() n ad bc a b c d a c b d χ-= ++++计算2χ的值; (2)判断2χ与两个临界值(即 与 )的大小,即当2 6.635χ>时, 有 的把握说事件A 与B 有关;当2 3.841χ>时,有 的把握说事件A 与B 有关;当2χ≤ 时,认为事件A 与B 无关. 【预习自测】

某防疫站对屠宰场及肉食零售点的猪肉检查沙门氏菌情况,结果如下表,试检验屠宰场与零售点猪肉带菌率有无差异. 带菌头数不带菌头数合计 屠宰场 6 24 30 零售点10 12 22 合计16 36 52

独立性检验教学案 班级:_______ 姓名:_________ 学号:面批时间:________ 课内探究案 【精讲点拨】 题型一:相互独立事件的概率求解 ,例1.三人独立破译同一份密码,已知三人各自破译出密码的概率分别为111 ,, 543且他们是否破译出密码互不影响.求:(1)他们都破译出密码的概率;(2)至少有一人破译出密码的概率;(3)恰有二人破译出密码的概率. 变式训练:(2010年高考江西卷文科第9题)有n位同学参加某项选拔测试,每位同学能通过测试的概率都是(01) <<,假设每位同学能否通过测试是相互 p p 独立的,则至少有一位同学能通过测试的概率为( ) A.(1)n -- p p -C.n p D.1(1)n -B.1n p 题型二:独立性检验(即判断两个变量是否相关,把握性有多大)

高中数学《事件的相互独立性》

2.2.2事件的相互独立性 一.教学目标: 知识与技能:理解两个事件相互独立的概念,会用相互独立事件的概率乘法公式计算一些事件的概率。 过程与方法:进一步发展学生类比、归纳、猜想等合情推理能力;通过对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:相互独立事件的意义和相互独立事件同时发生的概率公式。 教学难点:对事件独立性的判定,以及能正确地将复杂的概率问题分解转化为几类基本的概率模型. 二.教学过程:创设情境,提出问题 合作交流,感知问题 类比联想,探索问题 实践应用,解决问题 总结反思,深化拓展. 1.创设情境,提出问题: 问题一:“常言道,三个臭皮匠能抵诸葛亮”。怎样从数学上来解释呢?将问题具体化:假如对某事件诸葛亮想出计谋的概率为0.88,三个臭皮匠甲、乙、丙想出计 谋的概率各为0.6、0.5、0.5.问这三个臭皮匠能胜过诸葛亮吗? 问题二:2010年1月26日上午,NBA常规赛进行了一场焦点之战--勒布朗-詹姆斯领衔的克利夫兰骑士在客场挑战由韦德率领的迈阿密热火。比赛非常激烈,直到 终场前3.1秒比分打成90平,热火队犯规,詹姆斯获两次罚篮机会,已知詹 姆斯的罚篮命中率为77.6%,问骑士队此时获胜的概率是多少? 我们一起学习完今天这节课后,问题就会得到解答。 引入课题:2.2.2事件的相互独立性(板书) 2.复习回扣: 条件概率:设事件A和事件B,且P(A)>0,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。记作P(B |A). 3.新课讲解: 探究1:三张奖券有一张可以中奖,现由三名同学依次有放回地抽取。 定义A为事件“第一位同学中奖”,B为事件“第三位同学中奖”。 问:事件A发生对于事件B发生有影响吗? 答:事件A的发生不会影响事件B发生的概率。 A B P=) P (B ) ) ( | P A AB 又 P P= (A ( B ) | ) ( P A AB P= P ∴ ) ) ( ( ) (B

相关主题
文本预览
相关文档 最新文档