当前位置:文档之家› 综述石墨烯的制备与应用

综述石墨烯的制备与应用

综述石墨烯的制备与应用
综述石墨烯的制备与应用

半导体物理课程作业

石墨烯的制备与应用(材料)

目录

一、石墨烯概述 (2)

二、石磨烯的制备 (3)

1、机械剥离法 (3)

2、外延生长法 (5)

3、化学气相沉积法 (6)

4、氧化石墨-还原法 (6)

5、电弧法 (9)

6、电化学还原法 (9)

7、有机合成法 (10)

三、石墨烯的应用 (11)

1、石墨烯在电子器件领域的应用 (11)

1.1 石墨烯场效应晶体管 (11)

1.2 石墨烯基计算机芯片 (12)

1.3 石墨烯信息存储器件 (13)

2、石墨烯在能源领域的应用 (14)

2.1 石墨烯超级电容器 (14)

2.2 锂离子电池 (15)

2.3 太阳能电池 (16)

2.4 储氢/甲烷器件 (17)

3、石墨烯在材料领域的应用 (18)

3.1 特氟龙材料替代物 (18)

3.2 石墨烯聚合物复合材料 (18)

3.3 光电功能材料 (19)

4、石墨烯在生物医药领域的应用 (20)

4.1 基于氧化石墨烯的纳米载药体系 (20)

4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21)

4.3用于生物成像技术 (23)

4.4 石墨烯在肿瘤治疗方面的应用 (23)

四、总结及展望 (24)

参考文献 (25)

一、石墨烯概述

碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。

碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基

(零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C

60

化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。

图1 碳的晶体结构

石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

的电子迁移率。这些优异的性质,使得石墨烯在晶体管、太阳能电池、传感器、超级电容器、场发射和催化剂载体等领域有着良好的应用前景。制备高质量的石墨烯和促进石墨烯的应用,是石墨烯领域的研究热点。本文综述了近些年在石墨烯的制备方法和应用研究方面取得的进展。

石墨烯的基本结构单元与石墨材料相同,构成石墨烯的每个碳原子与其他3个碳原子通过σ键相连接. 碳原子的排列也与石墨单原子层一样,形成如图2所示的结构,换言之,石墨烯就是由单层六角元胞碳原子组成的蜂窝状二维晶体,这些很强的C —C 键(sp 2)使石墨烯成为已知最为牢固的材料之一:单层石墨烯的厚度只有0.335nm,仅为头发丝直径的1 /200000,理论上,如果能够制作出厚度为100nm 的石墨烯,那么需要施加约200kN 的力才能够将其扯断。

(a)模型图 (b)HRTEM 图像

图2 石墨烯的结构

碳原子有4个价电子,其中3个电子生成sp 2键,即每个碳原子都贡献一个未成键的电子位于p z 轨道,近邻原子的p z 轨道与平面成垂直方向可形成π键,此时π键为半

填满状态,所以电子可在二维晶体内自由移动,赋予石墨烯良好的导电性和其他独特的电学性质。

二、石磨烯的制备

从发现稳定存在的石墨烯到现在七年多时间里,石墨烯在制备方面取得了长足的进步。目前制备石墨烯主要包括以下几种方法:

1、机械剥离法

该方法首先利用离子束在lmm 厚的高定向热解石墨表面用氧等离子干刻蚀进行

离子刻蚀。在表面刻蚀出宽2μm ~2 mm、深5μm的微槽,并将其用光刻胶粘到玻璃衬底上;然后用透明胶带进行反复撕揭,将多余的高定向裂解石墨HOPG(highly oriented pyrolitic graphite)去除;随后将粘有微片的玻璃衬底放入丙酮溶液中作超声处理;再将单晶硅片放入丙酮溶剂中,将单层石墨烯“捞出”。由于范德华力或毛细管力,单层石墨烯会吸附在单晶硅片上。利用这一方法成功制备了准二维石墨单层并观测到其形貌。将微机械剥离法制得的含有单层石墨烯的硅晶片放置于一个经过刻蚀的金属架上,用酸将硅晶片腐蚀掉,获得了由金属支架支撑的悬空的单层石墨烯。用透射电镜观测到其形貌,发现单层石墨烯并不是一个平整的平面,而是平面上面有一定高度(50 ?~100 ?)的褶皱。通过对单层石墨烯和双层石墨烯表面的褶皱程度的研究发现,石墨烯表面的褶皱可能是二维石墨烯存在的必要条件。单层石墨烯表面褶皱明显大于双层石墨烯,并且随着石墨烯层数的增加褶皱程度越来越小,趋于平滑。这是因为单层石墨烯片为降低其表面能量,由二维向三维形貌转换。尽管利用这种方法很难大规模制备石墨烯,而且尺寸不易控制,但是机械剥离法仍然是制备高质量石墨烯最有效的方法之一。Manchester大学Geim领导的研究组2004年在Science上发表论文,报道了他们用机械剥离法制备得到了最大宽度可达10μm的石墨烯片(图3)。

图3 机械剥离法制备石墨烯的示意图

2、外延生长法

图4 金刚砂高温还原制备石磨烯

该方法是通过加热单晶SiC脱除硅,在单晶(001)面上分解出石墨烯片层(在超高真空、1000℃条件下,硅会被释放出来,剩下的只有石墨化的碳)利用这种方法能可控地制备出单层或是多层石墨烯(最多可获得100 层的多层石墨烯),其厚度由加热温度决定,缺点是制备大面积、具有单一厚度的石墨烯比较困难。具体方法是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1 250℃~1450℃后,恒温1分钟~20分钟,从而得到极薄的石墨烯层。加州理工大学的de Heer 等利用这种方法成功制备了石墨烯(图4),但从这种方法制备出来的二维石墨中并没有观测到由HOPG 剥离出的二维石墨所表现出的量子霍尔效应,并且石墨烯表面的电子性质受SiC衬底的影响很大,进一步的研究仍在进行中。

Claire Berger等利用加热SiC 的方法制备出单层和多层石墨烯薄片并研究了其性能,在单晶6H-SiC的Si-terminated(00001)面上通过热解脱除Si来制取石墨烯。将表面经过氧化或H2蚀刻后的样品在高真空下通过电子轰击加热到1000℃以除掉表面的氧化物(多次去除氧化物以改善表面质量),用俄歇电子能谱确定氧化物被完全去除后,升温至1250~1450℃,恒温1~20min,形成石墨烯薄片,其厚度由加热

温度决定。

3、化学气相沉积法

该法是近几十年发展起来的制备无机材料的新技术,是目前应用最广泛的一种大规模制备半导体薄膜材料的方法。而且,该方法已成功的应用于工业化大规模制备多壁碳纳米管,生产工艺十分完善。

Kim首先在SiO2/Si基底上沉积一层100~500nm厚的金属镍薄层,然后在1000℃及高真空下,以甲烷、氢气及氩气混合气为反应气,在较短的时间内制备了石墨烯。Wei等采用甲烷和氨气为反应气,一步法直接合成了氮掺杂的石墨烯。在该氮掺杂的石墨烯中氮原子采取石墨化、“吡咯化”及“吡啶化”这三种掺杂方式(如图5)。该法是大规模制备大尺寸、高质量石墨烯的最有希望的方法之一。但目前还不是很

完善,还有待于进一步的研究。

图5 石磨烯制备

4、氧化石墨-还原法

石墨首先经化学氧化得到边缘含有羧基、羟基,层间含有环氧及羰基等含氧基团的石墨氧化物(graphite oxide),此过程可使石墨层间距离从0.34nm扩大到约0.78 nm,再通过外力剥离(如超声剥离)得到单原子层厚度的石墨烯氧化(graphene oxide),进一步还原可制备得到石墨烯。这种方法制备的石墨烯为独立的单层石墨烯片,产量高,应用广泛。

石墨的氧化方法主要有Hummers、Brodie和Staudenmaier三种方法,它们都是用无机强质子酸(如浓硫酸、发烟HNO3 或它们的混合物)处理原始石墨,将强酸小分子

插入石墨层间,再用强氧化剂(如KMnO

4、KClO

4

等)对其进行氧化。Hummers氧化法的

优点是安全性较高;与Hummers法及Brodie法相比,Staudemaier法由于使用浓硫酸和发烟硝酸混合酸处理石墨,对石墨层结构的破坏较为严重。氧化剂的浓度和氧化时间对制备的石墨烯片的大小及厚度有很大影响,因此,氧化剂浓度及氧化时间需经过仔细筛选,才能得到大小合适的单层氧化石墨烯片。无论是哪种方法都是将石墨与强酸、强氧化剂作用,在石墨原有的C-C骨架之间引入了大量的-OH,-COOH和环氧基。氧化石墨烯上C原子属于sp3杂化,大大破坏了石墨烯的平面结构,从而降低了石墨烯原有的优良导电性能。因此,许多科学家正试图利用热退火或化学还原等手段将氧化石墨还原,恢复原有的优良性能。氧化石墨烯是目前研究最多的一类石墨烯衍生物,在水、乙二醇、DMF、NMP和THF中有良好的溶解度(图6)。

图6 氧化石磨烯结构和溶解度示意图

将氧化石墨与水以1mg/mL的比例混合,用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在100℃回流24h,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。Sasha Stankovich等利用化学分散法制得厚度为1nm左右的石墨烯。随着制备方法的深入开展,一些科学家修正或发展了原有的化学制备可溶液加工处理的高质量石墨烯方法(如图7)。

图7 几种利用化学法制备石墨烯的方法

制备的石墨氧化物均需经过剥离、还原等步骤才能得到单层的石墨烯。剥离的方法一般用超声剥离法, 即将石墨氧化物悬浮液在一定功率下超声一定的时间。超声波在氧化石墨悬浮液中疏密相间地辐射,使液体流动而产生数量众多的微小气泡,这些气泡在超声波纵向传播的负压区形成、生长,而在正压区迅速闭合,在这种被称之为“空化”效应的过程中,气泡闭合可形成超过1.0×108Pa个大气压的瞬间高压,连续不断产生的高压就象一连串小“爆炸”不断地冲击石墨氧化物,使石墨氧化物片迅速剥落生成单层石墨氧化物(即石墨烯氧化物)。另外,石墨烯氧化物片的大小可以通过超声功率的大小及超声时间的长短进行调节。

制备的石墨氧化物也可通过LB(Langmuir-Blodgett)膜技术组装成石墨烯氧化物片,先将石墨氧化物在水-甲醇的混合溶液中超声约30min,离心(8000 r·min-1)除去少量的副产物与较小的石墨氧化物片层后,重新分散于水-甲醇溶液中,进一步离心(2500 r·min-1)去除较大的石墨氧化物片,最后可获得宽度为5~20μm的石墨氧化物片. 将上述过程制得的石墨氧化物用玻璃注射器按100μL·min-1的速度注入填满二次水的水槽里, 由张力计监控表面压力, 压制速率为20m2·min-1。随着甲醇的蒸发, 石墨氧化物在水中形成单层。此法可获得厚度约为1nm,面积较大的石墨烯

氧化物片层。最后,制备的单层石墨烯氧化物还需经还原后才能得到石墨烯,还原

的方法有化学还原法、热还原法、电化学还原法等。化学还原法中常用的还原剂有硼氢化钠、肼等,化学还原法可有效地将石墨烯氧化物还原成石墨烯,除去碳层间的各种含氧基团,但得到的石墨烯易产生缺陷,因而其导电性能达不到理论值。除化学还原外,也可通过电化学方法将石墨氧化物还原成石墨烯,将涂覆有石墨氧化物片的基底(如石英)置于磷酸盐缓冲溶液中(pH=4.12),将工作电极(玻碳电极)直接与7μm厚的石墨氧化物片膜接触,控制扫描电位从-0.6至-1.2V进行线性伏安扫描,即可将石墨氧化物还原成石墨烯,该方法所得到的石墨烯中C和O的原子比为4.23,低于化学还原法制得的石墨烯中C和O的原子比(约为7.09%)。

热还原法是在N

2

或Ar气气氛中对石墨氧化物进行快速高温热处理,一般温度约为1000℃,升温速率大于2000℃·min-1,使石墨氧化物迅速膨胀而发生剥离,同时

可使部分含氧基团热解生成CO

2

,从而得到石墨烯。该方法制备的石墨烯中的C和O的比一般约为10,高于用化学还原法制备的石墨烯中C和O的比。

除上述方法外,还可通过在光催化剂TiO

2的存在下紫外光照射还原以及N

2

气氛

下氙气灯的快速闪光光热还原石墨氧化物得到石墨烯。

5、电弧法

石墨烯还可以通过电弧放电的方法制备,在维持高电压、大电流、氢气气氛下,当两个石墨电极靠近到一定程度时会产生电弧放电,在阴极附近可收集到CNTs以及其它形式的碳物质,而在反应室内壁区域可得到石墨烯,这可能是氢气的存在减少了CNTs及其它闭合碳结构的形成。Rao等通过电弧放电过程制备了2~4单原子层厚的石墨烯。此法也为制备p 型、n 型掺杂石墨烯提供了一条可行途径。

6、电化学还原法

电化学方法是一种绿色快速的制备方法。它可以通过调节外部电能来改变电极表面材料的费米能级以改变材料的电子状态,从而可以可控的对材料进行修饰和还原。Guo等研究了GO的电化学行为,发现在第一圈循环伏安扫描中,GO在-1.2V表现出强的阴极峰(如图8),该还原电流对应于GO表面上的含氧基团的还原。随着扫描圈数增加,该还原峰电流急剧降低直至消失, 表明含氧基团完全被还原且不可逆。然后通过恒电位法,在石墨电极上于较高的负电位下还原GO,制备了厚度约为1.1nm

的石墨烯片。另外,Wang等通过层层组装的方法将GO组装到玻碳电极表面,通过

循环伏安法进行还原,制备了石墨烯修饰的电极并应用于电化学传感。

图8 GO的伏安扫描曲线

7、有机合成法

Qian等运用有机合成法制备了具有确定结构而且无缺陷的石墨烯纳米带。他们选用四溴酰亚胺(tetrabromo-perylene bisimides)作为单体,该化合物在碘化亚铜和L-脯氨酸的活化下可以发生多分子间的偶联反应,得到了不同尺度的并酰亚胺,实现了含酰亚胺基团的石墨烯纳米带的高效化学合成;他们还通过高效液相分离出了两种三并酰亚胺异构体(图9),并结合理论计算进一步阐明了它们的结构。

图9 合成三并苝酰亚胺的示意图

2008年Muellen小组利用有机合成方法得到了石墨烯类化合物,其厚度为12nm。尽管这种材料的电学性质还没有测定,但是,它毫无疑问应该具有与石墨烯相似的性质。化学合成法可以制备出连续且性能优异的石墨烯薄膜半导体材料,而且现有的半导体加工技术也可以对石墨烯薄膜材料进行剪裁修饰,使得化学生长法制备出

的石墨烯材料在微电子领域有着巨大的应用潜力。如果在未来几年内,有机合成方法能够突破制得的石墨烯尺寸较小的这一问题,那将为石墨烯的应用提供广阔的前景。图10给出了化学合成石墨烯的一个例子。

图10 石磨烯的化学合成路径示意图

三、石墨烯的应用

作为一种独特结构的二维晶体,石墨烯有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达 1.0TPa;热导率高达5300W·m-1·K-1,是铜热导率的10多倍;结构体几乎完全透明,对光只有2.3%的吸收率;并且在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高的电子迁移率。这些优异的性质,使得石墨烯在电子器件、化学材料、能源存储、传感器、医药生物等领域有着良好的应用前景。

1、石墨烯在电子器件领域的应用

1.1 石墨烯场效应晶体管

作为一种零带隙的半导体,石墨烯不能直接用在场效应晶体管上。当石墨烯的宽度变窄(小于10nm),石墨烯就变成一种准一维材料,这种材料也称作石墨烯纳

米带;由于宽度局域效应,石墨烯纳米带在室温条件下产生带隙,其制备的场效应晶体管有着非常优异的开关速度和载流子迁移率。在刚发现石墨烯时,Novoselov 等用宽度小于10nm 的石墨烯制备了场效应晶体管,发现石墨烯显示双极性电场效应,在室温下电子和空穴密度均为5×1012cm-2,载流子迁移率达到10000cm2·V-1·s-1,平均自由程达到0.4μm。石墨烯的载流子迁移率是硅的10倍,高的载流子迁移率使得石墨烯晶体管的频率非常高。

美国IBM开发出了截止频率100GHz的石墨烯FET(场效应晶体管),其截止频率比采用Si技术且栅极长度相同的MOSFET的最大值还要大2.5倍左右。其图像及结构示意图如图11所示。

图11 石墨烯晶体管图像及结构示意图

让石墨烯产生带隙是晶体管应用的基础,人们发现通过外加电场、施加应力或者进行元素掺杂,都可以调节石墨烯的带隙,这些研究将促进石墨烯在晶体管上的应用。众所周知,制备的晶体管越小,集成电路中的集成度就越高,设备的性能将越好。现在制备晶体管的常用材料是硅,但是由于隧道效应,用硅制备的晶体管栅极小于5nm时,晶体管将失效。石墨烯不存在这样的问题,随着石墨烯制备工艺的提升,石墨烯作为硅材料替代者的前景,越来越被看好。

1.2 石墨烯基计算机芯片

马里兰大学物理学家的研究表明引,未来的计算机芯片材料中石墨烯可能取代硅。石墨烯具有远高于硅的载流子迁移率,并且从理论上说,它的电子迁移率和空

穴迁移率两者相等。因此,其N型场效应晶体管和P型场效应晶体管是对称的。因为其还具有零禁带特性,即使在室温下载流子在石墨烯中的平均自由程和相干长度也可为微米级,所以它是一种性能非常优异的半导体材料。专家指出硅基芯片在室温条件下的速度是有限的,很难再大幅提高;而电子穿过石墨烯几乎没有任何阻力,所产生的热量也非常少,且石墨烯本身就是一个良好的导热体,可以很快地散发热量,由石墨烯制造的集成电路运行的速度将要快得多。据估计用石墨烯器件制成的计算机的运行速度可达到1T(1012)Hz,即比现在常见的1G(109)的计算机快1000倍。研究者相信,石墨烯以及碳纳米管极有可能加快计算机芯片微型化的脚步,大幅提升运算速度。当“硅时代”走到尽头的时候,取而代之的可能是“碳时代”。

1.3 石墨烯信息存储器件

石墨烯存储器与硅存储器相比,基于有机高分子存储材料制作的存储器具有成本低、易加工、柔软性好、可大面积制作、响应快、功耗低、高密度存储等优点,在信息存储以及高速计算领域有着非常广泛的应用前景,但在响应速度、开关比、读写循环次数、器件维持时间等方面还存在很大差距,离实际应用还有很长的路要走。在该领域里亟待解决的工作主要集中于研究和开发具有更好电学特性及工艺兼容性的有机高分子功能材料和薄膜,进一步推进其器件化。这就要求对有机/高分子分子结构设计与合成技术(在目前状况下,有机分子和高分子材料的可靠性和热、电稳定性不够,样品成品率低;STM针尖与样品之间的极强电场很容易破坏材料的结构而影响其性能。

Zhuang等设计合成了一种高性能的共轭高分子共价接枝的石墨烯信息存储材料TPAPAM-GO(其特性如图12所示),并以此材料作为活性材料制备了国际上第一个基于石墨烯的共轭高分子记忆器件。该材料表现出优异的可擦写电双稳态分子记忆性能,电流开关比超过103,开态和关态在恒定电压下稳定,且在-1v的读出电压脉冲下读出次数超过1亿次。该研究者又制备了聚乙烯咔唑共价接枝的氧化石墨烯高分子材料GO-PVK,在有机溶剂中的溶解度达到10mg/ml,带隙2.0eV。基于该材料的记忆器件同样展现出优良的信息存储性能。

图12 TPAPAM-GO的电流密度—电压特征和稳定性

2、石墨烯在能源领域的应用

2.1 石墨烯超级电容器

碳质材料是最早也是目前研究和应用得很广泛的超级电容器电极材料。用于超级电容器的碳质材料目前主要集中于活性炭(AC)、活性炭纤维(ACF)、炭气凝胶、碳纳米管(CNTs)和模板炭等。这些sp2碳质材料的基元材料是石墨烯。自石墨烯被成功制备出来后,人们开始探究其这种极限结构的sp2碳质材料在超级电容器里应用的可能性。Ruoff小组利用化学改性的石墨烯作为电极材料,测试了基于石墨烯的超级电容器的性能。这种石墨烯材料的电容性能在水系和有机电解液中的比电容分别可以达到135F/g和99F/g(该超级电容模型示意图如图13所示)。Rao等人比较了通过三种方法制备的石墨烯的电容性能。在硫酸电解液中,通过氧化石墨热膨胀法和纳米金刚石转化法得到的石墨烯具有较高的比电容,可以达到117F/g;在有机电解液中,电压为3.5v的时候,其比电容和比能量可以达到71F/g和31.9Wh/kg。

图13 Ruoff小组超级电容模型示意图

石墨烯材料应用于超级电容器有其独特的优势。石墨烯是完全离散的单层石墨材料,其整个表面可以形成双电层;但是在形成宏观聚集体过程中,石墨烯片层之间互相杂乱叠加,会使得形成有效双电层的面积减少(一般化学法制备获得的石墨烯具有200~1200m2/g)。即使如此,石墨烯仍然可以获得100~230F/g的比电容。如果其表面可以完全释放,将获得远高于多孔炭的比电容。在石墨烯片层叠加,形成宏观体的过程中,形成的孔隙集中在100nm以上,有利于电解液的扩散,因此基于石墨烯的超级电容器具有良好的功率特性。

2.2 锂离子电池

对锂离子电池负极材料的研究,主要集中在碳质材料、合金材料和复合材料等方面。碳质材料是最早为人们所研究并应用于锂离子电池商品化的材料,至今仍是大家关注和研究的重点之一。碳质材料根据其结构特点可分成可石墨化炭(软炭)、无定形炭(硬炭)和石墨类。目前对碳负极的研究主要是采用各种手段对其表面进行改性,但是对人造石墨再进行表面处理将进一步增加制造成本,因此今后研究的重点仍将是怎样更好地利用廉价的天然石墨和开发有价值的无定形碳材料。因此,从石墨出发制造低成本高性能的锂离子电池负极材料是现在的主要研究方向。石墨烯作为一种由石墨出发制备的新型碳质材料,单层或者薄层石墨(2~10层的多层石墨烯)在锂离子电池里的应用潜力也落入研究者的视野之中。

Yoo等人研究了石墨烯应用于锂离子二次电池负极材料中的性能,其比容量可以

和碳纳米管后,负极的比容量可以达到784mAh/g 达到540mAh/g。如果在其中掺入C

60

和730mAh/g。Khantha等人通过理论计算讨论了石墨烯的储锂机理。我们运用低温

法制备的石墨烯材料直接用于锂离子二次电池的负极材料,其首次放电比容量可以达到650mAh/g。经过改性,此结果还可以提高。但其首次充放电效率和循环效率较低,需要对石墨烯结构进行改性。多层石墨烯由于具有一定的储锂空间,同时锂离子的扩散路径比较短,因此应该具有较好的功率特性。

2.3 太阳能电池

窗口电极是太阳能电池中的重要部件,窗口电极需要有良好的导电性、好的透光性和适合的功函数。目前常用的窗口电极材料是铟锡氧化物半导体透明薄膜(ITO),但是铟在地球上的含量有限,同时ITO在近红外区的透光性较差,在酸性条件下不稳定以及不利于柔性器件的制备。石墨烯被认为是替代ITO的合适材料,并已有很多小组做了相关的研究。Wang等将石墨烯取代ITO用作太阳能的透明导电薄膜,取得了0.26%的转化效率;Kalita 等用石墨烯作为有机太阳能电池的透明电极,获得了0.68%的效率,但是仍然低于ITO的1.21%的效率;Arco 等用石墨烯为透明电极,获得的有机太阳能电池效率为1.18%,与ITO的1.21%已非常接近。随着石墨烯制备质量的提高,以石墨烯为透明电极制备的太阳能电池性能已经接近ITO,同时石墨烯可以制备柔性的太阳能电池,这说明石墨烯在太阳能透明电极领域有非常好的应用前景。石墨烯电极制作的太阳能电池示意图如图14所示。

图14 石墨烯电极的太阳能电池示意图

清华大学机械系吴德海课题组用石墨烯直接与硅接触,形成肖特基结,制备了石墨烯和硅肖特基结太阳能电池,电池效率达到了1.7%。随后该课题组将石墨烯和碳纳米管薄膜复合在一起制备成透明导电薄膜,这种薄膜与硅形成太阳能电池,电池效率达到了5.2%的高效率。Ihm等研究发现,石墨烯基太阳能电池的开路电压与石墨烯的层数有着非常大的关系,随着层数的增多,电池的开路电压降低。随着石墨烯可控制备的实现和应用研究的不断深入,石墨烯基太阳能电池的效率还将不断

提高。

2.4 储氢/甲烷器件

图15 储氢器件模型

众所周知,材料吸附氢气量和其比表面积成正比,石墨烯拥有质量轻、高化学稳定性和高比表面积的优点,使其成为储氢材料的最佳候选者。Dimitrakakis利用石墨烯和碳纳米管设计了一个三维储氢模型,如果这种材料掺入锂离子,其在常压下储氢能力可以达到41g/L(其结构如图15所示)。希腊大学Froudakis等设计了新型3D碳材料,孔径尺寸可调,他们将其称为石墨烯柱。当这种新型碳材料掺杂了锂原子时,石墨烯柱的储氢量可达到6.1%(wt)。Ataca等用钙原子(Ca)掺杂石墨烯,利用第一性原理和从头算起的方法得到石墨烯被Ca原子掺杂后储氢量约为8.4%(wt)。

他们还发现氢分子的键能适合在室温下吸/放氢,Ca会留在石墨烯表面,有利于循环使用。Ataca的研究结果又一次推动石墨烯储氢向前迈进一步。因此,石墨烯这种新材料的出现,为人们对储氢/甲烷材料的设计提供了一种新的思路和材料。

3、石墨烯在材料领域的应用

3.1 特氟龙材料替代物

英国曼彻斯特大学科学家海姆和诺沃肖洛夫因发明石墨烯而获得今年诺贝尔物理学奖。最近,他们领导的研究小组又利用石墨烯制成了一种稳定耐高温的新材料,可替代用于不粘锅的特氟龙材料,具有广泛应用前景。海姆和诺沃肖洛夫等人对石墨烯进行氟化处理,获得了这种新材料。现在被广泛应用的特氟龙材料的化学名称是聚四氟乙烯,是由碳元素和氟元素组成的塑料;而石墨烯是由薄薄的一层碳原子组成的物质,对石墨烯进行氟化处理后得到的材料实际上就是只有一层原子结构的特氟龙。海姆说,两方面优点的结合使得这种材料具有广泛应用前景,它不会只是被作为更薄更轻的特氟龙替代物,而是可以用在任何需要超薄、高强度、化学性质稳定、耐高温涂层的场合,比如可以用于生产发光二极管中的超薄介质。

3.2 石墨烯聚合物复合材料

基于石墨烯的聚合物复合材料是石墨烯迈向实际应用的一个重要方向。由于石墨烯具有优异的性能和低廉的成本,并且功能化以后的石墨烯可以采用溶液加工等常规方法进行处理,非常适用于开发高性能聚合物复合材料,Ruoff等首先制备了石墨烯-聚苯乙烯导电复合材料,引起了极大的关注。他们先将苯基异氰酸酯功能化的石墨烯均匀地分散到聚苯乙烯基体中,然后用二甲肼进行还原,成功地恢复了石墨烯的本征导电性, 其导电临界含量仅为0.1%。

Brinson等系统研究了功能化石墨烯-聚合物复合材料的性能,发现石墨烯的加入可以使聚甲基丙烯酸甲酯的模量、强度、玻璃化转变温度和热分解温度大幅度提高,并且石墨烯的作用效果远远好于单壁碳纳米管和膨胀石墨;加入1%的功能化石墨烯,可以使聚丙稀腈的玻璃化转变温度提高40℃,大大提高了聚合物的热稳定性。

图16 石墨烯聚合物复合材料的光驱动性能

Chen等制备了磺酸基以及异氰酸酯功能化的石墨烯与热塑性聚氨酯(TPU)的复合材料,并研究了该材料在红外光触发驱动器件(Infrared-Triggered Actuators)中应用。他们发现,只需加入1%(wt)的石墨烯,就可以使TPU复合材料的强度提高75%,模量提高120%。进一步的研究表明,磺酸基功能化的石墨烯复合材料具有很好的红外光响应性。如图16所示,该复合薄膜经红外光照射后可以迅速收缩,将21.6g的物品提升3.1cm,并且经反复拉伸-收缩10次,该薄膜始终保持较高的回复率和能量密度,表明基于该石墨烯复合材料的光驱动器件表现出良好的驱动性能及循环稳定性,具有很好的应用前景。

3.3 光电功能材料

新型光电功能材料与器件的开发对电子、信息及通讯等领域的发展有极大的促进作用。其中非线性光学材料在图像处理、光开关、光学存储及人员和器件保护等诸多领域有重要的应用前景。好的非线性光学材料通常具有大的偶极矩和π体系等特点,而石墨烯的结构特征正好符合这些要求。Chen等设计并合成了一类由强吸光基团(如卟啉)修饰的石墨烯材料。通过系统的结构和非线性光学性质研究,获得了性能比C

(现有公认的最好的有机非线性光学材料之一)更加优秀的非线性光学

60

纳米杂化材料,并且这类材料具有优良的稳定性和溶液可处理性,可望在特种光学器件领域获得应用。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

石墨烯制备方法及应用的研究进展

石墨烯制备方法及应用的研究进展 邓振琪黄振旭 (郑州师范学院化学化工学院,河南郑州450044) 摘要:石墨烯因具有高的比表面积、突出的导热性能和力学性能及其非凡的电子传递性能等一系列优异的性质,引起了科学界新一轮的研究热点。本文总结近年石墨烯的研究现状,综述介绍石墨烯的制备方法和其应用的研究进展。 关键字:石墨烯;制备;应用 2004年,英国曼彻斯特大学Geim研究小组首成功地在实验中从石墨中分离出石墨烯[1],并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。 石墨烯是由碳原子以sp2杂化连接按照六边形紧密排列成蜂窝状晶格的二维晶体,其理论厚度仅为0.35nm,是目前所发现的最薄的二维材料[2]。是构造其他维度碳质材料的基本单元,它可以包裹形成零维富勒烯,也可以卷起来形成一维的碳纳米管或者层层堆叠构成三维的石墨。 石墨烯因其独特的二维晶体结构,从而具有优异的性能。如单原子层石墨烯材料理论表面积可达2630m2/g,半导体本征迁移率高达2×105cm2/(V·s),弹性模量约为1.0TPa,热传导率约为5000W/(m·K),透光率高达97.7%,强度高达 110GPa[3]。这些优异的性能使得石墨烯在纳米电子器件、传感器、电化学及复合材料等领域有光明的应用前景。 1.石墨烯的制备 现在制备石墨烯主要方法为微机械剥离法、基底生长法、化学气相沉淀法、氧化石墨还原法。另简单介绍液相或气相直接剥离法、电化学法、石墨插层法等方法。 1.1微机械剥离法 石墨烯最初的制备就是微机械剥离,机械剥离法就是通过机械力从具有高度定向热解石墨表面剥离石墨烯片层。Geim教授采用胶带剥离法可以认为是机械剥离法中的一个代表。Knieke等[4]利用湿法研磨法在室温下研磨普通石墨粉,成功的对石墨的片层结构进行了剥离,制备了单层和多层的石墨烯片。微机械剥离法制得的石墨烯具有最高的质量,适用于研究石墨烯的电学性质。但该方法低

石墨烯制备方法研究

石墨烯制备方法研究 具有优良的力学、电学、热学及电子学性质的石墨烯,近些年来成为研究的热点。简单介绍了石墨烯制备的主要方法,包括微机械分离法、化学插层法、加热SiC法及气相沉积法。 标签:石墨烯;制备方法 0 引言 自2004年Novoselov,K. S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯以来,碳元素同素异形体又增加了新的一员,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。 石墨烯又称单层石墨,是只有一个C原子层厚度的石墨,是构建其他碳质材料的结构单元。通过SP2杂化成键,碳原子与周围三个碳原子以C-C单键相连,同时每个碳原子中未成键的一个π电子形成与平面垂直的π轨道。结构决定性质,石墨烯具有强度很大的C-C键,因此其具有极高的强度(其强度为130GPa,而无缺陷的石墨烯结构的断裂强度是42N/m)。而其可自由移动的π电子又赋予了石墨烯超强的导电性(石墨烯中电子的典型传导速率为8×105m/s)。同时,石墨烯还具有一系列奇特的电子特性,如反常的量子霍尔效应,零带隙的半导体以及电子在单层石墨片层内的定域化现象等。 规模化制备大批量石墨烯是石墨烯材料应用的第一步,已成为当前研究的重点。按照石墨烯的制备途径,可以将其制备方法分为两类:自上而下制备以及自下而上制备。顾名思义,简单地说自上而下途径是从石墨中获得石墨烯的方法,主要依靠物理过程处理石墨使其分层来得到石墨烯。自下而上途径是从碳的化合物中断裂化学键生长石墨烯的方法,主要依靠加热等手段使含碳化合物分解从而生长石墨烯。 1 自上而下制备石墨烯途径 自上而下途径是从石墨出发(又可称之为石墨途径),用物理手段如机械力、超声波、热应力等破坏石墨层与层之间的范德华力来制备单层石墨的方法。根据石墨处理方法的不同,又可细分为机械剥离法和化学插层法。前者是直接使用机械方法将石墨分层来获得石墨烯的方法。后者则是将石墨先用化学插层剂处理转换为容易分层的形式如石墨插层化合物,然后再对其处理来获得石墨烯。 这类方法的优点是原料来源广泛,制备操作较为简单,制备一般不需高温,对设备要求不是很高,但是这类方法是通过石墨分层得到的,得到的单层石墨混在石墨片层中,其分离比较困难,而且生成的石墨烯尺寸不可控。 1.1 机械剥离法

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

石墨烯的制备方法

石墨烯的制备方法 主要市场包括:石墨烯透明导电薄膜材料的生产和销售,以及在透明电极、储能、电子器件等领域的应用技术开发和技术支持服务。公司目前的石墨烯导电层产品功能良率能做到85%,但外观良率目前只能做到60%左右。目前产品已经在低端手机上逐渐应用。常州二维碳素科技有限公司的关键技术如下: ②辉锐集团由辉锐科技(香港)有限公司,辉锐材料科技有限公司与辉锐电子技术有限公司。 辉瑞科技专注于石墨材料的研发和生产,是大面积高质量石墨烯的量产成为现实。而辉锐材料则主要从事应用产品的设计和营销,提升石墨烯在移动设备,发电和能源储备,医疗保健等领域的应用。 辉锐科技是一家从事石墨烯技术发展的公司,率先进军大面积石墨烯柔性触控屏市场,且计划未来3年公投资1.5亿美元发展石

墨烯移动设备市场。5月份,厦门大学,英国BGT Material Limited 和福建辉瑞材料有限公司签署协议在厦门大学建立“石墨烯工业技术研究院”。石墨烯发明者诺贝奖物理学奖获得者康斯坦丁·诺沃肖洛夫等将加盟改研究院。公司正研制利用石墨烯制造可屈曲触摸屏,目前已经投产。 2. 石墨烯在锂离子电池领域的应用 石墨烯优异的导电性能可以提升电极材料的电导率,进而提升锂离子电池的充放电速度;石墨烯的二维层状结构可以有效抑制电极材料在充放电过程中因体积变化引起的材料粉化;石墨烯还能很好地改善锂电池的大电流充放电性能、循环稳定性和安全性。除此之外还能大幅提高电池的充放电速度。国内研究成果: 宁波墨西科技有限公司依托中科院宁波所技术研发实力,产学研一体化优势,使得公司在石墨烯领域走在行业前列;公司产品分为三大类:基础产品(浆料、粉体)、专用分散液、工业化应用产品。在锂电池领域,已经开发出石墨烯复合电极材料、石墨烯导电添加剂、石墨烯涂层铝箔等;公司石墨烯导电剂产品已经在磷酸铁锂电池厂商试样,能有效提高电池倍率充放电性能。 宁波墨西锂电池领域研发目标:第一,2016 年实施Battery 200 计划,研发能量密度达到200Wh/kg 的新型电力锂电池及其材料技术;第二,2020 年实施Battery 300 计划,研发能量密度达到300Wh/kg 的下一代动力锂电池及其材料技术。目前技术路线,以石墨烯作为新一代导电剂研发为主,包括石

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

综述石墨烯的制备与应用

半导体物理课程作业 石墨烯的制备与应用(材料)

目录 一、石墨烯概述 (2) 二、石磨烯的制备 (3) 1、机械剥离法 (3) 2、外延生长法 (5) 3、化学气相沉积法 (6) 4、氧化石墨-还原法 (6) 5、电弧法 (9) 6、电化学还原法 (9) 7、有机合成法 (10) 三、石墨烯的应用 (11) 1、石墨烯在电子器件领域的应用 (11) 1.1 石墨烯场效应晶体管 (11) 1.2 石墨烯基计算机芯片 (12) 1.3 石墨烯信息存储器件 (13) 2、石墨烯在能源领域的应用 (14) 2.1 石墨烯超级电容器 (14) 2.2 锂离子电池 (15) 2.3 太阳能电池 (16) 2.4 储氢/甲烷器件 (17) 3、石墨烯在材料领域的应用 (18) 3.1 特氟龙材料替代物 (18) 3.2 石墨烯聚合物复合材料 (18) 3.3 光电功能材料 (19) 4、石墨烯在生物医药领域的应用 (20) 4.1 基于氧化石墨烯的纳米载药体系 (20) 4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21) 4.3用于生物成像技术 (23) 4.4 石墨烯在肿瘤治疗方面的应用 (23) 四、总结及展望 (24) 参考文献 (25)

一、石墨烯概述 碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。 碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基 (零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C 60 化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。 图1 碳的晶体结构 石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

石墨烯的研究综述 7021214215 周新汇总

化学信息学课程论文化学还原法制备石墨烯的研究进展 学号7021214215 学生姓名周新 所属学院生命科学学院 专业应用化学 班级18—2 日期2016-10-2

石墨烯的研究综述 摘要:近年来,石墨烯以其独特的结构和优异的性能,在化学、物理和材料学界引起了广泛的研究兴趣。石墨烯这样特殊的二维结构蕴含了多种奇特的物理现象,本文大量引用最新参考文献、综述了石墨烯的制备方法:物理方法 (微机械剥离法、液相或气相直接射离法)与化学法 (化学气相沉积法、晶体外延生长法、氧化还原法),并详细介绍了石墨烯的各种修饰方法,指出了石墨烯制备方法的发展趋势。 关键词:石墨烯;性能;结构;综述. Abstract: in recent years, the graphene with its unique structure and excellent performance, in chemistry, physics, and material field has attracted a great deal of research interest. Graphene such special two-dimensional structure contains a variety of unique physical phenomena, in this paper, a large number of references the latest references, reviews the preparation of graphene: physical methods (micro mechanical stripping method, the direct shot from liquid or gas phase method) with chemical method, chemical vapor deposition method, crystal epitaxial growth method, oxidation-reduction method), and various modification methods of graphene was introduced in detail, points out the development trend of graphene preparation. Key words: graphene, Performance; Structure; Reviewed in this paper. 0 引言 2004年,英国曼彻斯特大学的 Geim研究小组首次制备出稳定的石墨烯,推翻了经典的“热力学涨落不允许二维晶体在有限温度下自由存在”的理论,震撼了整个物理界,引发了石墨烯的研究热潮。理想的石墨烯结构可以看作被剥离的单原子层石墨,基本结构为sp2杂化碳原子形成的类六元环苯单元并无限扩展的二维晶体材料,这是目前世界上最薄的材料一单原子厚度的材料。这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质,石墨烯不仅有优异的电学性能,突出的导热性能,超常的比表面积,其杨氏模量和断裂强度也可与碳纳米管媲美,如完美的量子隧道效应、半整数量子霍尔效应、永不消失的电导率等一系列性质。石墨烯的主要性能均与之相当,甚至更好,避免了碳纳米管研究和应用中难以逾越的手性控制、金属型和半导体型分离以及催化剂杂质等难题,而且制备石墨烯的原料价格便宜.正是由于石墨烯材料具有如此众多奇特的性质,引起了物理、化学、材料等不同领域科学家的极大研究兴趣,也使得石墨烯在电子、信息、能源、材料和生物医药等领域具有重大的应用前景。 1.石墨烯 碳—元素周期表中最有意思的元素,具有多种同素异形体:从早为人知的金刚石和石墨,到上世纪被发现的富勒烯[1]、碳纳米管[2],碳家族一直在给我们带来惊喜,而近年来,碳家族又添新成员——石墨烯(Gphene)[3],如图1.1 1所示。石墨烯被认为是其它维度石墨材料的基本结构单元[4,5]:它可围裹成OD的富勒烯,卷曲成ID的纳米管,堆砌成3D的石墨。

石墨烯的制备与应用--课程论文

石墨烯的制备与应用前景 石墨烯是由碳原子以sp2链接的单元子层构成,其基本结构为有机材料中最稳定的苯六元环。它是目前发现的最薄的二维材料。石墨烯是构成其他石墨材料的基本单元,它可以翘曲成为零维的富勒烯,卷曲成为一维的CNTs或者堆垛成为三维的石墨。石墨烯是人类已知强度最高的物质,比钻石还坚硬,厚度相当于普通食品塑料袋的石墨烯能够承担大约两吨重的物品。石墨烯最大的特点是石墨 烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”的性质和相对论性的中微子非常相似。此外石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性 的体现。 石墨烯的合成方法 1.微机械剥离法 这是最早制备出石墨烯的方法。2004年Novoselovt等用这种方法制备出了单层石墨烯。典型制备方法是用另外一种材料膨化或者引入缺陷的热 解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的 晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片 来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供 应用的石墨薄片样本。 2.外延生长法 一般是通过加热6H—SiC单晶表面,脱附Si(0001面)原子制备出石墨烯.先将6H- SiC单晶表面进行氧化或H 刻蚀预处理在超高真空下加热去除表面氧化物,通过俄歇电子能谱确认氧化物完全去除后,继续恒温加热10-20分钟,所得的石墨烯片层厚度主要由这一步骤的温度所决定,这种方法能够制备出l-2碳原子层厚的石墨烯,但由于SiC晶体表面结构较为复杂,难以获得大面积、厚度均一的石烯。与机械剥离法得到的石墨烯相比,外延生长法制备的石墨烯表现出较高的载流子迁移率等特性,但观测不到量子霍尔效应。 3.碳纳米管轴向切割法 前文已经提到过,碳纳米管从结构上可以看作是由单层的石墨烯纳米带卷曲

石墨烯制备综述

石墨烯制备方法综述 石墨烯的制备方法可以分为物理和化学制备方法。物理的方法主要是采取机械剥离的方法,化学方法主要是分为化学沉积和化学合成两大方向。物理制备方法包括微机械剥离法,碳纳米管切割法,取向复生法等;化学制备方法包括化学气相沉积法,氧化还原法,液相剥离法,有机合成法,SiC外延生长法等。 物理方法制备石墨烯共同的缺点就是生产出的石墨烯厚度不一,可操作性差,并且无法生长出大尺寸的石墨烯,但微机械剥离法为人类发现石墨烯做出了重要的贡献。 化学制备方法中化学气相沉积法和氧化还原法分别是先进制备石墨烯薄膜和石墨烯粉体最重要的方法,也是最有希望实现大规模制备石墨烯的方法。化学气相沉积法制备的石墨烯能生成大尺寸石墨烯薄膜,但制备技术仍然缺乏稳定性,在转移过程中也会造成石墨烯缺陷,制备得到的石墨烯薄膜面积仍然相对有限。氧化还原法制备过程中采用强酸,容易造成设备损坏和环境污染,制备得到的石墨烯粉末品质不高。整体上,化学制备方法是最有希望实现大规模制备石墨烯的方法,但存在稳定性问题,技术还需要继续改进。表4.1是各种制备方法的优缺点。 表1.1各种石墨烯制备方法的优缺点列表

4.1.1石墨烯的CVD法制备工艺 CVD法制备研究概况:用化学气相沉积(CVD)方法在金属催化剂基底上可以得到大面积连续的石墨烯薄膜,所用的多晶基底相比于单晶基底更为廉价易得,同时生长出的石墨烯薄膜的转移也相对简单,目前来看是大规模制备石墨烯的最有希望的方法之一。通过CVD生长方法已经获得大面积(最大面积可达30英寸)、高质量、层数可控、带隙可调的石墨烯薄膜材料。这种生长方法因其便捷易操作且可控性高、能与下一步石墨烯的转移与应用紧密结合的优点,已经成为石墨烯生长领域的主流方法。石墨烯在金属催化剂表面的CVD生长是一个复杂的多相催化反应体系。该过程主要包括如下几步:(1)烃类碳源在金属催化剂基底上的吸附与分解;(2)表面碳原子向催化剂体相内的溶解以及在体相中的扩散。某些

石墨烯的制备及评价综述

石墨烯的制备及评价综述 摘要:近年来, 石墨烯以其独特的结构和优异的电学性能和热学性能, 在化学、物理和材料学界引起了广泛的研究兴趣。人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障。通过大量引用参考文献, 简要了解石墨烯的应用方面,并综述石墨烯的几种制备方法: 物理方法(微机械剥离法、液相或气相直接剥离法)与化学法(化学气相沉积法、晶体外延生长法、氧化?还原法)[1]。通过分析比较各种制备方法的优缺点, 对几种方法进行评价,并指出了自己的看法。 关键词:石墨烯制备方法综述 中图分类号:O613 文献标识码:A Preparation and Application of Graphene Abstract: Graphene has attracted much interest in recent years due to its unique and outstanding properties. Different routes to prepare graphene have been developed and achieved. Brief introduction of application of graphene is given in this article. Preparation methods of graphene used in recent years are intensively introduced, including micromechanical cleavage, chemical vapor deposition, liquid/gasphase-based exfoliation of graphite, epitaxial growth on an insulator, chemical reduction of exfoliated graphene oxide, etc. And their advantages and shortcomings are further discussed in detail. I have also given my own opinion by the end of this article. Key words: graphene; preparation; overview 正文 2010年10月5日,英国曼彻斯特大学科学家安德烈·盖姆与康斯坦丁·诺沃肖洛夫因在二维空间材料石墨烯的突破性实验获得2010年诺贝尔物理学奖。一时间,石墨烯成为科学家们关注的焦点。石墨烯以其独特的结构,以及其优越的电学性能和导热性能,在物理、化学以及材料学界引起了广泛的研究兴趣。 石墨烯或称纳米石墨片,是指一种从石墨材料中剥离出的单层碳原子薄膜,它是由单层六角元胞碳原子组成的蜂窝状二维晶体。简单地说,它是单原子层的石墨晶体薄膜,其晶格是由碳原子构成的二维六角蜂窝结构。其厚度为0.34nm,是二维纳米结构。它是其他石墨材料的基本组成。当包裹起来的时候,就组成富勒烯。同时,他也是另一种重要材料――碳纳米管的组成,碳纳米管就是由这种结构卷曲构成的。三维的石墨则是有许多的石墨烯层叠而成。[2]

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

石墨烯的合成与应用

石墨烯的合成与应用 贾雨龙1345761115 材料成型及控制工程摘要:论述了石墨烯非凡的物理及电学性质,包括电子输运-零质量的狄拉克-费米子行为,量子霍耳效应,最小量子电导率,量子干涉效应的强烈抑制等;石墨烯的机械和化学制备方法和石墨烯在纳电子器件方面、计算机芯片取代硅、制造最快的碳晶体管、减少噪声方面和潜在的储氢材料领域等方面的应用。 关键词:石墨烯;量子霍耳效应;量子电导率 Synthesis and applications of graphene Jia yun-long Jiangsu University of Science and Technology Abstract:This paper summarized the extraordinarily physical and electrical properties of graphene,including electron transport-Massless Dirac Fermion behavior,Anomalous quantum Hall effect(chiral,RT),Minimum quantum conductivity,Suppression of quantum interference effect,and etc.The mechanical and chemical synthesis methods for graphene and the applications of graphene in nanoelectronic devices,computers chip replace of silicon,manufacturing the fastest transistor,reducing yawp and potential hydrogen storage,etc were also introduced. Key words:Graphene;anomalous quantum Hall effect;Minimum conductivity 引言 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种炭质新材料[1],这种石墨晶体薄膜的厚度只有仅有0.0035nm,仅为头发的20万分之一,是构建其他维数炭质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性及电学性。完美的石墨烯是二维的,只包括六角元胞;如果有五角元胞和七角元胞存在,会构成石墨烯的缺陷;少量的五角元胞存在会使石墨烯翘曲入形状;12 个五角元胞会形成富勒烯(fullerene) 石墨烯的理论研究已有60多年的历史,被广泛用来描述不同结构炭质材料的性能。20世纪80年代,科学家们开始认识到石墨烯可以作为(2+1)维量子电动力学的理想理论模型。但一直以来人们普遍认为这种严格的二维晶体结构由于热力学不稳定性而难以独立稳定的存在。然而真正能够独立存在的二维石墨烯晶体在2004年由英国曼彻斯特大学的Novoselov等[2]利用胶带剥离高定向石墨的方法获得,并发现石墨烯载流子的相对论粒子特性[3,4],从而引发石墨烯研究热。石墨烯在过去的短短3年内已经充分展现出在理论研究和实际应用方面的无穷魅力,迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[5]。研究发现,再不需要任何传统化学稳定剂的情况下,石墨烯可以在水中稳定地分解分层,有望应用于可减少静电现象的涂层的研制。 1石墨烯的性质 1.1电子运输-零质量的狄拉克-费米行为(Massless Dirac Fermion behavior) 石墨烯是零带隙半导体,独特的载流子特性是其备受关注的原因之一。在凝聚态物理领域,材料的电学性能常用薛定谔方程描述,而石墨烯的电子与蜂窝状晶体周期势的相互作用产生了一种准粒子,A.Qaiumzadeh[6]根据GW近似值计算了石墨烯在无序状态下在兰道费米子液体内的准粒子特性,即零质量的狄拉克-费米子(massless Dirac Fermions),具有类似于光子的特性,在低能区域适合于采用含有有效光速的(2+1)维狄拉克方程来精确表述。因此,石墨烯的出现为相对论量子力学现象的研究提供了一种重要的手段。

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

相关主题
文本预览
相关文档 最新文档