当前位置:文档之家› 圆锥曲线优秀教案

圆锥曲线优秀教案

圆锥曲线优秀教案
圆锥曲线优秀教案

与圆锥曲线有关的几种典型题

一、教案目标

(一)知识教案点

使学生掌握与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线相交问题等.

(二)能力训练点

通过对圆锥曲线有关的几种典型题的教案,培养学生综合运用圆锥曲线知识的能力.

(三)学科渗透点

通过与圆锥曲线有关的几种典型题的教案,使学生掌握一些相关学科中的类似问题的处理方法.

二、教材分析

1.重点:圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题.

(解决办法:先介绍基础知识,再讲解应用.)

2.难点:双圆锥曲线的相交问题.

(解决办法:要提醒学生注意,除了要用一元二次方程的判别式,还要结合图形分析.)

3.疑点:与圆锥曲线有关的证明问题.

(解决办法:因为这类问题涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法,所以比较灵活,只能通过一些例题予以示范.)

三、活动设计

演板、讲解、练习、分析、提问.

四、教案过程

(一)引入

与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到,为了让大家对这方面的知识有一个比较系统的了解,今天来讲一下“与圆锥曲线有关的几种典型题”.

(二)与圆锥曲线有关的几种典型题

1.圆锥曲线的弦长求法

设圆锥曲线C∶f(x,y)=0与直线l∶y=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:

(2)若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|.

A、B两点,旦|AB|=8,求倾斜角α.

分析一:由弦长公式易解.

由学生演板完成.解答为:

∵抛物线方程为x2=-4y,∴焦点为(0,-1).

设直线l的方程为y-(-1)=k(x-0),即y=kx-1.

将此式代入x2=-4y中得:x2+4kx-4=0.

∴x1+x2=-4,x1+x2=-4k.

∴ k=±1.

∴|AB|=-(y1+y2)+p=-[(kx1-1)+(kx2-1)]+p=-k(x1+x2)+2+p.由上述解法易求得结果,由学生课外完成.

2.与圆锥曲线有关的最值(极值)的问题

在解读几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值.注意点是要考虑曲线上点坐标(x,y)的取值范围.

例2 已知x2+4(y-1)2=4,求:

(1)x2+y2的最大值与最小值;

(2)x+y的最大值与最小值.

解(1):

将x2+4(y-1)2=4代入得:

x2+y2=4-4(y-1)2+y2=-3y2+8y

由点(x,y)满足x2+4(y-1)2=4知:

4(y-1)2≤4 即|y-1|≤1.∴0≤y≤2.

当y=0时,(x2+y2)min=0.

解(2):

分析:显然采用(1)中方法行不通.如果令u=x+y,则将此代入x2+4(y-1)2=4中得关于y的一元二次方程,借助于判别式可求得最值.

令x+y=u,则有x=u-y.

代入x2+4(y-1)2=4得:

5y2-(2u+8)y+u2=0.

又∵0≤y≤2,(由(1)可知)

∴[-(2u+8)]2-4×5×u2≥0.

3.与圆锥曲线有关的证明问题

它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法.

例3 在抛物线x2=4y上有两点A(x1,y1)和B(x2,y2)且满足|AB|=y1+y2+2,求证:

(1)A、B和这抛物线的焦点三点共线;

证明:

(1)∵抛物线的焦点为F(0,1),准线方程为y=-1.

∴ A、B到准线的距离分别d1=y1+1,d2=y2+1(如图2-46所示).

由抛物线的定义:

|AF|=d1=y1+1,|BF|=d2=y2+1.

∴|AF|+|BF|=y1+y2+2=|AB|.

即A、B、F三点共线.

(2)如图2-46,设∠AFK=θ.

∵|AF|=|AA1|=|AK|+2

=|AF|sinθ+2,

又|BF|=|BB1|=2-|BF|sinθ.

小结:与圆锥曲线有关的证明问题解决的关键是要灵活运用圆锥曲线的定义和几何性质.

4.圆锥曲线与圆锥曲线的相交问题

直线与圆锥曲线相交问题,一般可用两个方程联立后,用△≥0来处理.但用△≥0来判断双圆锥曲线相交问题是不可靠的.解决这类问题:方法1,由“△≥0”

与直观图形相结合;方法2,由“△≥0”与根与系数关系相结合;方法3,转换参数法(以后再讲).

实数a的取值范围.

可得:y2=2(1-a)y+a2-4=0.

∵△=4(1-a)2-4(a2-4)≥0,

如图2-47,可知:

(三)巩固练习(用一小黑板事先写出.)

2.已知圆(x-1)2+y2=1与抛物线y2=2px有三个公共点,求P的取值范围.

顶点.

请三个学生演板,其他同学作课堂练习,教师巡视.解答为:

1.设P的坐标为(x,y),则

2.由两曲线方程消去y得:x2-(2-2P)x=0.

解得:x1=0,x2=2-2P.

∵0<x<2,∴0<2-2P<2,即0<P<1.

故P的取值范围为(0,1).

四个交点为A(4,1),B(4,-1),C(-4,-1),D(-4,1).

所以A、B、C、D是矩形的四个顶点.

五、布置作业

1.一条定抛物线C1∶y2=1-x与动圆C2∶(x-a)2+y2=1没有公共点,求a的范围.

2.求抛线y=x2上到直线y=2x-4的距离为最小的点P的坐标.

3.证明:从双曲线的一个焦点到一条渐近线的距离等于虚半轴长.

作业答案:

1.当x≤1时,由C1、C2的方程中消去y,得x2-(2a+1)x+a2=0,

离为d,则

似证明.

六、板书设计

人教版数学高二选修2-1测试题组 第二章 圆锥曲线B组

(数学选修2-1)第二章 圆锥曲线 [综合训练B 组] 一、选择题 1.如果22 2 =+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 2.以椭圆 116 252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A . 1481622=-y x B .12792 2=-y x C . 1481622=-y x 或127 92 2=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2 1π = Q PF , 则双曲线的离心率e 等于( ) A .12- B .2 C .12+ D .22+ 4.21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( ) A .7 B . 47 C .2 7 D .257 5.以坐标轴为对称轴,以原点为顶点且过圆09622 2 =++-+y x y x 的圆心的抛物线的方程是( ) A .2 3x y =或2 3x y -= B .2 3x y = C .x y 92 -=或2 3x y = D .2 3x y -=或x y 92 = 6.设AB 为过抛物线)0(22 >=p px y 的焦点的弦,则AB 的最小值为( ) A . 2 p B .p C .p 2 D .无法确定 二、填空题

1.椭圆 22189x y k +=+的离心率为1 2 ,则k 的值为______________。 2.双曲线2 2 88kx ky -=的一个焦点为(0,3),则k 的值为______________。 3.若直线2=-y x 与抛物线x y 42 =交于A 、B 两点,则线段AB 的中点坐标是______。 4.对于抛物线2 4y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。 5.若双曲线142 2=-m y x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22 221x y a b +=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点, 则AB OM k k ?=____________。 三、解答题 1.已知定点(A -,F 是椭圆 22 11612 x y +=的右焦点,在椭圆上求一点M , 使2AM MF +取得最小值。 2.k 代表实数,讨论方程2 2 280kx y +-=所表示的曲线 3.双曲线与椭圆 136 272 2=+y x 有相同焦点,且经过点4),求其方程。 4. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。 (数学选修2-1) 第二章 圆锥曲线 [综合训练B 组]

【创新设计】2015-2016学年高中数学(人教A版选修1-1)同步课时作业与单元检测: 圆锥曲线与方程 2.2.1

§2.2 双曲线 2.2.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程. 3.会利用双曲线的定义和标准方程解决简单的应用问题. 1.双曲线的有关概念 (1)双曲线的定义 平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线. 平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为 __________________________________________. 平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________. (2)双曲线的焦点和焦距 双曲线定义中的两个定点F 1、F 2叫做________________,两焦点间的距离叫做________________. 2.双曲线的标准方程 (1)焦点在x 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________. (2)焦点在y 轴上的双曲线的标准方程是________________________,焦点F 1________,F 2__________. (3)双曲线中a 、b 、c 的关系是____________. 一、选择题 1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a (a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 2.若ax 2+by 2=b (ab <0),则这个曲线是( ) A .双曲线,焦点在x 轴上 B .双曲线,焦点在y 轴上 C .椭圆,焦点在x 轴上 D .椭圆,焦点在y 轴上 3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( ) A .x 2-y 23=1 B.x 23-y 2=1 C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m =1的一个焦点为(2,0),则m 的值为( ) A .12 B .1或3 C .1+22 D .2-12 5.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆 C .双曲线的一支 D .椭圆

圆锥曲线新题型及定点问题分析

高三冲刺讲义:《圆锥曲线新题型及定点问题分析》 圆锥曲线是解析几何的重要内容之一,也是高考重点考查的内容合热点,知识综合性较强,对学生逻辑思维能力、计算能力要求很高,这些问题重点考查学生方程思想、函数思想、转化思想与划归思想的应用。定点问题与定值问题是这类题目的典型代表,下面我们就着重研究这些2类问题; 在圆锥曲线中,有一类曲线系方程,对其参数取值不同时,曲线本身的性质不变,或形态发生某些变化,但其某些固有的共同性质始终保持着,这就是我们所指的定值定点问题。圆锥曲线中的几何量,有些与参数无关,这就构成了定值定点问题,她涵盖两类问题,一是懂曲线景观定点问题;二是动曲线的某些几何量的斜率、长度、角度、距离、面积等为常数问题。在几何问题中,有些几何量与参变数无关,即定值问题,这类问题求解策略是通过应有赋值法找到定值,然后将问题转化为代数式的推导、论证定值符合一般情形。 所以在圆锥曲线的综合性问题里,定点定值问题往往是我们学习的一个难点.对于这类问题的学习,通常有两种处理方法: ①从特殊人手,求出定点或定值,再证明这个点(值)与变量无关. ②直接推理、计算,并在计算中消去变量,从而得到定点(定值). 而第二个方法又是我们深入且归纳的重点方法,其中又包括: 1、通过定义代入化简; 2、通过平面几何知识或三角知识代入; 3、通过韦达定理化简; 下面我们就来介绍这些题型: 题型一:通过代入化简得定值 例1:已知),(00y x P 为椭圆122 22=+b y a x 上的一点,其中21F F 、为椭圆的左右焦点; 求证:0101,x a c a PF x a c a PF -=+ =。 证明:02 020 222 2 020 2 2 012)(x a c a x a c a x a b b c cx x y c x PF +=??? ? ? +=-+++=++= 同理得证:01x a c a PF - = 题型二:通过平面几何知识化简得到 例2:已知椭圆E 的方程为22 143 x y +=,右焦点为F ,直线l 与圆223x y +=相切于点Q ,且Q 在y 轴的右侧,设直线l 交椭圆E 于不同两点1122(,),(,)A x y B x y . (1)若直线l 的倾斜角为 4 π ,求直线l 的方程; (2)求证:||||AF AQ +=||||BF BQ +. 提示:用代入法转化AF ,2114 33x y - =

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

最新圆锥曲线近五年高考题(全国卷)文科

4.已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 2 6 C. 25 D. 1 10.已知抛物线C :x y =2的焦点为F ,()y x A 00,是C 上一点,x F A 045=,则=x 0( ) A. 1 B. 2 C. 4 D. 8 20.已知点)2,2(P ,圆C :082 2=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当OM OP =时,求l 的方程及POM ?的面积 2014(新课标全国卷2) (10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A )3 (B )6 (C )12 (D )(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是 (A )[]1,1- (B )1122??-????, (C )?? (D ) ???? 20.设F 1 ,F 2分别是椭圆C :122 22=+b y a x (a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。 (I )若直线MN 的斜率为4 3,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。

4.已知双曲线C :22 22=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =12x ± D .y =±x 8.O 为坐标原点,F 为抛物线C :y 2 =的焦点,P 为C 上一点,若|PF | =,则△POF 的面积为( ). A .2 B . ..4 21.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切, 圆心P 的轨迹为曲线C . (1)求C 的方程; (2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 2013(新课标全国卷2) 5、设椭圆22 22:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=o ,则C 的离心率为( ) (A )6 (B )13 (C )12 (D )3 10、设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。若 ||3||AF BF =,则l 的方程为( ) (A )1y x =-或!y x =-+ (B )1)y x =- 或1)y x =- (C )1)y x =- 或1)y x =- (D )1)y x = - 或1)y x =- (20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线 段长为 (Ⅰ)求圆心P 的轨迹方程; (Ⅱ)若P 点到直线y x = 的距离为2 ,求圆P 的方程。

人教版数学选修2-1圆锥曲线知识总结

数学选修2-1圆锥曲线知识归纳 一、复习总结: 名称椭圆双曲线图象x O y x O y 定义平面内到两定点 2 1 ,F F的距离的和为 常数(大于 2 1 F F)的动点的轨迹叫椭 圆即a MF MF2 2 1 = + 当2a﹥2c时,轨迹是椭圆 当2a=2c时,轨迹是一条线段 2 1 F F 当2a﹤2c时,轨迹不存在 平面内到两定点2 1 ,F F的距离的 差的绝对值为常数(小于2 1 F F ) 的动点的轨迹叫双曲线即 a MF MF2 2 1 = - 当2a﹤2c时,轨迹是双曲线 当2a=2c时,轨迹是两条射线 当2a﹥2c时,轨迹不存在 标准方程 焦点在x轴上时:1 2 2 2 2 = + b y a x 焦点在y轴上时:1 2 2 2 2 = + b x a y 注:是根据分母的大小来判断焦点 在哪一坐标轴上 焦点在x轴上时: 1 2 2 2 2 = - b y a x 焦点在y轴上时: 1 2 2 2 2 = - b x a y 常数 c b a, ,的关系 2 2 2b c a+ =2 2 2b a c+ =, 渐近线焦点在x轴上时: = - b y a x 焦点在y轴上时: = - b x a y

抛物线: 图 形 x y O F l x y O F l 方 程 )0(22>=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准线 2 p x -= 2p x = 2p y -= 2 p y = 二、知识点: 椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质 1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹 2.椭圆的标准方程:12222=+b y a x ,122 22=+b x a y (0>>b a ) 3.椭圆的性质:由椭圆方程122 22=+b y a x (0>>b a ) (1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中. (2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称 中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距. (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点. 椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦)0,(),0,(21c F c F -共 有六个特殊点 21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2.b a ,分别为椭圆 的长半轴长和短半轴长,椭圆的顶点即为椭圆与对称轴的交点. x y O F l x y O F l

2018年高考总复习数学(理科)课时作业阶段检测卷(五) (圆锥曲线) Word版含解析

阶段检测卷(五) (圆锥曲线) 时间:分钟满分:分 一、选择题:本大题共小题,每小题分,共分,有且只有一个正确答案,请将答案选项 填入题后的括号中..已知过点(-,)和()的直线与直线+-=垂直,则的值为( ) .-... .若椭圆+=的焦距为,则的值为( ) ..或 ..或 .(年新课标Ⅰ)已知双曲线-=(>)的离心率为,则=( ) . . .设过点(,),且斜率为的直线与圆+-=相切,则的值为( ) .±.± .-±±.设,是双曲线-=(>,>)的两个焦点,在双曲线上,若·=,· =(为半焦距),则双曲线的离心率为( ) . .已知双曲线:-=的左、右焦点分别为,,点为的右支上一点,且=,则△ 的面积等于( ) .....抛物线=(>)的焦点为,准线为,,是抛物线上的两个动点,且满足∠ =,设线段的中点在上的投影为,则的最大值是( ).如图-,,是双曲线- =(>,>)的左、右焦点,过的直线与双曲线的左、右两支分别交于点,.若△ 为等边三角形,则双曲线的离心率为( ) 图- .()) 二、填空题:本大题共小题,每小题分,共分,把答案填在题中横线上..已知双曲线,的顶点重合,的方程为 -=,若的一条渐近线的斜率是的一条渐近线的斜率的倍,则的方程为..若直线:=+和直线:=+将圆(-)+(-)=分成长度相等的四段弧,则+=. .在△中,∠=°,=,△=.若以,为焦点的椭圆经过点,则该椭圆的离心率=. 三、解答题:本大题共小题,共分,解答须写出文字说明、证明过程或演算步骤. .(分)已知椭圆:+=(>>)的长轴长为短轴长的倍. ()求椭圆的离心率; ()设椭圆的焦距为,直线与椭圆交于,两点,且⊥,求证:直线恒与圆+=相切.

2021届新高考高三数学新题型专题05解析几何一题两空(第二篇解析版)

第二篇备战新高考狂练新题型之高三数学提升捷径 专题05 解析几何一题两空 ∵ 抛物线()2 20y px p =>的焦点为F(4,0), ∴ 8p =, ∴ 抛物线的方程为2 16y x =, 设直线l 的方程为4x my =+,设()11,M x y ,()22,N x y , 由2164 y x x my ?=?=+?得216640y my --=, ∴1216y y m +=,1264y y =-, 由抛物线的定义得 11MF NF +1211 44x x =+++()()21124444x x x x +++=++()() 211244888my my my my ++++=++()()122121216864 m y y m y y m y y ++= +++2 22 1616 6412864m m m += -++()() 22161 641 m m +=+14=,

1.已知椭圆 22 22 1(0) x y M a b a b +=>> :,双曲线 22 22 1 x y N m n -= :.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________. 1 2 【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c+,再根据椭圆定义得2 c a +=,所以椭圆M的离心率为 1. c a == 双曲线N的渐近线方程为 n y x m =±,由题意得双曲线N的一条渐近线的倾斜角为 2 2 2 ππ tan3 33 n m ∴== ,, 2222 2 22 3 4 2. m n m m e e m m , ++ ∴===∴=

2018年人教版数学选修1-1考点归纳:圆锥曲线

圆锥曲线高考热点题型归纳 圆锥曲线的考题一般以两个选择、一个填空、一个解答题,客观题的难度为中等,解答题目相对较难,同时平面向量的介入,增加了本专题高考命题的广度与深度,成为近几年高考命题的一大亮点,备受命题者的青睐,本专题还经常结合函数、方程、不等式、数列、三角等知识进行综合考查。 下面对圆锥曲线在高考中出现的热点题型作简单的探究: 一、圆锥曲线的定义与标准方程: 例1、设分别是双曲线的左、右焦点.若点在双曲线上,且,则( ) A B . C D . 解析.设分别是双曲线的左、右焦点.若点在双曲线上,且,则=,选B 。 点评:圆锥曲线的定义反映了它们的图形特点,是画图、解题的依据和基础,在实际问题中正确的使用定义可以使问题的解决更加灵活。同时平面向量与圆锥曲线的有机结合也是考查的重点和难点,是高考常常考查的重要内容之一。 变式练习:已知是椭圆的两个焦点,P 是椭圆上一个动点, 则的最大值为( ) (A ) 1 (B ) 2 (C ) 3 (D ) 4 解析:本题主要考查了椭圆的定义,根据条件, 12F F ,2 2 19 y x +=P 120PF PF =12PF PF +=12F F ,2 2 19 y x +=P 120PF PF =12PF PF +=2||PO 12||F F =12,F F 2 214 x y +=12PF PF ?124PF PF +=

所以,所以的最大值为4 故答案选 D 二、圆锥曲线的几何性质: 例2、设F 1,F 2分别是双曲线的左、右焦点。若双曲线上存在点 A ,使∠F 1AF 2=90o,且|AF 1|=3|AF 2|,则双曲线离心率为 (B) (C) (D) 解析.设F 1,F 2分别是双曲线的左、右焦点。若双曲线上存在点 A ,使∠F 1AF 2=90o,且|AF 1|=3|AF 2|,设|AF 2|=1,|AF 1|=3,双曲线中 , 离心率,选B 。 点评:本题主要考查圆锥曲线的离心率的求解问题,这类问题的一般解法是将题目提供的曲线的几何关系转化为关于曲线基本量的方程或不等式,通过解方程或不等式求得离心率的值或取值范围,这是求离心率的的值或范围问题的常用解法。 变式练习: 1、若双曲线的右支上到原点和右焦点距离相等有两 个,则双曲线的离心率的取值范围是( ) A 、 B 、 C 、 D 、 解析:由于到原点O 和右焦点F 的距离相等的点在线段OF 的垂直平分线上, 其方程为,依题意,在双曲线的右支上到原点和右 2 121242PF PF PF PF ?+? ?≤= ??? 12PF PF ?22 221x y a b -=22 221x y a b -=122||||2a AF AF =-=2c ==e = ,,a b c ()22 2210,0x y a b a b -=>>e >1e <<2e >12e <<2c x =()22 2210,0x y a b a b -=>>

高中数学(人教版A版选修2-1)配套课时作业:第二章 圆锥曲线与方程 2.4.2

2.4.2 抛物线的简单几何性质 课时目标 1.了解抛物线的几何图形,知道抛物线的简单几何性质,学会利用抛物线方程研究抛物线的几何性质的方法.2.了解抛物线的简单应用. 1.抛物线的简单几何性质 设抛物线的标准方程为y 2=2px(p>0) (1)范围:抛物线上的点(x ,y)的横坐标x 的取值范围是________,抛物线在y 轴的______侧,当x 的值增大时,|y|也________,抛物线向右上方和右下方无限延伸. (2)对称性:抛物线关于________对称,抛物线的对称轴叫做________________. (3)顶点:抛物线和它的轴的交点叫做抛物线的________.抛物线的顶点为____________. (4)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的__________,用e 表示,其值为______. (5)抛物线的焦点到其准线的距离为______,这就是p 的几何意义,顶点到准线的距离为p 2 , 焦点到顶点的距离为________. 2.直线与抛物线的位置关系 直线y =kx +b 与抛物线y 2=2px(p>0)的交点个数决定于关于x 的方程________________________的解的个数.当k ≠0时,若Δ>0,则直线与抛物线有______个不同的公共点;当Δ=0时,直线与抛物线有______个公共点;当Δ<0时,直线与抛物线________公共点.当k =0时,直线与抛物线的轴__________,此时直线与抛物线有______个公共点. 3.抛物线的焦点弦 设抛物线y 2=2px(p>0),AB 为过焦点的一条弦,A(x 1,y 1),B(x 2,y 2),AB 的中点M(x 0,y 0),则有以下结论. (1)以AB 为直径的圆与准线________. (2)|AB|=________(焦点弦长与中点坐标的关系). (3)|AB|=x 1+x 2+______. (4)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1x 2=________,y 1y 2=________. 一、选择题 1.顶点在原点,对称轴为坐标轴的抛物线过点(-2,3),它的方程是( ) A .x 2=-92y 或y 2=4 3x B .y 2=-92x 或x 2=4 3y C .y 2=-9 2x D .x 2=4 3 y 2.若抛物线y 2=2px (p>0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点F 的距离的关系是( ) A .成等差数列 B .既成等差数列又成等比数列 C .成等比数列 D .既不成等比数列也不成等差数列 3.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )

圆锥曲线大题20道(含答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+ =kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>?OB OA (其 中O 为原点). 求k 的取值范围. 解:(Ⅰ)设双曲线方程为12222=-b y a x ).0,0(>>b a 由已知得.1,2,2,32222==+== b b a c a 得再由 故双曲线C 的方程为.13 22 =-y x (Ⅱ)将得代入13 222 =-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得?????>-=-+=?≠-. 0)1(36)31(36)26(, 0312 222 k k k k 即.13 1 22<≠ k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319 ,31262 2>+>?--=-= +B A B A B A B A y y x x OB OA k x x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x .1 37 3231262319)1(22222 -+=+-+--+=k k k k k k k 于是解此不等式得即,01393,213732 222>-+->-+k k k k .33 1 2<

陕西省高中数学人教版选修2-1(理科)第二章圆锥曲线与方程2.2.2椭圆的简单几何性质

陕西省高中数学人教版选修2-1(理科)第二章圆锥曲线与方程 2.2.2 椭圆的简 单几何性质 姓名:________ 班级:________ 成绩:________ 一、选择题 (共8题;共16分) 1. (2分) (2017高二上·南阳月考) 已知为坐标原点,是椭圆的左焦点, 分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为() A . B . C . D . 2. (2分) (2015高二上·天水期末) 已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线C:y2=﹣4x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=() A . 3 B . 6 C . 9 D . 12 3. (2分)椭圆的焦距是() A . B .

C . 2 D . 4. (2分)椭圆与圆(为椭圆半焦距)有四个不同交点,则离心率的取值范围是() A . B . C . D . 5. (2分) (2016高二上·黄陵开学考) 曲线 =1与曲线 =1(k<9)的() A . 长轴长相等 B . 短轴长相等 C . 离心率相等 D . 焦距相等 6. (2分) (2019高二下·雅安期末) 直线被椭圆截得的弦长是() A . B . C . D . 7. (2分)椭圆的两个焦点为,,过作垂直于X轴的直线与椭圆相交,一个交点为P,则=

A . B . C . D . 4 8. (2分)(2019·邢台模拟) 已知椭圆,设过点的直线与椭圆交于不同的, 两点,且为钝角(其中为坐标原点),则直线斜率的取值范围是() A . B . C . D . 二、填空题 (共3题;共4分) 9. (1分) (2017高二上·阜宁月考) 已知焦点在y轴上的椭圆的长轴长为8,则m=________. 10. (1分) (2020高二上·吉林期末) 已知P为椭圆上一点,F1、F2是椭圆的两个焦点, ,则△F1PF2的面积是________. 11. (2分) (2019高二上·诸暨月考) 已知椭圆中心在原点,一个焦点为,且长轴长是短轴长的2倍.则该椭圆的长轴长为________;其标准方程是________. 三、解答题 (共3题;共25分)

2021-2022年高考数学一轮复习专题五圆锥曲线课时作业含解析文

2021年高考数学一轮复习专题五圆锥曲线课时作业含解析文 1.(xx·广州五校联考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率e =2 2 ,且经过点 (6,1),O 为坐标原点. (1)求椭圆E 的标准方程; (2)圆O 是以椭圆E 的长轴为直径的圆,M 是直线x =-4在x 轴上方的一点,过M 作圆O 的两条切线,切点分别为P 、Q ,当∠PMQ =60°时,求直线PQ 的方程. 解:(1)由题意可得e =c a = 22 , ∵椭圆E 经过点(6,1),∴6a 2+1 b 2=1, 又a 2-b 2=c 2 ,解得a =22,b =2, ∴椭圆E 的标准方程为x 28+y 2 4 =1. (2)连接OM ,OP ,OQ ,OM 与PQ 交于点A ,依题意可设M (-4,m ).由圆的切线性质及∠ PMQ =60°,可知△OPM 为直角三角形且∠OMP =30°,∵|OP |=22,∴|OM |=42,∴ -4 2 +m 2 =42, 又m >0,解得m =4,∴M (-4,4), ∴直线OM 的斜率k OM =-1, 由MP =MQ ,OP =OQ 可得OM ⊥PQ , ∴直线PQ 的斜率k PQ =1, 设直线PQ 的方程为y =x +n , ∵∠OMP =30°,∴∠POM =60°,∴∠OPA =30°,由|OP |=22知|OA |=2,即点O 到直线PQ 的距离为2,∴ |n |12 +-1 2 =2,解得n =±2(舍去负值), ∴直线PQ 的方程为x -y +2=0.

2.如图,分别过椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点F 1,F 2的动直线l 1,l 2相交于 P 点,l 1,l 2与椭圆E 分别交于A ,B 与C ,D 且这四点两两不同,直线OA ,OB ,OC ,OD 的斜 率k 1,k 2,k 3,k 4满足k 1+k 2=k 3+k 4.已知当l 1与x 轴重合时,|AB |=23,|CD |=43 3 . (1)求椭圆E 的方程; (2)是否存在定点M ,N ,使|PM |+|PN |为定值?若存在,求出M ,N 点坐标;若不存在,说明理由. 解:(1)当l 1与x 轴重合时,由2a =|AB | =23,得a 2 =3.又2b 2 a =|CD |=433,所以 b 2 =2,所以椭圆E 的方程为x 2 3+y 2 2 =1. (2)焦点F 1,F 2的坐标分别为(-1,0),(1,0),当直线l 1或l 2的斜率不存在时,P 点的坐标为(-1,0)或(1,0). 当斜率存在时,设直线l 1,l 2的斜率分别为m 1,m 2,设A (x 1,y 1),B (x 2,y 2),由 ????? x 23+y 2 2=1, y =m 1x +1 得(2+3m 2 1)x 2 +6m 21x +3m 2 1-6=0, 所以x 1+x 2=-6m 2 12+3m 21,x 1x 2=3m 2 1-6 2+3m 21, 所以k 1+k 2=y 1x 1+y 2x 2 =m 1? ?? ??x 1+1x 1+x 2+1x 2 =m 1? ? ???2+ x 1+x 2x 1x 2=-4m 1 m 21-2 . 同理k 3+k 4=-4m 2 m 22-2 . ∵k 1+k 2=k 3+k 4,∴-4m 1m 21-2=-4m 2 m 22-2, 即(m 1m 2+2)(m 2-m 1)=0, 由题意得m 1≠m 2,∴m 1m 2+2=0.

高考文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 知识归纳: 名 称 椭圆 双曲线 图 象 x O y x O y 定 义 平面内到两定点21,F F 的距离的和为 常数(大于21F F )的动点的轨迹叫椭圆 即a MF MF 221=+ 当2a ﹥2c 时, 轨迹是椭圆, 当2a =2c 时, 轨迹是一条线段21F F 当2a ﹤2c 时, 轨迹不存在 平面内到两定点21,F F 的距离的差的绝 对值为常数(小于21F F )的动点的轨迹 叫双曲线即122MF MF a -= 当2a ﹤2c 时, 轨迹是双曲线 当2a =2c 时, 轨迹是两条射线 当2a ﹥2c 时, 轨迹不存在 标准方 程 焦点在x 轴上时: 122 22=+b y a x 焦点在y 轴上时:122 22=+b x a y 注:根据分母的大小来判断焦点在哪一坐 标轴上 焦点在x 轴上时:122 22=-b y a x 焦点在y 轴上时:122 22=-b x a y 常 数 c b a ,,的关 系 222b c a +=, 0>>b a , a 最大, b c b c b c ><=,, 222b a c +=, 0>>a c c 最大, 可以b a b a b a ><=,, 渐近线 焦点在x 轴上时: 0x y a b ±= 焦点在y 轴上时:0y x a b ±= 抛物线:

图形 x y O F l x y O F l 方程 )0(22 >=p px y )0(22>-=p px y )0(22>=p py x )0(22>-=p py x 焦 点 )0,2 (p )0,2(p - )2,0(p )2,0(p - 准 线 2 p x -= 2p x = 2p y -= 2 p y = (一)椭圆 1. 椭圆的性质:由椭圆方程)0(122 22>>=+b a b y a x (1)范围:a x b -a ,x a ≤≤≤≤-, 椭圆落在b y ±=±=a ,x 组成的矩形中。 (2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心, 简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围, 对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:)0,(),0,(2a A a A -, ),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴, 21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c e = ?2)(1a b e -=。10<

圆锥曲线文科高考习题含答案

已知椭圆=1(a>b>0),点P ( a 5 5 ,)在椭圆上。 (I )求椭圆的离心率。 (II )设A 为椭圆的右顶点,O 为坐标原点,若Q 在椭圆上且满足|AQ|=|AO|求直线OQ 的斜率的值。 22.【2012高考安徽文20】(本小题满分13分) 如图,21,F F 分别是椭圆C :22a x +22 b y =1(0>>b a )的左、右 焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点, 1F ∠A 2F =60°. (Ⅰ)求椭圆C 的离心率; (Ⅱ)已知△A B F 1的面积为403,求a, b 的值.

在平面直角坐标系xOy 中,已知椭圆1C :22 221x y a b +=(0a b >>)的左焦点为1(1,0)F -,且点(0,1) P 在1C 上. (1)求椭圆1C 的方程; (2)设直线l 同时与椭圆1C 和抛物线2C :2 4y x =相切,求直线l 的方程. 24.【2102高考北京文19】(本小题共14分) 已知椭圆C :22x a +2 2y b =1(a >b >0)的一个顶点为A (2,0),离心率为2, 直线y=k(x-1)与椭圆C 交与 不同的两点M,N (Ⅰ)求椭圆C 的方程 (Ⅱ)当△AMN 的面积为3 时,求k 的值

如图,椭圆 22 22 :1(0) x y M a b a b +=>>的离心率为 3 ,直线x a =±和y b =±所围成的矩形ABCD的面积 为8. (Ⅰ)求椭圆M的标准方程; (Ⅱ) 设直线:() l y x m m =+∈R与椭圆M有两个不同的交点,, P Q l与矩形ABCD有两个不同的交点,S T. 求|| || PQ ST 的最大值及取得最大值时m的值. 26.【2102高考福建文21】(本小题满分12分) 如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。(1)求抛物线E的方程; (2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明 以PQ为直径的圆恒过y轴上某定点。

2020_2021学年高中数学第二章圆锥曲线与方程课时作业14抛物线的简单几何性质(含解析)新人教A版选修2_1

课时作业14 抛物线的简单几何性质 [基础巩固] 一、选择题 1.过抛物线C :y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2),如果x 1+x 2=6, 那么|AB |=( ) A .8 B .10 C .6 D .4 2.抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是( ) A.43 B.75 C.85 D .3 3.已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,PA ⊥l , 垂足为A ,|PF |=4,则直线AF 的倾斜角等于( ) A.7π12 B.2π3 C.3π4 D.5π6 4.若直线y =2x +p 2 与抛物线x 2 =2py (p >0)相交于A ,B 两点,则|AB |等于( ) A .5p B .10p C .11p D .12p 5.已知点P 在抛物线x 2=4y 上,则当点P 到点Q (1,2)的距离与点P 到抛物线焦点距离 之和取得最小值时,点P 的坐标为( ) A .(2,1) B .(-2,1) C .-1,14 D .1,14 二、填空题 6.已知点F 为抛物线y 2=4x 的焦点,该抛物线上位于第一象限的点A 到其准线的距离为 5,则直线AF 的斜率为________. 7.已知抛物线y 2=12 x ,则弦长为定值1的焦点弦有________条. 8.已知A (2,0),B 为抛物线y 2=x 上一点,则|AB |的最小值为________. 三、解答题 9.已知直线x -2y -1=0被焦点在y 轴上,顶点在原点的抛物线截得的弦长为15,求此抛物线的方程.

高考的文科数学圆锥曲线专题复习

高三文科数学专题复习之圆锥曲线 名 称 椭圆 双曲线 图 象 x O y x O y 定 义 平面内到两定点 的距离的和为 常数(大于)的动点的轨迹叫椭 圆即 当2﹥2时,轨迹是椭圆, 当2=2时,轨迹是一条线段 当2﹤2时,轨迹不存在 平面内到两定点 的距离的差的绝对值为常数(小于 )的动点的轨 迹叫双曲线即 当2﹤2时,轨迹是双曲线 当2=2时,轨迹是两条射线 当2﹥2时,轨迹不存在 标准 方 程 焦点在轴上时: 焦点在 轴上时: 注:根据分母的大小来判断焦点在哪一坐标轴上 焦点在轴上时: 焦点在 轴上时: 常数 的关 系 , , 最大, , 最大,可以 渐近线 焦点在轴上时: 焦点在 轴上时: 抛物线:

图 形 方 程 焦 点 准 线 (一)椭圆 1. 椭圆的性质:由椭圆方程 (1)范围:,椭圆落在组成的矩形中。 (2)对称性:图象关于y轴对称。图象关于x轴对称。图象关于原点对称。原点叫椭圆的对称中心,简称中心。x轴、y轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。 (3)顶点:椭圆和对称轴的交点叫做椭圆的顶点 椭圆共有四个顶点:,。加两焦点共有六个特殊点。叫椭圆的长轴,叫椭圆的短轴。长分别为。分别为椭圆的长半轴长和短半 轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。。。 椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例。椭圆变扁,直至成为极限位置线段,此时也可认为是椭圆在时的特例。 2. 椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这 个点的轨迹叫做椭圆。其中定点叫做焦点,定直线叫做准线,常数就是离心率。 椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式 3. 椭圆的准线方程 对于,左准线;右准线 对于,下准线;上准线

相关主题
文本预览
相关文档 最新文档