当前位置:文档之家› 第7-5节(隐函数的求导法则、偏导数的几

第7-5节(隐函数的求导法则、偏导数的几

隐函数的求导方法总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

隐函数求导公式

第5节:隐函数的求导公式 教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。 教学重点:由一个方程确定的隐函数求导方法。 教学难点:隐函数的高阶导函数的计算。 教学方法:讲授为主,互动为辅 教学课时:2 教学内容: 一、一个方程的情形 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F

由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得 .y x F F dx dy -= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得 dx dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??= 22 .23 2222y x yy y x xy y xx y x y x yy y xy y x yz y xx F F F F F F F F F F F F F F F F F F F F +--=???? ??-----= 例 1 验证方程012 2 =-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。 解 设=),(y x F 12 2-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此 由定理1可知,方程012 2 =-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。 下面求这函数的一阶和二阶导数 y x F F dx dy -==y x -, 00 ==x dx dy ; 22dx y d =,1) (3 32222y y x y y y x x y y y x y -=+-=---='-- 10 2 2-==x dx y d 。 隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

(完整版)第五节隐函数求导法则

第五节 隐函数求导法则 教学目的:会求隐函数(包括由方程组确定的隐函数)的偏导数。 教学重点:隐函数的偏导数 教学难点:隐函数(包括由方程组确定的隐函数)的偏导数; 教学时数:2 教学内容: 一、一个方程的情形 1、 隐函数存在定理1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数, 0000(,)0,(,)0y F x y F x y '=≠, 则方程(,)0F x y =在点00(,)x y 的某一邻域内恒能唯一确定 一个连续且具有连续导数的函数()y f x =, 它满足条件()00y f x =, 并有 y x F F dx dy -=. 证明: 将()y f x =代入(,)0,F x y =得恒等式()(,)0,F x f x ≡ 等式两边对x 求导得 0=???+??dx dy y F x F , 由于y F '连续, 且00(,)0y F x y '≠, 所以存在00(,)x y 的一个邻域, 在这个邻域同0y F '≠, 于是得 y x F F dx dy -=. 例1: 验证方程22 10x y +-=在点(0,1)的某一邻域内能唯一确定一个有连续导数、当 0x =时1y =的隐函数(),y f x =并求这函数的一阶与二阶导数在0x =的值. 解: 设22 (,)1F x y x y =+-, 则2x F x '=、2y F y '=、 F (0,1)0=, F (0,1)20.y '=≠因此由定理1可知, 方程2 2 10x y +-=在点(0,1)的某一邻域内能唯一确定一个有连续导数、当 0x =时1y =的隐函数()y f x =.

隐函数求导法则.

1、填空题 1)已知x+y-3xy=0,则 3 3 dydx = x-yx-y 2 2 。 2) 已知x+2y+z-=0,则 ?x? y xz = 3)已知z=y,则dz= xz zy z-1 dy-zlnzdx x-1 xz-ylny 。 4)已知cos2x+cos2y+cos2z=1,则dz=- sin2xsin2z dx- sin2ysin2z dy。

5)已知z=f(xz,z-y),其中f具有一阶连续偏导数,则 dz= zf1'dx-f2'dy1-xf1'-f2' 。 分析:dz=f1'd(xz)+f2'd(z-y)=zf1'dx+xf1'dz+f2'dz-f2'dy 2、设F(y+z,xy+yz)=0,其中F具有二阶连续的偏导数,求解:方法一、 F(y+z,xy+yz)=0两边关于x求偏导得 F' ?z?x 2 2 。 -yF2'?z??z?'+F2 y+y= ?=0? ?x?x?x''??F1+yF2?z F1' ?z?? +F2' y+y?=0两边再关于x求偏导得?x?x?? 2 2 ?z ??z?z???z?z??z?z????z??z''''?y+y'''''?y+y'yF+F+F+F+Fy+y+F=012 122 2????? 11 2122?x?x?x?x?x?x?x?x?????????? ( ?z??z??z??z? ''?''''?y+yF1'+yF2'=-F-2Fy+y-F11 1222 ??? 2 ?x?x??x??x???x?? ) ?z 2 22 ?z?x 2 2 =- (

F1'+yF2' ) 3 ?' yF2? () 2 2 F11''-2yF1'F2'F12''+yF1' ()() 2 ?F22''? ? 方法二、F(y+z,xy+yz)=0两边微分得 F1'(dy+dz)+F2'(ydx+xdy+zdy+ydz)=0 dz= ?F1'?x?F2'?x -yF2'F1'+yF2' ?z dx+ -(x+z)F2'-F1' F1'+yF2' dy? ?z?x = -yF2'F1'+yF2' =F11'' ?z?y? +F12'' y+y=-F2'F11''+F1'F12'' ??x?x?F'+yF'?12 () =F21'' ?z?y? +F22'' y+y=-F2'F12''+F1'F22'' ??x?x?F'+yF'?12 ?z ()

高等数学--隐函数的求导法则

第五节 隐函数的求导法则 一、一个方程的情形 隐函数存在定理1设函数F(X, y)在点P(X 0, y o )的某一邻域内具有连续偏 导数,F(x °,y °) 0,F y (X 0, y 。) 0 ,则方程F(x,y) 0在点X 。的某一邻域内恒 能唯一确定一个连续且具有连续导数的函数 y f(x),它满足条件y o f(x o ), 并有 dy Fx dx F y ' 说明:1) 定理证明略,现仅给出求导公式的推导:将 y f(x)代入 F(x,y) 0 ,得恒等式 F(x,f(x)) 0, 等式两边对X 求导得 F _Fdy X y dx 由于F y 0于是得 dy Fx dx F y 导数: 2 d y I _ Fx . dy dx X F y y F y dx FF 2 2F F F F F 2 XX y XyXy y y X F y 例1验证方程Siny e x Xy 1 0在点(0,0)的某一邻域内能唯一确定一个 2)若F(x, y)的二阶偏导数也都连续 则按上述方法还可求隐函数的二阶 F XX F y F yX F X F Xy F y F y y F X FX F y

解设 F(X l y) Siny e x Xy 1,则 1) F X e X y , F y CoSy X 连续; 2) F(Q I Q) 0 ; 3) F y (Q I Q) 1 Q . 一个单值可导的隐函数y f(X). 隐函数存在定理还可以推广到多元函数.一般地一个二元方程 F(x, y) Q 可 以确定一个一元隐函数,而一个三元方程F(x,y,z) Q 可以确定一个二元隐函数. 隐函数存在定理2设函数F(x, y, z)在点P(X Q ) y o , Z Q )的某一邻域内具有连续 的偏导数,且 F(X Q ) y o ,Z o ) Q , F Z (X Q , y o ,Z o ) Q ,则方程 F(X ) y, Z) Q 在点(X Q l y Q ) 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 Z f (x, y),它 满足条件Z Q f (X Q ,y o ),并有 Z F X Z F y X F Z , y F Z . 说明:定理证明略,现仅给出求导公式的推导:将Z f(x,y)代入 单值可导的隐函数y f(X) ,并求 dy x d 2y 0 , dx 2 x 因此由定理1可知,方程Siny e X Xy 1 Q 在点(Q,Q)的某一邻域内能唯一确定 dy dx X F X F y X cosy X X Q,y d 2y dx 2 X dx cosy X X 0, y Q,y (e X y )(cos y X ) (e y)( (cosy x )2 Sinyy 1)

高等数学偏导数第五节隐函数求导题库.

【090501】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由z x e t t xy +=-? 2 d 所确定,试求 ????z x z y ,。 【试题答案及评分标准】 解:原式两边分别对x y ,求偏导得 ????z x ye z x ye xy xy +==---1122()()。 (6分) ??z y xe xy =-()2 (10分) 【090502】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由yz zx xy ++=3所确定,试求????z x z y ,(其中x y +≠0)。 【试题答案及评分标准】 解:原式两边对x 求导得 y z x x z x z y ????+++=0 则 ??z x z y y x =-++ (6分) 同理可得:??z y z x y x =-++ (10分) 也可: ????z x F F z y y x z y F F z x y x x y y x =-=-++=-=-++ 【090503】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由sin()y z e x z -+=-2所确定,试求 ????z x z y ,。 【试题答案及评分标准】 解:原式sin()y z e x y -+=-2两边求微分得 cos()(d d )(d d )y z y z e x z x z --+--= 0 d d cos()d cos() z e x y z y e y z x z x z =+-+--- (6分) 则

隐函数的求导方法总结

河北地质大学 课程设计(论文) 题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一个隐函数。例如,方程013=-+y x 表示一个函数,因为当变量x 在()∞+∞-,内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2 x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x 故 1=x dx dy =) 1,(!y x =1

高等数学偏导数第五节隐函数求导题库.

【090501 】【计算题】【中等 0.5】【隐函数的求导公式】 【隐函数的求导】
【试题内容】设函数 z z(x, y)由 z x
e xy
t2
dt 所确定,试求
【试题答案及评分标准】
解:原式两边分别对 x, y 求偏导得
(6 分)
2
xe (xy)
(10 分)
【090502】【计算题】【中等 0.5】【隐函数的求导公式】 【隐函数的求导】
【试题内容】设函数 z z(x, y)由 yz zx xy 3 所确定,试求 Y,_Z (其中 x y 0)。 xy
【试题答案及评分标准】
解:原式两边对 x 求导得
z y— z x x—
z y0
x
则—
x
zy yx
(6 分)
z
同理可得:
y
也可:
zx yx
(10 7)')
z Fx x Fy
z _y yx
z Fy
zx
y Fx
yx
■ 【090503】【计 题】

0.5】【隐函数的求导公式】 【隐函数的求导】
【试题内容】设函数 z z(x,y)由 sin(y z) ex z
2 所确定,试求足二。
xy
【试题答案及评分标准】
解:原式 sin( y z) ex y 2 两边求微分得
cos(y z)(d y dz)
xz
e (d x d z) = 0
ex z d x cos(y z)d y dz
ex z cos(y z)
(6 分)
xz
ze x ex z cos(y z)
(8 分)
z cos( y z) y ex z cos(y z)
(10 分)
【090504】【计算题】【中等 0.5】【隐函数的求导公式】 【隐函数的求导】
【试题内容】设 y y(x,z)由方程 ex ey ez 3xyz 所确定,试求 业,业。 z
【试题答案及评分标准】
x
y e 3yz
x
y
e
3xz
(5 分)
y
z
e
3xy
z ey 3xz
(10 分)
【090505】【计算题】【中等 0.5】【隐函数的求导公式】
【试题内容】设 z z(x, y) 由方程
2
3
y z xy
2z 所确定,试求
【试题答案及评分标
准】
z
1y
x 3z2 2
y1 3z2 2
(5 力)
z
2y x x 2y
2
2
(10 分)
y
3z2 2 3z2 2
【090506】【计算 【中等 0.5】【隐函数的求导公
题】
式】
【试题内容】设 z z(x, y)由 2z
y x cost2 d t 所确定,试求
【试题答案及评分标准】
解: 2— cos(z y x)2 x
(4 分)
cos(z y x)2 cos(z y x)2
(10 分)
【090507】【计算题】【中等 0.5】 【隐函数的求导公式】 【隐函数的求导】
【试题内容】设 z z(x, y)
由方程 ez
2 3 一 …、 一-
xy z 1 所确定,试求 zx
, (1,1,0) (zy I,I,0)°
【试题答案及评分标准】
解:方程两边求微分得
ez d z y2z3 d x
2xyz 3d, y
22.
3xy z d z 0
(6
分)
将 x 1 , y 1,z 0 代入上式得
dz0

z
0,
x (1,1,0)
z
0
y (1,1,0)
【090508】【计算题】【中等 0.5】【隐函数的求导公式】
【试题内容】设 z z(x, y)由 x eyz z1 2所确定,试求 dz。
(8 分) (1。分) 【隐函数的求导】
【试题答案及评分标准】 解:原式两边求微分得
d x eyz(ydz zd y) 2zd z (6 分) d x zeyz d y
dz 2z yeyz
(10 分)
【090509】【计算题】【中等 0.5】【隐函数的求导公式】 【隐函数的求导】
【试题内容】设函数 z z(x, y)由 xy cos(x z)
sin( y z) 1 所确定,求
【试题答案及评分标准】
z y sin(x z) x sin( x

隐函数极其求导法则

隐函数极其求导法则 隐函数及其求导法则 我们知道用解析法表示函数,可以有不同的形式. 若函数y可以用含自变量x的算式表示,像y=sinx,y=1+3x等,这样的函数叫显函数.前面我们所遇到的函数 大多都是显函数. 一般地,如果方程F(x,y)=0中,令x在某一区间内任取一值时,相应地总有满足此方程的y值存在,则我们就 说方程F(x,y)=0在该区间上确定了x的隐函数y. 把一个隐函数化成显函数的形式,叫做隐函数的显化。 注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢? 下面让我们来解决这个问题! 隐函数的求导 若已知F(x,y)=0,求时,一般按下列步骤进行求解: a):若方程F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导; b):若方程F(x,y)=0,不能化为的形式,则是方程两边对x进行求导,并把y看成x的函数 , 用复合函数求导法则进行。 例题:已知,求 解答:此方程不易显化,故运用隐函数求导法.

两边对x进行求导, 故= 注:我们对隐函数两边对x进行求导时,一定要把变量y看成x的函数,然后对其利用复合函数求导法则进行求导。 例题:求隐函数,在x=0处的导数 解答:两边对x求导 故 当x=0时,y=0.故 有些函数在求导数时,若对其直接求导有时很不方便,像对某些幂函数进行求导时,有没有一种比较直观的方法呢? 下面我们再来学习一种求导的方法:对数求导法

积分 黎曼积分 如果函数f(X)在闭区间[a,b]上定义,而(P,ζ)是这个闭区间的一个带点分割,则和 ζ(f;p,ζ):=Σ f(ζi)ΔXi 叫做函数f在区间[a,b]上对应于带点分割(P,ζ)的积分和,其中ΔXi=Xi-X(i-1) 存在这样一个实数I,如果对于任何ε>0可以找到一个δ>0,使对区间[a,b]的任何带点分割(P,ζ),只要分化P的参数λ(P)<δ,就有|I-ζ(f;p,ζ)|<ε,则称函数f(X)在闭区间[a,b]上黎曼可积,而I就成为函数f(X)在闭区间[a,b]上的黎曼积分。 微积分 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。 其中:[F(x) + C]' = f(x) 一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。 积分integral 从不同的问题抽象出来的两个数学概念。定积分和不定积分的统称。不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)=f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。例如,定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n 等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi],记Δxi=xi-xi-1,,则pn为S的近似值,当n→+∞时,pn的极限应可作为面积S。把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b]上的函数y=f(x),作分划a=x0<x1<…<xn=b,若存在一个与分划及ζi∈[xi-1,xi]的取法都无关的常数I,使得,其中则称I为f(x)在[a,b]上的定积分,表为即称[a,b]为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式。 以上讲的是传统意义上的积分也即黎曼积分。 微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。

隐函数的求导方法总结

河北地质大学课程设计(论文) 题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 .......................................................................... 错误!未指定书签。 一.隐函数的概念 .................................................. 错误!未指定书签。 二.隐函数求偏导 .................................................. 错误!未指定书签。 1.隐函数存在定理1 ................................................ 错误!未指定书签。 2.隐函数存在定理2 ................................................ 错误!未指定书签。 3.隐函数存在定理3 ................................................ 错误!未指定书签。 三.隐函数求偏导的方法 .......................................... 错误!未指定书签。 1.公式法 ................................................................... 错误!未指定书签。 2.直接法 ................................................................... 错误!未指定书签。 3.全微分法 ............................................................... 错误!未指定书签。 参考文献 .................................................................. 错误!未指定书签。 摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数偏导数方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一

高等数学--隐函数的求导法则

高等数学--隐函数的 求导法则 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五节 隐函数的求导法则 一、一个方程的情形 隐函数存在定理1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有 d d x y F y x F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入 (,)0F x y =,得恒等式 (,())0F x f x ≡, 等式两边对x 求导得 d 0d F F y x y x ??+=??, 由于0y F ≠ 于是得 d d x y F y x F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数: 22d d ()()d d x x y y F F y y x x F y F x ?? =-+-? ?? 2 2()x x y y x x x y y y y x x y y y F F F F F F F F F F F F --=- - - 22 3 2x x y x y x y y y x y F F F F F F F F -+=- .

例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单 值可导的隐函数()y f x =,并求22 d d ,00 d d y y x x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠. 因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =. d 0d y x x =0x y F x F =-= e 10,0 cos x y x y y x -=-=-==-, 22 d 0d y x x = d e ()0,0,1 d cos x y x y y x y x -=-'===-- 02 01 (e )(cos )(e )(sin 1) (cos )x x x y y y y x y y y y x =='=-''-----?-=- -3=-. 隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点 00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 (,)z f x y =, 它满足条件000(,)z f x y =,并有 x z F z x F ?=-?,y z F z y F ?=-?.

相关主题
文本预览
相关文档 最新文档