当前位置:文档之家› 高等数学--隐函数的求导法则

高等数学--隐函数的求导法则

高等数学--隐函数的求导法则
高等数学--隐函数的求导法则

高等数学--隐函数的

求导法则

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五节 隐函数的求导法则

一、一个方程的情形

隐函数存在定理1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有

d d x y

F y

x F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入

(,)0F x y =,得恒等式

(,())0F x f x ≡,

等式两边对x 求导得

d 0d F F y x y x

??+=??, 由于0y F ≠ 于是得

d d x y

F y

x F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:

22d d ()()d d x x y y F F y y x x F y F x

??

=-+-?

?? 2

2()x x y y x x

x y y y y x

x

y y y

F F F F F F F F F F F F --=-

-

-

22

3

2x x y x y x y y y x y F F F F F F F F -+=-

例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单

值可导的隐函数()y f x =,并求22

d d ,00

d d y y

x x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.

因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.

d 0d y x x =0x y F x F =-=

e 10,0

cos x y

x y y x -=-=-==-,

22

d 0d y x x = d

e ()0,0,1

d cos x y

x y y x y x -=-'===-- 02

01

(e )(cos )(e )(sin 1)

(cos )x x x y y y y x y y y y x =='=-''-----?-=-

-3=-.

隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数.

隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点

00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数

(,)z f x y =, 它满足条件000(,)z f x y =,并有

x z F z x F ?=-?,y z

F z

y F ?=-?.

说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入

(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,

将上式两端分别对x 和y 求导,得

0=???+x

z F F z x , 0=???+y z F F z y .

因为z F 连续且000(,,)0z F x y z ≠,于是得

x z F z x F ?=-?, y z

F z

y F ?=-?. 例2 设2

2

2

40x y z z ++-=,求22z

x

??.

解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,

2242x z F z x x x F z z

?=-=-=?--,

2

22

2

223

(2)(2)()(2)2(2)(2)(2)z x

x x

x x z

x x x z x z z z ?-+-+?-+?-===?---.

二、方程组的情形

在一定条件下, 由方程组

(,,,)0

(,,,)0

F x y u v

G x y u v =??

=? 可以确定一对二元函数

(,)

(,)

u u x y v v x y =??

=?, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数2

2y x y

u +=

,2

2y x x v +=

. 事实上, 0xu yv -= ?u y x v =?1=?+u y x x yu ?22y

x y

u +=,

2222y

x x y x y

y x v +=+?=. 下面讨论如何由组求u ,v 的导数.

隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)

(,)(,)

F

F F

G u v J G G u v u

v

?????==

????? 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点

0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数

(,)(,)u u x y v v x y =??

=?,

它们满足条件000(,)u u x y =,000(,)v v x y =,且有

1(,)

(,)

x

v

x v u v u

v F F G G u F G F F x J x v G G ??=-=-??,

1(,)

(,)u

x u x

u v u

v

F F

G G v F G F F x J u x G G ??=-=-??, 1(,)

(,)

y

v y v

u v u

v F F G G u F G F F y J y v G G ??=-=-

??,1(,)

(,)u y

u y u v u v

F F

G G v F G F F y J u y G G ??=-=-??. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数x

u ??,x v ??由方程组

0,0x u v x u v u v F F F x x

u v G G G x x ???

++=?????

???++=????

确定;偏导数y

u ??,y v ??由方程组

??

???=??+??+=??+??+.

0,

0y v

G y u G G y

v F y u F F v u y v u y 确定.

例3 设0xu yv -=,1yu xv +=,求

u x ??,v x

??,u

y ??和v y ??.

解 两个方程两边分别对x 求偏导,得关于

u x ??和v

x

??的方程组 00u v u x y x x

u v y v x x

x ???

+-=?????

???++=????,. 当220x y +≠时,解之得

2

2

u xu yv x x y ?+=-?+,22v yu xv

x x y ?-=?+. 两个方程两边分别对y 求偏导,得关于

u y ??和v

y

??的方程组 00u

v x v y y y u v u y x y y ???--=????

?

???++=????

,. 当220x y +≠时,解之得

22u xv yu y x y ?-=?+,22

v xu yv

y x y ?+=-

?+. 另解 将两个方程的两边微分得

d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=??

+++=?,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-??+=--?,

解之得

2222d d d xu yv xv yu u x y x y x y +-=-

+++,2222

d d d yu xv xu yv

v x y x y x y

-+=-++. 于是

隐函数的求导方法总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

高等数学-隐函数的求导法则

第五节 隐函数的求导法则 一、一个方程的情形 隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有 d d x y F y x F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入 (,)0F x y =,得恒等式 (,())0F x f x ≡, 等式两边对x 求导得 d 0d F F y x y x ??+=??, 由于0y F ≠ 于是得 d d x y F y x F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数: 22d d ()()d d x x y y F F y y x x F y F x ?? =-+-? ?? 2 2 ()x x y y x x x y y y y x x y y y F F F F F F F F F F F F --=- - - 22 32x x y x y x y y y x y F F F F F F F F -+=- . 例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个

单值可导的隐函数()y f x =,并求22 d d ,00 d d y y x x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠. 因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =. d 0d y x x =0x y F x F =-= e 10,0 cos x y x y y x -=-=-==-, 22d 0d y x x = d e () 0,0,1 d cos x y x y y x y x -=-'===-- 02 01 (e )(cos )(e )(sin 1) (cos )x x x y y y y x y y y y x =='=-''-----?-=- -3=-. 隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有 x z F z x F ?=-?,y z F z y F ?=-?. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入 (,,)0F x y z =, 得(,,(,))0F x y f x y ≡,

隐函数求导公式

第5节:隐函数的求导公式 教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。 教学重点:由一个方程确定的隐函数求导方法。 教学难点:隐函数的高阶导函数的计算。 教学方法:讲授为主,互动为辅 教学课时:2 教学内容: 一、一个方程的情形 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F

由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得 .y x F F dx dy -= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得 dx dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??= 22 .23 2222y x yy y x xy y xx y x y x yy y xy y x yz y xx F F F F F F F F F F F F F F F F F F F F +--=???? ??-----= 例 1 验证方程012 2 =-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。 解 设=),(y x F 12 2-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此 由定理1可知,方程012 2 =-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。 下面求这函数的一阶和二阶导数 y x F F dx dy -==y x -, 00 ==x dx dy ; 22dx y d =,1) (3 32222y y x y y y x x y y y x y -=+-=---='-- 10 2 2-==x dx y d 。 隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

高等数学偏导数第五节隐函数求导题库.

【090501】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由z x e t t xy +=-? 2 d 所确定,试求 ????z x z y ,。 【试题答案及评分标准】 解:原式两边分别对x y ,求偏导得 ????z x ye z x ye xy xy +==---1122()()。 (6分) ??z y xe xy =-()2 (10分) 【090502】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由yz zx xy ++=3所确定,试求????z x z y ,(其中x y +≠0)。 【试题答案及评分标准】 解:原式两边对x 求导得 y z x x z x z y ????+++=0 则 ??z x z y y x =-++ (6分) 同理可得:??z y z x y x =-++ (10分) 也可: ????z x F F z y y x z y F F z x y x x y y x =-=-++=-=-++ 【090503】【计算题】【中等0.5】【隐函数的求导公式】【隐函数的求导】 【试题内容】设函数z z x y =(,)由sin()y z e x z -+=-2所确定,试求 ????z x z y ,。 【试题答案及评分标准】 解:原式sin()y z e x y -+=-2两边求微分得 cos()(d d )(d d )y z y z e x z x z --+--= 0 d d cos()d cos() z e x y z y e y z x z x z =+-+--- (6分) 则

高数导数练习题

第二章导数与微分练习题 一、填空题 1. 设)cos(cos 2sin x y x =,则='y _________________. 2. 设函数)(x y y =由方程0)sin(222=-++xy e y x x 所确定,则 =dx dy __________. 3. 设 2sin x e y = ,则=dy ____________________. 4.设函数()x y y =由方程0=+-y x e e xy 所确定,则()0y '= (),0y ''= 5 .若函数2sec y t t =?+设 ,则=dy 。 6.曲线?????=+=321t y t x 在2=t 处的切线方程为 ,2214 t d y dx == 。 7. 设(0)0,'(0)4,f f == 则0()lim x f x x → =_______________. 8. ()(1)(2)(3)(4)(100)f x x x x x x x =-----,则=')1(f ________. 9. 设)]([22x f x f y +=, 其中)(u f 为可导函数, 则 =dx dy _____________. 二、选择题 1. 若???≥+<+=1 ,1,3)(2x b ax x x x f 在1=x 处可导,则( ) A. 2,2==b a B. 2,2=-=b a C. 2,2-==b a D. 2,2-=-=b a 2. 设0'()2f x =,则000()()lim h f x h f x h h →+--=( ). A.不存在 B. 2 C. 0 D 、 4 3. 设)0()(32>=x x x f , 则=')4(f ( ) A.2 B.3 C.4 D.5 4. 设()f x 是可导函数,且0(1)(1)lim 12x f f x x →--=-,则曲线(x)f y =在点(1,(1))f 处的切线斜率为( ) A.1 B.0 C.-1 D.-2 5. 设20()(),0x f x x g x x =≤? >,其中()g x 是有界函数,则()f x 在x =0处( ) A.极限不存在 B.可导 C.连续不可导 D.极限存在,但不连续

隐函数求导法则.

1、填空题 1)已知x+y-3xy=0,则 3 3 dydx = x-yx-y 2 2 。 2) 已知x+2y+z-=0,则 ?x? y xz = 3)已知z=y,则dz= xz zy z-1 dy-zlnzdx x-1 xz-ylny 。 4)已知cos2x+cos2y+cos2z=1,则dz=- sin2xsin2z dx- sin2ysin2z dy。

5)已知z=f(xz,z-y),其中f具有一阶连续偏导数,则 dz= zf1'dx-f2'dy1-xf1'-f2' 。 分析:dz=f1'd(xz)+f2'd(z-y)=zf1'dx+xf1'dz+f2'dz-f2'dy 2、设F(y+z,xy+yz)=0,其中F具有二阶连续的偏导数,求解:方法一、 F(y+z,xy+yz)=0两边关于x求偏导得 F' ?z?x 2 2 。 -yF2'?z??z?'+F2 y+y= ?=0? ?x?x?x''??F1+yF2?z F1' ?z?? +F2' y+y?=0两边再关于x求偏导得?x?x?? 2 2 ?z ??z?z???z?z??z?z????z??z''''?y+y'''''?y+y'yF+F+F+F+Fy+y+F=012 122 2????? 11 2122?x?x?x?x?x?x?x?x?????????? ( ?z??z??z??z? ''?''''?y+yF1'+yF2'=-F-2Fy+y-F11 1222 ??? 2 ?x?x??x??x???x?? ) ?z 2 22 ?z?x 2 2 =- (

F1'+yF2' ) 3 ?' yF2? () 2 2 F11''-2yF1'F2'F12''+yF1' ()() 2 ?F22''? ? 方法二、F(y+z,xy+yz)=0两边微分得 F1'(dy+dz)+F2'(ydx+xdy+zdy+ydz)=0 dz= ?F1'?x?F2'?x -yF2'F1'+yF2' ?z dx+ -(x+z)F2'-F1' F1'+yF2' dy? ?z?x = -yF2'F1'+yF2' =F11'' ?z?y? +F12'' y+y=-F2'F11''+F1'F12'' ??x?x?F'+yF'?12 () =F21'' ?z?y? +F22'' y+y=-F2'F12''+F1'F22'' ??x?x?F'+yF'?12 ?z ()

高等数学--隐函数的求导法则

高等数学--隐函数的 求导法则 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第五节 隐函数的求导法则 一、一个方程的情形 隐函数存在定理1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有 d d x y F y x F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入 (,)0F x y =,得恒等式 (,())0F x f x ≡, 等式两边对x 求导得 d 0d F F y x y x ??+=??, 由于0y F ≠ 于是得 d d x y F y x F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数: 22d d ()()d d x x y y F F y y x x F y F x ?? =-+-? ?? 2 2()x x y y x x x y y y y x x y y y F F F F F F F F F F F F --=- - - 22 3 2x x y x y x y y y x y F F F F F F F F -+=- .

例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单 值可导的隐函数()y f x =,并求22 d d ,00 d d y y x x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠. 因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =. d 0d y x x =0x y F x F =-= e 10,0 cos x y x y y x -=-=-==-, 22 d 0d y x x = d e ()0,0,1 d cos x y x y y x y x -=-'===-- 02 01 (e )(cos )(e )(sin 1) (cos )x x x y y y y x y y y y x =='=-''-----?-=- -3=-. 隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点 00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数 (,)z f x y =, 它满足条件000(,)z f x y =,并有 x z F z x F ?=-?,y z F z y F ?=-?.

隐函数的求导方法总结

河北地质大学课程设计(论文) 题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 .......................................................................... 错误!未指定书签。 一.隐函数的概念 .................................................. 错误!未指定书签。 二.隐函数求偏导 .................................................. 错误!未指定书签。 1.隐函数存在定理1 ................................................ 错误!未指定书签。 2.隐函数存在定理2 ................................................ 错误!未指定书签。 3.隐函数存在定理3 ................................................ 错误!未指定书签。 三.隐函数求偏导的方法 .......................................... 错误!未指定书签。 1.公式法 ................................................................... 错误!未指定书签。 2.直接法 ................................................................... 错误!未指定书签。 3.全微分法 ............................................................... 错误!未指定书签。 参考文献 .................................................................. 错误!未指定书签。 摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数偏导数方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一

隐函数的求导方法总结

河北地质大学 课程设计(论文) 题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确定了一个隐函数。例如,方程013=-+y x 表示一个函数,因为当变量x 在()∞+∞-,内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2 x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x 故 1=x dx dy =) 1,(!y x =1

(完整版)第五节隐函数求导法则

第五节 隐函数求导法则 教学目的:会求隐函数(包括由方程组确定的隐函数)的偏导数。 教学重点:隐函数的偏导数 教学难点:隐函数(包括由方程组确定的隐函数)的偏导数; 教学时数:2 教学内容: 一、一个方程的情形 1、 隐函数存在定理1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数, 0000(,)0,(,)0y F x y F x y '=≠, 则方程(,)0F x y =在点00(,)x y 的某一邻域内恒能唯一确定 一个连续且具有连续导数的函数()y f x =, 它满足条件()00y f x =, 并有 y x F F dx dy -=. 证明: 将()y f x =代入(,)0,F x y =得恒等式()(,)0,F x f x ≡ 等式两边对x 求导得 0=???+??dx dy y F x F , 由于y F '连续, 且00(,)0y F x y '≠, 所以存在00(,)x y 的一个邻域, 在这个邻域同0y F '≠, 于是得 y x F F dx dy -=. 例1: 验证方程22 10x y +-=在点(0,1)的某一邻域内能唯一确定一个有连续导数、当 0x =时1y =的隐函数(),y f x =并求这函数的一阶与二阶导数在0x =的值. 解: 设22 (,)1F x y x y =+-, 则2x F x '=、2y F y '=、 F (0,1)0=, F (0,1)20.y '=≠因此由定理1可知, 方程2 2 10x y +-=在点(0,1)的某一邻域内能唯一确定一个有连续导数、当 0x =时1y =的隐函数()y f x =.

隐函数极其求导法则

隐函数极其求导法则 隐函数及其求导法则 我们知道用解析法表示函数,可以有不同的形式. 若函数y可以用含自变量x的算式表示,像y=sinx,y=1+3x等,这样的函数叫显函数.前面我们所遇到的函数 大多都是显函数. 一般地,如果方程F(x,y)=0中,令x在某一区间内任取一值时,相应地总有满足此方程的y值存在,则我们就 说方程F(x,y)=0在该区间上确定了x的隐函数y. 把一个隐函数化成显函数的形式,叫做隐函数的显化。 注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢? 下面让我们来解决这个问题! 隐函数的求导 若已知F(x,y)=0,求时,一般按下列步骤进行求解: a):若方程F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导; b):若方程F(x,y)=0,不能化为的形式,则是方程两边对x进行求导,并把y看成x的函数 , 用复合函数求导法则进行。 例题:已知,求 解答:此方程不易显化,故运用隐函数求导法.

两边对x进行求导, 故= 注:我们对隐函数两边对x进行求导时,一定要把变量y看成x的函数,然后对其利用复合函数求导法则进行求导。 例题:求隐函数,在x=0处的导数 解答:两边对x求导 故 当x=0时,y=0.故 有些函数在求导数时,若对其直接求导有时很不方便,像对某些幂函数进行求导时,有没有一种比较直观的方法呢? 下面我们再来学习一种求导的方法:对数求导法

积分 黎曼积分 如果函数f(X)在闭区间[a,b]上定义,而(P,ζ)是这个闭区间的一个带点分割,则和 ζ(f;p,ζ):=Σ f(ζi)ΔXi 叫做函数f在区间[a,b]上对应于带点分割(P,ζ)的积分和,其中ΔXi=Xi-X(i-1) 存在这样一个实数I,如果对于任何ε>0可以找到一个δ>0,使对区间[a,b]的任何带点分割(P,ζ),只要分化P的参数λ(P)<δ,就有|I-ζ(f;p,ζ)|<ε,则称函数f(X)在闭区间[a,b]上黎曼可积,而I就成为函数f(X)在闭区间[a,b]上的黎曼积分。 微积分 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。 其中:[F(x) + C]' = f(x) 一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。 积分integral 从不同的问题抽象出来的两个数学概念。定积分和不定积分的统称。不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)=f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。例如,定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n 等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi],记Δxi=xi-xi-1,,则pn为S的近似值,当n→+∞时,pn的极限应可作为面积S。把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b]上的函数y=f(x),作分划a=x0<x1<…<xn=b,若存在一个与分划及ζi∈[xi-1,xi]的取法都无关的常数I,使得,其中则称I为f(x)在[a,b]上的定积分,表为即称[a,b]为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式。 以上讲的是传统意义上的积分也即黎曼积分。 微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。 微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。

相关主题
文本预览
相关文档 最新文档