当前位置:文档之家› stokes定理证明

stokes定理证明

stokes定理证明
stokes定理证明

定理与证明说课稿

《定理与证明》说课稿 各位评委、各位老师大家好.今天我说课的课题是华东师大版八年级上册第三章第一节《命题》的第二课时《定理与证明》。我将从教材分析、学情分析、教法分析与学法指导、教学过程分析、教学评价五个方面简述我对这堂课的理解。 一、教材分析 1、教材的地位和作用 《定理与证明》是华东师大版八年级上册第三章第一节的内容。本节是在前面对几何结论已经有了一定直观认识的基础上编排的,本章中所涉及的很多命题在前几册中已由学生通过一些直观的方法进行了探索,学生了解这些结论,这里则开始引导学生依据严格的步骤给出它们的证明。几何证明是培养学生逻辑推理能力的最好载体,迄今为止还没有其他课程能够替代几何的这种地位。从本节课起,学生开始从有条理的口头表述逐渐过渡到书写自己的理由,要求证明的每一步都要有依据,进行严格的形式化证明。因此本节课的学习对发展学生逻辑推理能力是非常重要的,对培养学生的创新意识也非常有利。 2、教学目标根据教材的内容及其在教材体系中的作用和地位,确定本节课的教学目标如下: 【知识与技能】 1认识证明的必要性,初步了解证明的基本步骤和书写格式 2培养学生的推理意识,能清晰、有条理的表达自己的思考过程,做到言之有理。 3掌握证明是从条件出发,根据推理得出结论的过程,能将一些文字命题转化为数学问题,并进行证明。 【过程与方法】经历观察、验证、归纳等过程,能进行简单的证明 【情感态度与价值观】体验数学学习充满了探索和创造、感受证明的必要性,养成对数学的好奇性、求知欲和探索创新精神。 3、教学重难点 为了实现以上教学目标,确定本节课的教学重点是将文字命题转化为数学问题,并进行证明,证明过程中规范性语言的使用。 在实现教学目标的过程中,探索证明的思路,将文字命题转化为数学问题,如何正确写出“已知”、“求证”是本节课的难点。 二、学情分析 我们面对的对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况是十分有必要的。 首先、几何证明中严格的逻辑要求使学生普遍认为几何太抽象,太难学,使学生就产生了畏惧心理. 其次、学生普遍对教师存有依赖心理,缺乏学习的主动钻研和创新精神,期望教师提供详尽的解题示范,习惯于一步一步模仿硬套,只重视结论,而忽视了结论的发生发展过程,忽视对证明方法的探索,经常能听到有学生说:我把几何定理,公理都背得滚瓜烂熟,但我拿到证明题却不知道怎么用! 再次、过分专业而严密的叙述要求使一些基础不好的学生难以逾越语言表述的障碍.本来会表达的意思都被几何语言搞糊涂了.有些学生口头叙述挺好,但一碰到要书写时,不知道如何下手,或者书写层次混乱;没有因果关系的,不管有用没用,把已知条件一律都罗列上;或者跳步,三言两语就写完了,让人看了摸不着头脑. 三、教法分析与学法指导 教法分析 “教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和八年级学生

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

高中数学-微积分基本定理

高中数学-微积分基本定理 A 级 基础巩固 一、选择题 1.(2018·四平模拟)定积分??0 1x 2-x d x 的值为( A ) A .π4 B .π2 C .π D .2π [解析] ∵y =x 2-x , ∴(x -1)2 +y 2 =1表示以(1,0)为圆心,以1为半径的圆, ∴定积分??01x 2-x d x 所围成的面积就是该圆的面积的四分之一, ∴定积分??0 1x 2-x d x =π 4 , 故选A . 2.(2018·铁东区校级二模)由曲线xy =1与直线y =x ,y =3所围成的封闭图形面积为( D ) A .2-ln3 B .ln3 C .2 D .4-ln3 [解析] 方法一:由xy =1,y =3可得交点坐标为(1 3,3),由xy =1,y =x 可得交点坐 标为(1,1), 由y =x ,y =3可得交点坐标为(3,3), ∴由曲线xy =1,直线y =x ,y =3所围成的平面图形的面积为

???1 3 1 (3-1x )d x +? ?1 3(3-x )d x =(3x -ln x )|1 13+(3x -12x 2)|3 1, =(3-1-ln3)+(9-92-3+1 2)=4-ln3 故选D . 方法二:由xy =1,y =3可得交点坐标为(1 3,3), 由xy =1,y =x 可得交点坐标为(1,1), 由y =x ,y =3可得交点坐标为(3,3), 对y 积分,则S =? ?0 3(y -1y )dy =(12y 2-lny )|3 1=92-ln3-(12-0)=4-ln3, 故选D . 3.(2018·安庆高二检测)已知函数f (x )=x n +mx 的导函数f ′(x )=2x +2,则??1 3f (- x )d x =( D ) A .0 B .3 C .-2 3 D .23 [解析] ∵f (x )=x n +mx 的导函数f ′(x )=2x +2, ∴nx n -1 +m =2x +2, 解得n =2,m =2, ∴f (x )=x 2 +2x , ∴f (-x )=x 2-2x , ∴??1 3f (-x )d x =? ?1 3(x 2-2x )d x =(13x 3-x 2)|3 1=9-9-13+1=23,故选D . 4.函数F (x )=??0 x cos t d t 的导数是( A ) A .f ′(x )=cos x B .f ′(x )=sin x C .f ′(x )=-cos x D .f ′(x )=-sin x [解析] F (x )=??0 x cos t d t =sin t | x 0=sin x -sin0=sin x . 所以f ′(x )=cos x ,故应选A . 5.(2018·昆明高二检测)若直线l 1:x +ay -1=0与l 2:4x -2y +3=0垂直,则积分??-a a (x 3 +sin x -5)d x 的值为( D ) A .6+2sin 2 B .-6-2cos 2

Simson定理

几何表示 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线, 则三垂足共线. □ 一阶描述 基本定义: 选定 A,B,C 三点 □ 取外接圆上任意一点 P □ 得到三个垂足 D,E,F □ 基本描述: : A,B,C 三点不共线 西姆松定理 它们的坐标分别为 这三点构成的三角形的外接圆心及半径分别为 P 点的坐标为 . 全部 (x 1,y 1),(x 2,y 2),(x 3,y 3).l 1=AB,l 2=BC,l 3=CA.(u,v),r.(a,b)D(a 1,b 1),E(a 2,b 2),F(a 3,b 3). 91

□ ● : P 在三角形 ABC 的外接圆上 □ ● : P 不同于 A,B,C □ ● : D 是 P 到 BC 的垂足 □ ● : E 是 P 到 CA 的垂足 □ l 1l 2l 3(l 21=(x 1-x 2)2+(y 1-y 2 )2 [l 22=(x 2-x 3)2+(y 2-y 3)2 [l 23=(x 3-x 1)2+(y 3-y 1 )2[l 1+l 2>l 3[l 2+l 3>l 1[l 3+l 1> l 2)92^uvr ((x 1-u)2 +(y 1-v)2=r 2 [ (x 2-u)2+(y 2-v)2=r 2[(x 3-u)2 +(y 3-v)2 =r 2 [(u-a)2+(v-b)2=r 2) 93\(a=x 1[b=y 1)[\(a=x 2[b=y 2)[\(a=x 3[b=y 3) 94(a 1-x 2)(b 1-y 3)-(a 1-x 3)(b 1-y 2)=0[(a 1-a)(x 2-x 3)+(b 2-b)(y 2-y 3)=0 95^

八年级数学上册13.1命题、定理与证明如何寻找命题的条件和结论素材(新版)华东师大版

如何寻找命题的条件和结论 学习了“命题”以后,细心的同学会发现,课本中给出的很多命题都省略了“如果…,那么…”,因此使它的条件和结论不明显,对于这类命题,要经过分析,写成“如果…,那么…”的形式,才能准确地把握其条件和结论.下面就如何把命题改写成“如果…,那么…”谈点看法,供同学们参考. 任何命题的结构都具有固定的形式,我们遇到的问题都是由题设和结论两部分组成。题设(条件)是已知事项,结论是由已知事项推断出的事项.因此,命题常用“如果…… ,那么……”或“若…… ,则……”的形式表达,具有这种形式的命题中,“如果”或“若”引出的部分是条件,“那么”或“则”引出的部分是结论。如果一个命题不是这种形式,我们就要将他们改写为“如果…… ,那么……”或“若…… ,则……”的形式,在改写前下要分出题设和结论,必要时可以结合图形来区分。下面举例来说明。 例请将下列命题写成“如果…… ,那么……”的形式,并写出条件和结论. (1)平行于同一条直线的两条直线平行. (2)互为邻补角的两个角的角平分线互相垂直. 分析:我们可以逆向思考,即(1)结论应为“平行”,那么什么平行呢?一般是两直线互相平行。那么满足什么样的条件的两直线?可得条件是两条直线平行于同一条直线。 (2)结论应为“互相垂直”,那么什么互相垂直呢?一般是两条线(直线、射线或线段)互相垂直。那么满足什么样的条件的两线互相垂直呢?可得条件是两条射线是互为邻补角的两个角的角平分线。这样通过逐步逆向设问的方法可以帮助我们确定条件和结论,最后用完整的文字语言写出来即可。 解:(1)改写成“如果两条直线平行于同一条直线,那么这两条直线平行.” 条件是:两条直线平行于同一条直线;结论是:这两条直线平行. (2)改写成“如果两条射线是互为邻补角的两个角的角平分线,那么这两条射线互相垂直.” 条件是:两条射线是互为邻补角的两个角的角平分线;结论是:这两条射线互相垂直点评:在改写命题时,不是机械地在原命题中添上“如果”和“那么…”,而要使改写后命题的实质不变,条件和结论明朗化,主要要求为(1)改写后的命题与改写前的命题的内容要一致;(2)改写后的命题的句子要完整、语句要通顺,必要时,要对原命题加一些修饰,并且补上原来省略的部分.比如改写命题“两点确定一条直线”,不能写成“如果两点,

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

(答案)奥赛经典-奥林匹克数学中的几何问题---第六章西姆松定理及应用答

第六章西姆松定理及应用 习题A 1.由西姆松定理,知L ,M ,N 三点共线,注意到P ,L ,N ,B 及P ,M ,C ,L 分别四点共圆,知LPN B ∠=∠,LPM C ∠=∠.又由张角定理,有() sin sin sin B C B C PL PM PN ∠+∠∠∠= + ,即 sin sin sin mn A ln B lm C ?∠=?∠+?∠再应用正弦定理,得mn a ln b lm c ?=?+?. 2.根据直径所对的圆周角是直角,知90BDP ADP ∠=∠=?,90BFP CFP ∠=∠=?,90CEP AEP ∠=∠=?,即知D ,A ,B ;B ,F ,C ;C ,E ,A 分别三点共线. 又PD AB ⊥于D ,PE AC ⊥于E ,PF BC ⊥于F ,P 是ABC △外接圆周上一点,由西姆松定理,知D ,E ,F 三点共线. 3.延长BE ,CD 相交于点K ,延长CG ,BF 相交于点L .设CG 与BE 相交于点I ,则I 为ABC △的 内心.由12CAI BAC ∠=∠,而()11 909022 CKI CIK B C BAC ∠=?-∠=?-∠+∠=∠,从而A ,I ,C , K 四点共圆. 又AD CK ⊥于D ,AE KB ⊥于E ,AG CI ⊥于G ,A 是ICK △外接圆上任一点,由西姆松定理,知D ,E ,G 三点共线.同理,B ,I ,A ,L 四点共圆,AE BI ⊥于E ,AG IL ⊥于G ,AF BL ⊥于F ,由西姆松定理,知E ,G ,F 三点共线.故F ,G ,E ,D 四点共线. 4.设正ABC △外接圆弧?AB 上任一点P 到边BC ,CA ,AB 的距离分别为a h ,b h ,c h ,其垂足分别为 D , E , F ,正三角形边长为a .由面积等式可得a b c h h h +-= .此式两边平方,得 ()2222324 a b c a b b c a c h h h h h h h h h a +++--=. 由 sin sin b a h h PAC PBD PA PB =∠=∠=,有a b h PA h PB ?=?. 同理,a c h PA h PC ?=?,故a b h PA h PB k PC ?=?=?. 又P ,F ,E ,A 及P ,D ,B ,F 分别四点共圆,有PFD PBD PAC ∠=∠=∠,PDF PBF PCA ∠=∠=∠, 得PFD PAC △△≌,故c h PA a DF = ?,同理,a h PB a DE =?,b h PC a EF =?,即 a c b a c b h h h h h h k EF DE EF ???===由西姆松定理,知D ,E ,F 共线,即DF FE DE +=.于是 £()0a b a c b c hb h h h h h h DE DF EF k ? ---=--=?, 故222234 a b c h h h a ++=. 5.设以ABC △的三个顶点为圆心的三圆,皆经过同一点M ,而M 在ABC △的外接圆上,A e 与B e 另交于D ,A e 与C e 另交于E ,B e 与C e 另交于F . 注意到A e 与B e 中,公共弦MD ⊥连心线AB ;A e 与C e 中,公共弦ME ⊥连心线AC ;B e 与C e 中,公共弦MF ⊥连心线BC .对ABC △及其外接圆周上一点M ,应用西姆松定理,知D ,E ,F 三点共线. 习题B 1.(Ⅰ)设从点P 向BC ,CA ,AB 作垂线,垂足分别为X ,Y ,Z .由对称性,知XY 为PUV △的中位线,故UV XY ∥同理,VW YZ ∥,WU XZ ∥.由西姆松定理,知X ,Y ,Z 三点共线,故U ,V ,W 三点共线.

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

数学奥赛-2(西姆松定理-欧拉线-九点圆)

西姆松(Simson)定理 西姆松定理说明 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线) 西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明 证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC 于D,分别连DE、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是∠FDP=∠A CP ①,(∵都是∠ABP的补角)且∠PDE=∠PCE ②而∠ACP+∠PCE=180° ③∴∠FDP+∠PDE=180° ④即F、D、E共线. 反之,当F、D、E共线时,由④→②→③→①可见A、B、P、C共圆. 证明二:如图,若L、M、N三点共线,连结BP,CP, 则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、 L、N和M、P、L、C分别四点共圆,有 ∠PBN = ∠PLN = ∠PLM = ∠PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则∠PBN = ∠PCM。因PL 垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N 和M、P、L、C四点共圆,有 ∠PBN =∠PLN =∠PCM=∠PLM. 故L、M、N三点共线。

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

八年级数学上册13_1命题、定理与证明同步练习新版华东师大版

13.1 命题、定理与证明 1、判断下列语句是不是命题 (1)延长线段AB() (2)两条直线相交,只有一交点() (3)画线段AB的中点() (4)若|x|=2,则x=2() (5)角平分线是一条射线() 2、选择题 (1)下列语句不是命题的是() A、两点之间,线段最短 B、不平行的两条直线有一个交点 C、x与y的和等于0吗? D、对顶角不相等。 (2)下列命题中真命题是() A、两个锐角之和为钝角 B、两个锐角之和为锐角 C、钝角大于它的补角 D、锐角小于它的余角 (3)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角; ④同位角相等。其中假命题有() A、1个 B、2个 C、3个 D、4个 3、分别指出下列各命题的题设和结论。 (1)如果a∥b,b∥c,那么a∥c (2)同旁内角互补,两直线平行。 4、分别把下列命题写成“如果……,那么……”的形式。 (1)两点确定一条直线; (2)等角的补角相等; (3)内错角相等。 5、已知:如图AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF 证明:∵AB⊥BC,BC⊥CD(已知) ∴ = =90°() ∵∠1=∠2(已知) ∴ = (等式性质) C A B D E F 1 2 1文档来源为:从网络收集整理.word版本可编辑.

1文档来源为:从网络收集整理.word 版本可编辑. ∴BE ∥CF ( ) 6、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角。 求证:∠ACD=∠B 。 证明:∵AC ⊥BC (已知) ∴∠ACB=90°( ) ∴∠BCD 是∠DCA 的余角 ∵∠BCD 是∠B 的余角(已知) ∴∠ACD=∠B ( ) 7、已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。 求证:AD ∥BE 。 证明:∵AB ∥CD (已知) ∴∠4=∠ ( ) ∵∠3=∠4(已知) ∴∠3=∠ ( ) ∵∠1=∠2(已知) ∴∠1+∠CAF=∠2+∠CAF ( ) 即∠ =∠ ∴∠3=∠ ( ) ∴AD ∥BE ( ) 8、已知,如图,AB ∥CD ,∠EAB+∠FDC=180°。 求证:AE ∥FD 。 9、已知:如图,DC ∥AB ,∠1+∠A=90°。 求证:AD ⊥DB 。 10、如图,已知AC ∥DE ,∠1=∠2。 B D A C A D B C E F 1 2 3 4 D A B C E F G A B C D E 1 2 A B C D 1

高中数学基本定理证明

1三角函数的定义证明. 已知锐角△ABC中,AB=c,AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD⊥AB于点D 在Rt△BCD中,由cosB=BD/BC,得BD=acosB,在Rt△ACD中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示: 1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。 2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD⊥AB 于点D,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。 3、接下来分别在Rt△ACD和Rt△BCD中利用三角函数来表示AD的长度向待证靠近 2点P为△ABC内任意一点,求证点P到△ABC距离和为定值点P为△ABC外时,上述结论是否成立,若成立,请证明。若不成立h1,h2,h3与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】 证明:连接PA、PB、PC,过C作AB上的高AD,交AB于G。 过P作AB、BC、CA的重线交AB、BC、CA于D、E、F 三角形ABC面积=AB*CG/2 三角形ABC面积=三角形ABP+BCP+CAP面积 =AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2 故:AB*CG/2=AB*(PD+PE+PF)/2 CG=PD+PE+PF 即:点P到△ABC距离和为三角形的高,是定值。 (2) 若P在三角形外,不妨设h1>h3,h2>h3,则有: h1+h2-h3=三角形边上的高 3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少? 简证如下: 设M为正四面体P-ABC内任一点, M到面ABC,面PAB,面PAC,面PBC的距离分别为h1,h2,h3,h4. 由于四个面面积相等, 则VP-ABC=VM-ABC+VM-PAB+VM-PAC+VM-PBC

帕斯卡原理及其应用

帕斯卡原理及其应用 ?帕斯卡原理: 加在密闭液体上的压强,能够大小不变地被液体向各个方向传递,这个规律被称为帕斯卡原理。帕斯卡原理揭示了液体压强的传递规律,是许多液压系统和液压机工作的基础。如用于维修汽车的液压千斤顶(如图),汽车的液压刹车系统,铲车等部用了液压技术。 液压机的工作原理如图所示,两个活塞,与同一容器的液体相接触。施加于小活塞的压强被液体传递给大活塞,大活塞便可以产生一个与其表面面积成正比的力。 ?帕斯卡: 帕斯卡发现了液体传递压强的基本规律,这就是著名的帕斯卡定律.所有的液压机械都是根据帕斯卡定律设计的,所以帕斯卡被称为“液压机之父”. 通过观察,帕斯卡设计了“帕斯卡球”实验,帕斯卡球是一个壁上有许多小孔的空心球,球上连接一个圆筒,筒里有可以移动的活塞.把水灌进球和筒里,向里压活塞,水便从各个小孔里喷射出来了,成了一支“多孔水枪”帕斯卡球的实验证明,液体能够把它所受到的压强向各个方向.通过观察发现每个孔喷出去水的距离差不多,这说明,每个孔所受到的压强都相同。 在初中阶段,液体压强原理可表述为:“液体内部向各个方向都有压强,压强随液体深度的增加而增大,同种液体在同一深度的各处,各个方向的压强大小相等; 不同的液体,在同一深度产生的压强大小与液体的密度有关,密度越大,液体的压强越大。” 特点:加在封闭液体上的压强能够大小不变地被液体向各个方向传递。同种液体在同一深度液体向各个方向的压强都相等。 裂桶实验: 帕斯卡在1648年表演了用一个著名的实验:他用一个密闭的装满水的桶,在桶盖上插入一根细长的管子,从楼房的阳台上向细管子里灌水。结果只到了几杯水,

桶就裂了,桶里的水就从裂缝中流了出来。原来由于细管子的容积较小,几杯水灌进去,其深度h很大。一个容器里的液体,对容器底部(或侧壁)产生的压力远大于液体自身所受的重力。

高中数学竞赛平面几何定理证明大全

Gerrald 加油坚持住 Gerrald 加油坚持住 Gerrald 加油坚持住 莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成 一个正三角形。 設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP的角平分线。 莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了 为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。 接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。

如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF =FD=FE=ED=EH。 下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。 为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。 看图2,首先我们注意到△GFE是个等腰三角形,∠GFE是它的顶角,如果这个角能求出來,其底角∠FGE也就能求出来了。 △PFE也是一个等腰三角形,这是因为△PDF≌△PDE,(PD是公用边,∠DPF=∠DPE,∠PDF=∠PDE=30°),所以PF=PE。等腰三角形△PFE的顶角大小为: ∠FPE=π-2/3(∠ABC+∠ACB)=π-2/3(π-∠BAC)=π/3+2/3∠BAC (1) ∠BFD=∠PDF+∠DPF=π/6+1/2∠FPE=π/6+π/6+1/3∠BAC=π/3+1/3∠BAC (2) ∠GFE=2π-∠EFD-2∠BFD=2π-π/3-2π/3-2∠BAC/3=π-2/3∠BAC (3) 最后得到:∠FGE=∠FEG=1/2(π-∠GFE)=1/3∠BAC...(4)同理可证:∠FHE=∠HFE=1/3∠BAC (5) 至此可知G,H,E,F,A五点共圓。 因GF=FE=EH,所以∠GAF=∠FAE=∠EAH=1/3∠BAC (6) 即AE和AF恰好是∠BAC的三等分线,所以△DEF是莫利三角形。 AB是圆的一条弦,中点记为S,圆心为O,过S作任意两条弦CD、EF,分别交圆于C、D、E、F,连接CF,ED分别交AB于点M、N,求证:MS=NS。

高中数学16微积分基本定理(教案)

三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算 ()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ= ()x a f t dt ? 与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ? =0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有 ()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求 定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

高中数学常用公式与证明专题

1 高中数学常用公式与证明专题 本专题由北京大学教材研究所审定 依据《普通高中课程标准》编写 1.不等式的基本性质: (1)对称性:b a >?a b < (2)传递性:b a >,c b >?c a > (3)可加性:b a >?c b c a +>+ (4)加法:b a >,d c >?d b c a +>+ (5)保号性:b a >,0>c ?bc ac >;0>b a ,0>>d c ?bd ac > (7)乘方:0>>b a ?n n b a >(n ∈N*) (8)开方:0>>b a ?n n b a >(n ∈N*) 2.均值不等式定理: (1)四种形式: 整式形式:ab b a 22 2 ≥+, ab b a 222-≥+(a ,b ∈R ,当且仅当b a =时取“=”号) 2 )2 (b a ab +≤(a ,b ∈R ,当且仅当b a =时取“=”号) 根式形式:2a b +≥a ,b ∈R +,当且仅当b a =时取“=”号) 分式形式:2≥+b a a b (0>ab ),2-≤+b a a b (0x ,则21 ≥+x x ;若0

斯卡定理-帕普斯定理的证明技巧

用面积法证明Pascal 定理的方法与技巧 [帕斯卡定理] 如图,用一条6-闭折线依次连接圆上的六个点A B C D E F 、、、、、,其中 AB DE G BC EF H CD FA I ,,,则G H I 、、三点共线。 E F [证1]首先,连接GI ,设'GI BC H GI EF H ,;

E F 图(1)

E F 图(2) 顺次连接圆上的6个相邻点,得到圆的接凸六边形AEBDFC;

F

E F 连接G I 、与圆周上的六点A B C D E F 、、、、、,设 ' ' 'GH GH HI H I ,,则 'GBC GEF IBC IEF S S GH HI S S ,,从而'' ' GBC IEF IBC GEF S S GH H I HI GH S S 。 GBC IEF GBC IEF IFC GBE IFC GBE IBC GEF IFC GBE IBC GEF GEF IBC S S S S S S S S BG BC FI FE S S S S S S FI FC BG BE S S BG BC FI FE CI CF EG EB BG FI FC BG BE EG EF CI CB BC FI FC FI FE BG BE CI CF EG EF EG EB CI CB 1, 可知, 1',即得 '1'GH H I HI GH ,即' 'GH GH HI H I 。 由于'H H 、都是线段GI 上的点,可知'H H 、同向分线段GI 的比相等, 故'H H 、为同一点(重合),从而证明了G H I 、、三点共线。

相关主题
文本预览
相关文档 最新文档