当前位置:文档之家› 6人造金刚石复合片合成用金属杯材料的初步研究(参考模板)

6人造金刚石复合片合成用金属杯材料的初步研究(参考模板)

6人造金刚石复合片合成用金属杯材料的初步研究(参考模板)
6人造金刚石复合片合成用金属杯材料的初步研究(参考模板)

人造金刚石复合片合成用金属杯材料的初步研究

摘要在人造金刚石复合片的合成中,金属杯屏蔽材料对产品的合成有至关重要的作用。本文在日常生产的基础上,对部分不同材质的金属杯进行了对比分析实验,就常用的几种金属杯材料做出较为科学的判断、选择。

关键词复合片金属杯合成温度控制

一、前言

人造金刚石复合片是在高温高压条件下,将金刚石和硬质合金复合烧结在一起制成的复合材料,这种材料既有金刚石的高耐磨性,又有硬质合金的抗冲击韧性和可焊性,性能非常优越。作为性能优异的复合材料,金刚石复合片的出现对石油地质勘探、煤炭开采和机械加工等行业的发展起到了非常重要的作用。在石油地质勘探、煤炭开采以及工程钻探等方面,过去使用最多的是硬质合金类的钻头、钻具,其钻进效率低、使用寿命短,很大程度上制约了相关行业的发展;而将性能优异的人造金刚石复合片应用到这几个行业领域,就达到了使用寿命延长、钻进效率大幅提高、生产成本明显降低等效果。同时,随着人造金刚石复合片生产技术的不断发展、提高,以及人们对这种产品的认识的不断提高,现在在一些其他领域如机械加工行业也在逐步使用人造金刚石复合片。所以,可以预见,未来的人造金刚石复合片的市场前景是十分广阔的。

在人造金刚石复合片在生产过程中,将会用到很多种原材料,包括叶腊石、碳管、盐管、金属杯等等,而这些原材料的选择在很大程

度上就直接决定了所生产的人造金刚石复合片的质量。在人造金刚石复合片用到的所有合成材料中,和金刚石微粉直接接触的金属杯的作用是至关重要的,它不仅起到一个屏蔽保护的作用,防止外部杂质在合成过程中进入到复合片内部,而且它对复合片中钴的扩散及金刚石颗粒的生长、键合都起到很重要的作用。因此,选择一种合适的金属杯材料,对于整个复合片的合成生产的稳定性及最终产品的质量都有十分重要的意义。

本文主要利用现有生产设备、资源,通过实验,讨论分析几种不同金属材料的屏蔽杯对复合片生产的影响,从而最终选择一种最为合适的材料在生产中使用。

二、实验方法

1、合成设备:采用φ460mm缸径压机进行合成试验,设备采用国内先进的工业PC控制,在温度和压力的控制上可以实现合成人造金刚石复合片时的所需各种条件。而压机的最高表压可以达到105Mpa,也足以满足复合片合成所需压力。

2、实验用原辅材料:(1)叶腊石:根据设计要求,由北京门头沟地区专业厂家制作提供;(2)加热介质及盐管、盐片等材料:由云南自贡专业厂家按照我方设计要求制作;(3)金属杯材料:由陕西宝鸡地区的专业厂家提供钛、钼、锆等材料的规定尺寸的金属杯;(4)其他材料:包括导电钢圈在内的其他材料也分别委托相关厂家进行制作。(5)所用使用的原材料入厂后均按照公司的原材料检验标准及规程严格检验,保证原材料材料的质量。

3、 组装工艺:该实验采用间接加热方式组装,组装结构图如下:

4、 合成工艺:合成压力控制在100-102MPa ,保温时间在6分钟左右,合成工艺曲线如下图:

三、合成实验及分析

(一)、该实验根据三种金属杯材料,首先单独选用每种杯子进行实验,实验的人造金刚石复合片规格为1308,实验情况如下:

1、钛杯:根据金属钛的理论熔点1725℃来分析,用它做金属杯材料,其耐热性应该足以满足人造金刚石复合片的合成需要,因为合成金刚石复合片的理论温度在1400~1500℃.但通过使用金属钛杯合成10块,最终的结果来看,之前的分析是错误的。在合成的10块中,除了有一块整体温度偏低而金刚石层没有烧结上,其他9块温度是达到了,金刚石层也烧结上了,但是有一个问题,那就是钛杯在合成时自身同时也被烧熔了,没有起到屏蔽保护的作用,导致复合片金刚石层和硬质合金结合界面处多处被烧坏,而且金刚石层表面也有缺陷。

2、锆杯:同样,根据金属锆的理论熔点1852℃来分析,用它做金属杯材料,其耐热性也应该足以满足金刚石复合片的合成需要。在合成实验了10块后,分析实验结果也证明了这点,用锆杯合成人造金刚石复合片,它就可以在满足金刚石层的烧结温度的同时,自身又不被烧熔,可以很好的起到屏蔽作用,而且金属锆具有一定的吸气能力,对于除去复合片内部的残留气体很有好处。同时,如果合成温度合适,复合片金刚石层表面有分布均匀的麻点,比较容易判断。但是,单独用锆杯也存在一个问题,那就是在合成后,金属锆杯表面全部变色呈铁锈色,这说明在高温高压的合成过程中,金属锆还是和合成腔内的某些物质起反应了,这对整个合成过程温度的控制就带来的一定的影响,至于其影响是好是坏、是大是小,还有待进一步研究分析。

3、钼杯:根据金属钼的理论熔点2610℃来分析,用它做金属杯材料,其耐热性应该也足以满足人造金刚石复合片的合成需要。同样,单独使用钼杯,实验合成了10块,实验证明,钼的耐热性能的确要比钛、锆好的多。在10块中,除了正常温度合成复合片外,还有2块是故意提高了温度,结果证明使用钼杯时,合成电流上下浮动20%范围,其合成效果都没有太大影响,不会出现钼杯局部烧熔的现象。但是有一点,就是不论合成温度高低,复合片金刚石层表面始终是光滑的,不易判断温度的高低,这对于在生产过程中合适的温度控制不利。

对上述实验的三种复合片,分别进行研磨整平、外圆加工等加工操作,这时,又发现一个问题,那就是选用钼杯合成的复合片在外圆加工后,其金刚石层棱角处容易出现金刚石崩落,看上去似乎是被钼杯粘掉的,这种缺陷在复合片上特别是不倒角的复合片上是绝对不允许的。

通过仔细分析以上三种杯子单独使用的实验结果,首先可以确定金属钛杯由于其耐热性较差,不适合用于合成人造金刚石复合片;其次,金属钼、锆虽然都可用于合成人造金刚石复合片,但是又都各有缺点,一个是耐热性好,合成温度容易控制,但不易判断温度高低,而且后加工时易出现金刚石层崩边,影响产品的成品率,另一个是耐热性稍差,且易和其他物质反应,但是在合成时容易判断温度高低,有利于合成控制。

(二)、结合上面的实验结果,仔细分析之后,既然锆杯、钼杯各有优缺点,可以考虑将二者结合使用,采用锆杯、钼杯配套使用进行实验。

在结构设计上,金属杯子采用2件套,里面的小杯子采用锆杯,利用其吸气性以及在合成后容易判断温度的特点;而外面的大杯子则采用钼杯,充分利用其较好的耐热性,可以起到很好的屏蔽保护作用。并且在上面实验的基础上,优化了合成工艺,基本参数如下:

通过合成20块的过程来看,用锆、钼两种杯子组合使用,合成温度范围较宽,比较容易控制,不容易出现因为温度太高或太低而导致废品产生;同时,由于里面小杯子使用的是锆杯,当温度太低时,金刚石层表面就是光滑的,并无麻点;而当温度太高时,金刚石层表面的麻点较大,且有部分连通:只有当温度合适的时候,金刚石层表面才有分布均布的麻点。这一点对于技术人员及合成工人在合成过程中判断温度具有很好的指导意义,从而能够较好的将温度控制在一个相对稳定的范围内,产品的一致性能够得到保证。而且复合片在后期外圆加工后,也没有出现金刚石层崩边现象,这就大大提高了产品成品率。

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

常用建筑模板及规格

常用建筑模板及规格 作者/来源:法利得建筑模板发表时间:2015-2-27 11:08:21 建筑模板是什么呢?它的用途是什么?混凝土浇筑成形后依靠什么来支撑定型呢?那就是建筑模板。建筑模板按照材料性质一般分为建筑模板、建筑木胶板、双面板、钢模板等。现在我们就来深入了解建筑模板以及建筑模板尺寸规格。 建筑模板-简介 目前多数建筑物均采用钢筋混凝土结构。而建筑模板是这种结构的重要施工工具。几乎占到总工程造价用量的20%~30%。建筑模板的使用直接关系到了整个工程的质量以及效益,包括工程建设的造价问题。要推动一个工程的发展就得从模板入手。 木质建筑模板 这种建筑模板属于一种人造建筑模板。我们比较常用的木质建筑模板有三合板、五合板等等。木质建筑模板是在加热、不加热条件下均可压制成功。层数多奇少偶,质地坚硬,构造正常。 现代建筑模板 现代建筑模板中有一种组合式钢模板,这种建筑模板拆装方便,容易操控。这是通用性非常强的建筑模板。这种“以钢代木”的新型模板使用次数多是最突出的有点。建筑模板需要承受施工过程中的各种荷载,意义不凡。 胶合板建筑模板

胶合板建筑模板主要有木胶合板和竹胶合板。木胶合板的特点是质量轻,面积大。加工容易,周转次数多。竹胶合板在强度、刚度、硬度性能方面比木材好。并且不容易变形,即使是在受潮后。 建筑模板规格 建筑模板用的胶合模板的幅面规格尺寸,一般宽度为915mm、1200mm左右,长度为18 00mm、2400mm左右,厚度大约为11~18mm。我国建筑模板常见的胶合模板规格有: 规格:1830*915*11(mm) 规格:1830*915*12(mm) 规格:1830*915*13(mm) 规格:1830*915*14(mm)常用 规格:1830*915*15(mm)常用 规格:1830*915*16(mm) 规格:1830*915*17(mm) 规格:1830*915*18(mm) 规格:1220*244*11(mm) 规格:1220*244*12(mm) 规格:1220*244*13(mm) 规格:1220*244*14(mm) 规格:1220*244*15(mm)常用 规格:1220*244*16(mm) 规格:1220*244*17(mm) 规格:1220*244*18(mm) 木质建筑模板主要是在现场进行拼装。板条厚度一般为25~50mm,宽度不宜超过200m m,这样才能保证干缩时缝隙均匀。当荷载增大时,建筑模板也需加强。 建筑模板价格请联系

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

一纳米氧化镁为模板一步法制备多级孔炭材料

第一部分文献综述 1.1 多孔炭的研究背景与意义 伴随着全球经济的快速发展和科技水平的进步,煤、石油和天然气等化石燃料消耗逐年增加,日渐枯竭,并且化石燃料的利用造成严重的环境污染,如温室效应、酸雨、大气颗粒物污染、臭氧层破坏和生态环境破坏等。人类正面临着资源短缺、环境污染、生态破坏等迫切需要解决的问题,全球经济和会的可持续发展也面临着严峻的考验。人们迫切需要开发利用新能源和可再生清洁能源来解决日趋短缺的能源问题和日益严重的环境污染。 化学储能装置具有使用方便,性能可靠,便于携带,容量、电流和电压可在相当大的范围内任意组合和对环境无污染等许多优点,在新能源技术的开发和利用中占有重要地位。储氢、储锂和超级电容器等储能装置的电极材料的研究成为材料研究中的热点。在所有的储能材料中,多孔碳材料由于具有大的比表面积,均一的孔径分布,孔结构可调等优点,是迄今为止最理想的储能材料。除此之外,多孔碳材料由于具有均匀的孔径分布,吸收储存气体和液体性能也非常优秀,常被应用于环境保护,制药和化工等领域,作为有毒气体和液体的净化吸收剂。 在近十几年间,有关多孔碳材料方面的报告和论文大批量在国际会议和国际学术刊物上发表,表明多孔碳材料已经成为当今科学界的研究热点。经过科研人员多年不断的试验研究,大批量孔径尺寸分布均匀且可以调控、结构组成可以变化、排列样式和孔道形态多种多样的多孔碳材料可以通过各种各样的合成方法被制备出来。尽管人们已经取得了许多成果,但是多孔碳材料仍然存在许多不足,需要我们去探索和解决,多孔碳材料的性能与实际应用有一定的差距,也有待进一步提高。未来仍然需要我们不断努力去开发成本低,制备过程

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

热塑性复合材料建筑模板性能分析与应用

热塑性复合材料建筑模板地性能分析与应用 热塑性复合材料建筑模板完全由高分子纤维增强复合材料在熔融状态下通过注塑工艺一次注射成型,生产工序简便,生产过程无废水.废气和废渣排放,无噪声污染,产品可回收再利用,符合国家节能环保政策.热塑性复合材料建筑模板地核心技术在于:①应用热塑性复合材料,该材料刚韧性平衡,耐候,能实现材料地回收再利用,同时材料回收能继续注塑成型建筑模板,②精准地模具设计,为保证工程地优良施工质量,对产品地生产模具进行了特殊设计,同时考虑到热塑性产品地变形特点,还设计了一次成型便于连接地卡孔.对拉孔等特殊地连接部件. 1 与传统模板比较分析 1)与钢模板相比.制作工艺上,热塑性复合材料模板简单.先进.钢模板从剪板下料开始需要十多道工序和众多设备.操作人员,其生产率为5~8min/(块?人) ,这也是钢模板价格昂贵地主要原因;热塑性复合材料模板一人一机就能实现单独生产,通过一次注射成型冷却即可,其生产率约为0.5~1 min/(块?人).原料方面,热塑性复合材料模板采用普通塑胶为原料,成本低,且可以反复周转使用,大大减少周转材料地费用,降低工程成本.性能方面,热塑性复合材料可塑性好,可根据不同要求通过改变模具形式生产不同形状和规格地模板,以满足建筑不同部位.不同强度地需要,已损坏地模板回收后可重新熔化注塑成新模板,回收性能良好.使用方面,由于钢材和混凝土地热膨胀系数相近,模

板与新浇筑地混凝土可牢固地粘接在一起,不易脱模,如用手锤敲击坠落容易损坏;热塑性复合材料模板由于其热膨胀系数与混凝土相差甚远,浇筑完毕后,随着温度及混凝土地凝固,其与所浇筑地混凝土自动脱离. 2)与竹木模板相比.热塑性复合材料模板强度更好,可根据需要塑成不同形状,便于安装,而木模板因不能在表面钉钉子,不容易固定;竹木模板原材料为竹木,受环保政策和自然生长速度地限制,不能满足市场巨大需求,热塑性复合材料模板原材料市场充足,价格低廉,不破坏森林,利于生态环境. 由此可见,这种热塑性复合材料建筑模板,在工艺技术结构性能.成本价格上是切实可行地,随着现代注塑技术与高分子技术地飞速发展,热塑性复合材料模板前景广阔. 2 使用成本对比分析 以一个32层房屋建筑项目为例,每层建筑面积1000 m2,模板展开面积按建筑面积地3.3倍率估算,即单层模板展开面积3300 m2,该工程总模板展开面积105600m2.完成该工程需配置竹(木)模板层数为4层,热塑性复合材料模板3层,其成本对比如表1.2所 示.

模板合成法制备纳米材料的研究进展

收稿日期:2006-11-28 江苏陶瓷 JiangsuCeramics 第40卷第3期2007年6月 Vol.40,No.3June,2007 0 前言 纳米微粒因其特有的表面效应、量子尺寸效应、 小尺寸效应以及宏观量子隧道效应等导致其产生了许多独特的光、 电、磁、热及催化等特性,在许多高新科技领域如陶瓷、化工、电子、光学、生物、医药等方面有广阔的应用前景和重要价值。作为纳米材料研究的一个重要方向,探索条件温和、形态和粒径及其分布可控、产率高的制备方法是这方面研究的首要任务。 目前已经发展了很多制备方法[1],如:蒸发冷凝法、物理粉碎法、机械球磨法等物理方法和气相沉积法、溶胶-凝胶法、沉淀法、水(溶剂)热法和模板法等化学方法,其中模板法因具有实验装置简单、操作容易、形态可控、适用面广等优点,近年来引起了人们的极大兴趣。 模板法的类型大致可分为硬模板和软模板两大类。硬模板包括多孔氧化铝、二氧化硅、碳纳米管、分子筛、以及经过特殊处理的多孔高分子薄膜等。软模板则包括表面活性剂、聚合物、生物分子及其它有机物质等。利用模板合成技术人们已经制得了各种物质包括金属、 氧化物、硫化合物、无机盐以及复合材料的球形粒子、一维纳米棒、纳米线、纳米管以及二维有序阵列等各种形状的纳米结构材料。本文将简要介绍近年来国内外利用模板法制备纳米结构材料的一些进展[2]。 1 硬模板法制备纳米材料 这种方法主要是采用预制的刚性模板,如:多孔 阳极氧化铝膜、二氧化硅模板法、微孔、中孔分子筛(如MCM-41、SBA-15等)、 碳纳米管以及其它模板。1.1多孔阳极氧化铝法 多孔氧化铝膜是近年来人们通过金属铝的阳极 电解氧化得到的一种人造多孔材料,这种膜含有孔径大小一致、 排列有序、分布均匀的柱状孔,孔与孔之间相互独立,而且孔的直径在几纳米至几百纳米之间,并可以通过调节电解条件来控制[3]。利用多孔氧化铝膜作模板可制备多种化合物的纳米结构材料,如通过溶胶-凝胶涂层技术可以合成二氧化硅纳米管,通过电沉积法可以制备Bi2Te3纳米线[4]。这些多孔的氧化铝膜还可以被用作模板来制备各种材料的纳米管或纳米棒的有序阵列,如:TiO2、In2O3、Ga2O3纳米管阵列,BaTiO3、PbTiO3纳米管阵列,ZnO、MnO2、 WO3、Co3O4、V2O5纳米棒阵列以及Bi1-xSbx纳米线有 序阵列等[1]。 1.2二氧化硅模板法 分子筛MCM-41二氧化硅和通过溶胶-凝胶过 程形成的二氧化硅都可用作纳米结构材料形成的模板,其中MCM-41为介孔氧化硅模板,它具有纳米尺寸的均匀孔,孔内可形成有序排布的纳米材料,属于外模板,而溶胶-凝胶法形成的二氧化硅胶粒则属于内模板,在其上形成纳米结构材料,最后二氧化硅用氢氟酸溶解除去。 2002年Froba等报道了在中孔的分子筛MCM-41二氧化硅内部形成有序排布的Ⅱ/Ⅵ磁性半导体 量化线Cd1-xMnxS。2003年Zhao等报道以In(NO3)3为原料,以高度有序中孔结构的表面活性剂SiO2为模板剂和还原剂,采用一步纳米浇铸法合成了高度有序的单晶氧化铟纳米线阵列。2002年Dahne等以三聚氰胺甲醛为第一层模板,利用逐层(LbL)方法制备了PAH/PSS交替多层膜覆盖的三聚氰胺甲醛粒子,在PAH/PSS交替的多层膜上进一步通过溶胶-凝胶方法覆盖上二氧化硅作为第二层模板,再利用LbL方法制备PAH/PSS交替的多层膜,然后用盐酸溶解 模板合成法制备纳米材料的研究进展 黄 艳 (陕西科技大学材料科学与工程学院,咸阳710021) 摘 要 介绍了近年来国内外利用氧化铝、二氧化硅、碳纳米管、表面活性剂、聚合物、生物分子等作模板制备多种物质的纳米结构材料的一些进展。关键词 模板法;纳米材料;合成 1

塑料建筑模板的四大缺点

塑料建筑模板的四大缺点 来源:中国模板网日期:2010年9月6日 摘要:塑料建筑模板是一种新型建筑模板,与传统的钢模板和木质模板相比,还存在一些不足,主要存在四个问题。请看:塑料建筑模板的四大缺点。 一、塑料建筑模板的强度和刚度太小。 塑料建筑模板的静曲强度和静曲弹性模量与其它模板相比较小,国内应用的塑料建筑模板,在强度和刚度方面比竹(木)模板还低,比外来的GMT模板低很多。 二、塑料建筑模板的承载量低 目前塑料建筑模板主要以平板型式用作顶板和楼板模板,承载量较低,只要适当控制次梁的间距就能满足施工要求。但是要用作墙柱模板,必须加工成钢框塑料模板。因此,还要调整塑料建筑模板的配方,改进生产工艺,提高塑料建筑模板的性能,同时也要开发GMT模板。 三、塑料建筑模板的热胀冷缩系数大 塑料建筑模板的热胀冷缩系数大,塑料板材的热胀冷缩系数比钢铁、木材大,因此塑料建筑模板受气温影响较大,如夏季高温期,昼夜温差达40℃,据资料介绍,在高温时,3m长的板伸缩量可达3mm~4mm.如果在晚上施工铺板,到中午时模板中间部位将发生起拱;如果在中午施工铺板,到晚上模板收缩使相邻板之间产生3mm~4mm的缝隙。 要解决膨胀大的问题,可以通过调整材料配方,改进加工工艺来缩小膨胀系数。另外,在施工中可以选择一个平均温度的时间来铺板,或在板与板之间加封海绵条,可以做到消除模板缝隙,保证浇注混凝土不漏浆,又可解决高温时起拱的问题。 四、电焊渣易烫坏塑料建筑模板 电焊渣易烫坏塑料建筑模板面目前,塑料模板主要用作楼板模板,在铺设钢筋时,由于钢筋连接时,电焊的焊渣温度很高,落在塑料模板上,易烫坏板面,影响成型混凝土的表面质量。因此,可以在聚丙烯中适当加阻燃剂,提高塑料模板的阻燃性。另外可以在电焊作业时采取防护措施,如给电焊工发一块石绵布,对平面模板可以平铺在焊点下,对竖立模板可以将一块小木板靠在焊点旁,就可以解决电焊烫坏塑料建筑模板的问题。 塑料建筑模板的四大缺点——九翔建筑木胶板公司所生产的建筑模板、建筑木胶板、覆膜板、多层板、双面复胶、双面复膜建筑模板具有周转率高、密度大,光滑易脱模等特点,本厂新引进专利胶粘剂生产线,所生产的防水性MUF胶具有耐水性强,水煮4小时不开胶,木胶板的周转率高达8次以上。可以克服塑料建筑模板的四大缺点。 【中国模板网】https://www.doczj.com/doc/1e1592001.html,

复合材料课程设计模板

复合材料成型加工课程设计 姓名 专业 学号 指导教师 二○一四年十二月

《复合材料成型加工》课程设计任务书 一、课程设计的目的 复合材料成型加工课程设计是材料学教学计划的组成部分,是在完成课堂学习、生产实习和其它相关专业课程学习之后进行的,是对本课程的综合知识掌握情况的一次全面检验。通过课程设计,可以进一步培养学生综合应用所学知识的能力,使学生能熟悉复合材料工艺设计、生产工艺流程图制定、合理选择制材设备的方法,加强自学能力,为今后从事相关工作打下坚实基础。 二、设计任务和设计依据 设计任务:日产量1500件树脂基复合材料注塑工艺设计 设计依据:1.每天工作班制:三班,8小时/班。 2.每件样品不超过500g,一模一件。 3.原料自选。 三、设计要求 1、查阅文献资料,了解注塑机结构及操作规程,按照设计要求合理选用设备,设置生产参数; 2、根据生产任务,制作典型生产工艺流程。

聚乙烯/碳纤维复合材料注射成型工艺设计 一、设计背景以及国内外发展现状 树脂基复合材料是由以有机聚合物为基体的纤维增强材料,通常使用玻璃纤维、碳纤维、玄武岩纤维或者芳纶等纤维增强体。纤维增强树脂基复合材料常用的树脂为环氧树脂和不饱和聚酯树脂。目前常用的有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。复合材料的树脂基体,以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F—4、F—111等军用飞机上采用了硼纤维增强环氧树脂作 方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A—2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A—3”,使壳体重量较钢制壳体轻50%,从而使“北极星A—3”导弹的射程由2700千米增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。良好的导电导热性能、电磁屏蔽性好碳纤维在传统使用中除用作绝热保温材料外。多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维已成为先进复合材料最重要的增强材料。由于碳纤维复合材料具有轻而强、轻而刚、耐高温、耐腐蚀、耐疲劳、结构尺寸稳定性好以及设计性好、可大面积整体成型等特点,已在航空航天、国防军工和民用工业的各个领域得到广泛应用。 [11]碳纤维可加工成织物、毡、席、带、纸及其他材料。高性能碳纤维是制造先进复合材料最重要的增强材料。聚乙烯/碳纤维复合材料是以聚乙烯、聚丙烯、聚氯乙烯等热塑性塑料为原料,热塑性塑料可采用新塑料或工业、生活废弃的各种塑料,而碳纤维可采用因此木塑复合材料的研制和广泛应用有助于减缓塑料废弃物的公害污染,也有助于减少农业废弃物焚烧给环境带来的压力。木塑复合材料的生产和使用不会向

制备纳米材料的物理方法和化学方法

制备纳米材料的物理方法和化学方法 (********) 纳米科学技术是20世纪80年代末产生的一项正在迅猛发展的新技术。所谓纳米技术是指用若干分子或原子构成的单元—纳米微粒,制造材料或微型器件的科学技术。 纳米材料的制备方法甚多,目前制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。 1物理制备方法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,这些方法我们统称为物理凝聚法,物理凝聚法主要分为 (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm 。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到410Pa 或更高的真空度,然后注人少量的惰性气体或性2N 、3NH 等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气体的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1 , Nb- Si 等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备

建筑模板的使用

建筑模板的使用 建筑模板是一种临时性结构,它按设计要求制作,使混凝土结构、构件按规定的位置、几何尺寸成形,保持其正确位置,并承受建筑模板自重及作用在其上的荷载。进行模板工程的目的,是保证混凝土工程质量与施工安全、加快施工进度和降低工程成本。现代浇混凝土结构施工用的建筑模板,是保证混凝土结构按照设计要求浇筑混凝土成形的一种临时模型结构,它要承受混凝土结构施工过程中的水平荷载(混凝土的侧压力)和竖向荷载(建筑模板自重、材料结构和施工荷载)。现浇混凝土结构工程施工用的建筑模板结构,主要由面板、支撑结构和连接件三部分组成。面板是直接接触新浇混凝土的承力板;支撑结构则是支承面板、混凝土和施工荷载的临时结构,保证建筑模板结构牢固地组合,做到不变形、不破坏;连接件是将面板与支撑结构连接成整体的配件。建筑模板是混凝土浇筑成形的模壳和支架,按材料的性质可分为建筑模板、建筑木胶板、复膜板、多层板、双面复胶、双面复膜建筑模板等。建筑模板按施工工艺条件可分为现浇混凝土模板、预组装模板、大模板、跃升模板等。现简要介绍组合式钢模板如下:组合式钢模板,是现代模板技术中,具有通用性强、装拆方便、周转次数多等优点的一种“以钢代木”的新型模板,用它进行现浇钢筋混凝土结构施工,可事先按设计要求组拼成梁、柱、墙、楼板的大型模板,整体吊装就位,也可采用散装散拆方法,建筑模板的种类有; 1、大型钢木(竹)组合模板 2、多功能混凝土模板 3、防渗漏建筑模板 4、多功能建筑拼块模板 5、房屋建筑模板及其相关方法 6、复合材料建筑定型模板 7、复合建筑模板 8、复合建筑模板 9、复合建筑模板 10、复合建筑模板及其加工工艺 11、复合塑料建筑模板(采用再生塑料制造符合再回收使用资源) 12、改良结构的建筑用组合式模板 13、钢化玻璃组合大模板

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

青海新型建筑模板项目可行性研究报告

青海新型建筑模板项目可行性研究报告 规划设计/投资方案/产业运营

报告摘要说明 随着经济的飞速发展,房地产或城市公共设施的完备,各行各业都在 高速的发展当中,市场当中也涌现出很多新鲜的产品,上市的公司也越来 越多,对于推广和宣传的力度也渐渐增大,消费者的可选择性也多了起来,同时也给建筑模板厂家带来了前所未有的压力和发展机遇。 建筑模板是一种临时性支护结构,按设计要求制作,使混凝土结构、 构件按规定的位置、几何尺寸成形,保持其正确位置,并承受建筑模板自 重及作用在其上的外部荷载。进行模板工程的目的,是保证混凝土工程质 量与施工安全、加快施工进度和降低工程成本。 该建筑模板项目计划总投资16316.21万元,其中:固定资产投资10705.74万元,占项目总投资的65.61%;流动资金5610.47万元,占 项目总投资的34.39%。 本期项目达产年营业收入37992.00万元,总成本费用30306.55 万元,税金及附加292.06万元,利润总额7685.45万元,利税总额9037.57万元,税后净利润5764.09万元,达产年纳税总额3273.48万元;达产年投资利润率47.10%,投资利税率55.39%,投资回报率 35.33%,全部投资回收期4.33年,提供就业职位711个。 铝模板,全称为建筑用铝合金模板系统。是继竹木模板,钢模板之后 出现的新一代新型模板支撑系统。铝模板系统在建筑行业的应用,提高了

建筑行业的整体施工效率,包括在建筑材料,人工安排上都大大的节省很多。铝模板是铝合金制作的建筑模板,又名铝合金模板,是指按模数制作设计,铝模板经专用设备挤压后制作而成,由铝面板、支架和连接件三部分系统所组成的具有完整的配套使用的通用配件,能组合拼装成不同尺寸的外型尺寸复杂的整体模架,装配化、工业化施工的系统模板,解决了以往传统模板存在的缺陷,大大提高了施工效率。 建筑模板是混凝土结构工程施工的重要工具,建筑模板厂家鑫政集团表示,在现浇混凝土结构工程中,模板工程一般占混凝土结构工程造价的20%~30%,占工程用工量的30%~40%,占工期的50%左右。模板技术直接影响工程建设的质量、造价和效益,因此它是推动我国建筑技术进步的一个重要内容。

高分子基复合材料

高分子基复合材料Polymer Matrix Composite Materials 课程编号:07370380 学分:2 学时:30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:材料科学导论、高分子化学、大学物理适用专业:高分子材料与工程、复合材料与工程 教材:《聚合物复合材料》黄丽主编,中国轻工业出版社,2012.01 第二版开课学院:材料科学与工程学院 一、课程的性质与任务高分子基复合材料是建立在数学、物理学、化学等课程知识的基础上,为材料科学与工程专业学生开设的一门专业方向课,其性质为选修。 通过本课程的学习,旨在让学生获得复合材料的有关基本理论和基本知识,为拓宽学科方向和今后从事相关研究和工作奠定必要的基础。其主要任务是使学生具备下列知识和能力: 1. 熟悉复合材料的常用基体材料和常用增强材料结构与性能; 2. 初步掌握聚合物基、碳基、纤维增强复合材料的种类和基本性能; 3. 能够根据实际要求合理设计材料,从微观或亚微观水平上选定合适的基体和增强体或功 能体; 4. 依靠复合材料设计知识,确定合适的表面处理技术和成型工艺; 5. 了解先进复合材料的发展概况。二、课程的基本内容及要求 第1 章绪论 1. 教学内容 (1).复合材料的发展史 (2).复合材料的定义、命名及分类 (3).复合材料的特性 (4).对高性能复合材料的期望及开发现状 2. 学习要求 (1).了解复合材料的发展简史 (2).掌握复合材料的概念、分类及命名规则 (3).理解复合材料的特性及发展趋势 3. 重难点 掌握复合材料的定义及特性既是本章的重点,也是难点

第2 章基体材料 1. 教学内容 (1).概述 (2).聚合物基体 (3).金属基体 (4).陶瓷基体 (5).碳基体 2. 学习要求 (1).理解基体的概念 (2).掌握基体在复合材料材料中的作用及对复合材料性能的影响(3).了解复合材料中常用的基体类型 (4).掌握聚合物基体的特性 3. 重难点 (1).重点是熟悉复合材料中基体的类型及各类基体的特性(2).难点是掌握几种常用聚合物基体的制备原理和工艺 第3章复合材料的增强材料 1. 教学内容 (1).玻璃纤维 (2).碳纤维 (3).有机高分子纤维 (4).陶瓷纤维 (5).金属纤维 (6).晶须 (7).粉体增强材料 2. 学习要求 (1).理解增强材料在复合材料中的作用 (2).理解各类增强材料增强原理 (3).掌握常用增强材料的制备工艺 3. 重难点 (1).重点是理解各类型增强材料的增强机制和特点 (2).难点是掌握几种常用增强材料的制备工艺 第4章纤维复合材料及其制造方法 1. 教学内容 (1).聚合物基复合材料

复合材料成型工艺模板

复合材料成型工艺模板 1

树脂基复合材料成型工艺介绍( 1) : 模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内, 经加热、加压固化成型的方法。模压成型工艺的主要优点: ①生产效 率高, 便于实现专业化和自动化生产; ②产品尺寸精度高, 重复性好; ③表面光洁, 无需二次修饰; ④能一次成型结构复杂的制品; ⑤因 为批量生产, 价格相对低廉。 模压成型的不足之处在于模具制造复杂, 投资较大, 加上受压机限制, 最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展, 压机吨位 和台面尺寸不断增大, 模压料的成型温度和压力也相对降低, 使得模压成型制品的尺寸逐步向大型化发展, 当前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种: ①纤维料模压法是将经预混或预浸的纤维状模压料, 投入到金属模具内, 在一定的温度和压力下成型复合材料制品的方法。该方法简便易行, 用途广泛。根据具体操作上的不同, 有预混料模压和预浸料模压法。②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物, 如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块, 然 2

后在金属模具中加温加压成型复合材料制品。③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液, 然后放入金属模具中加热加压成型为复合材料制品。④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物, 裁剪成所需的形状, 然后在金属模具中经加温或加压成型复合材料制品。⑤缠绕模压法将预浸过树脂胶液的连续纤维或布( 带) , 经过专用缠绕机提供一定的张力和 温度, 缠在芯模上, 再放入模具中进行加温加压成型复合材料制品。⑥片状塑料( SMC) 模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料, 然后将多层片材叠合后放入金属模具中加热加压成型制品。⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料, 将其放入金属模具中, 然后向模具中注入配制好的粘结剂( 树脂混合物) , 在一定的温度和压力下成型。 模压料的品种有很多, 能够是预浸物料、预混物料, 也能够是坯料。当前所用的模压料品种主要有: 预浸胶布、纤维预混料、 BM C、 DMC、 HMC、 SMC、 XMC、 TMC及ZMC等品种。 1、原材料 ( 1) 合成树脂复合材料模压制品所用的模压料要求合成树脂具有: ①对增强材料有良好的浸润性能, 以便在合成树脂和增强材料界面 3

2014木塑建筑模板可行报告

建材木塑产品规模化生产项目 可 行 性 报 告

项目建设的必要性 我国是世界上人口最多的国家,又是一个农业大国,农业生产过程中所产生的废弃农作物秸杆极为丰富,随着经济的高速增长,各领域对木材的需求量急速增长,而日常废弃物也大幅度增加,不仅造成环境污染,而且大量消耗资源。因此解决日常废弃物对社会环境的污染,将其废弃物积极有效地利用起来为人类服务,具有极其重要而深远的意义。 我国木材资源贫乏,每年要进口木材1000万m3左右,消耗了国家的大量外汇同时制约了国家经济的发展。为了保护我国有限的木材资源,以致森林免遭破坏,保护水土的流失,必须开发合适的木材替代品。其时,日常废弃物也就是对环境“白色污染”的废旧塑料、农业生产过程中所产生丰富的废弃农作物秸杆、木材加工过程中产生的锯沫废料都是生产木塑建筑材料的主要原材料,能够充分的开发利用,将给社会和国家作出巨大的贡献。 XX县素有“黔中粮仓”之誉称,农业产业很大,废弃农作物相当广泛,为我公司生产高科技的建材提供了充足的原材料,公司将用此废弃的农作物生产出木塑地板、地脚线、套装组合木塑门、隔音墙板、建筑模板、装饰线条等木塑产品,本产品物理机械性能好、防潮、防腐、防虫蛀、耐磨、隔热绝缘、抗老化,对人体无毒无害,以及可钉、可锯、可刨的二次加工性能,再加上产品精致,质感接近木质;由于

主原料就地取材,产品的价格低廉,适用领域广,不但是家庭装修必备材料,也是建筑、工业等其他行业中常用的材料因而市场前景非常可观。 项目发展及市场前景预测 1、建材模板的发展 建材模板是混凝土结构工程施工的重要工具。在现浇混凝土结构工程中,模板工程一般占混凝土结构工程造价的20%~30%,占工程用工量的 30%~40%,占工期的50%左右。模板技术直接影响工程建设的质量、造价和效益,因此它是推动我国建筑技术进步的一个重要内容。 70年代初,我国建筑结构以砖混结构为主,建筑施工用模板以木模板为主。 80年代初,各种新结构体系不断出现,现浇混凝土结构猛增。在“以钢代木”方针的推动下,我国研制成功了组合钢模板先进施工技术,改革了模板施工工艺,节省了大量木材,钢模板推广应用面曾达到75%%以上,钢模板生产厂曾达到1000多家,钢模板租赁企业曾达到1.3万多家,年节约代用木材约1500万立方米。90年代以来,我国建筑结构体系又有了很大发展,高层建筑、超高层建筑和大型公共建筑大量兴建,大规模的基础设施建设,城市交通和高速公路、铁路等飞速发展,对模板、脚手架施工技术提出了新的要求。我国不断引进国外先进模架体系,同时也研制开发了多种新型模板和脚手架。

相关主题
文本预览
相关文档 最新文档