当前位置:文档之家› 磁功能复合材料范文

磁功能复合材料范文

磁功能复合材料范文
磁功能复合材料范文

1.磁功能复合材料简介

磁性产品种类繁多,应用广泛,在军事装备电子化及高新技术产业发展中起着重要作用,磁功能复合材料仅是其中的一个分支。磁功能复合材料一般由粉末材料填充形成,体积含量为2~98%,而基体可以为金属、玻璃、聚合物等。磁功能复合材料可将磁能转化为机械能,也可以将机械能转化为磁能。从磁功能复合材料组成看,它是一种介于高分子材料和磁性材料之间的功能型材料,对于这类材料的研究我们称之为边缘科学或交叉科学。

磁功能复合材料是20世纪70年代发展起来的一种新型高分子功能材料,是现代科学技术领域的重要基础材料之一。磁功能复合材料按组成可分为结构型和复合型两种,结构型磁功能复合材料是指聚合物本身具有强磁性的磁体;复合型磁功能复合材料是指以橡胶或塑料为粘合剂与磁性粉末混合粘结加工而制成的磁体。

磁功能复合材料的主要优点是:密度小、耐冲击强度大,制品可进行切割、钻孔、焊接、层压和压花纹等加工,而且使用时不会发生碎裂。它可以采用一般塑料通用的加工方法(如注射、模压、挤出等)进行加工,易于加工成尺寸精度高、薄壁、复杂形状的制品,可成型带嵌件制品,对电磁设备实现小型化、轻量化、精密化和高性能化的目标起着关键的作用,因而越来越多为人们所重视,是一种很有前途的基础功能材料。

1.1结构型高分子磁性材料

作为结构型高分子磁性材料的磁功能复合材料最早是由澳大利亚的科学家合成的PPH聚合物(聚双-2,6-吡啶基辛二腈)。它具有耐热性好,在空气中加热至300℃亦不会分解的特点,但它不溶于有机溶剂,且加工成型比较困难。后来,美国科学家用金属钒和四氟乙烯塑料聚合制成磁性高分子,它可以在不高于77℃的温度下保持稳定的磁性,但这类聚合物尚处于探索阶段,离实用化还有一定的距离。

此类聚合物的设计有两条途径:(1)根据单畴磁体结构,构筑具有大磁矩的高自旋聚合物;(2)参考α-Fe、金红石结构的铁氧体,对低自旋高分子进行调整,从而得到高性能的磁性聚合物。常见的有聚苯硫醚-SO3体系、聚乙炔-AsF5体系以及二茂铁金属高分子有机磁性材料。日本东京大学物性研究所野忠教授等合成的“PPH·硫酸铁”有机高分子强磁性材料,是在澳大利亚科学家合成的PPH的基础上经改进制得的,能显示出较强的磁性。

我国对结构型高分子磁性材料的研究始于20世纪80年代中期,科研人员利用新型磁功能复合材料已研制出功率分配器、射频振荡器等15种磁性元器件,这些元器件具有高频信号损失小、温度系数低、相对密度低、体积小、易加工等特点,是电子信息领域较具有发展潜力的新型磁性材料。

1.2复合型高分子磁性材料

复合型磁功能复合材料现在已经实现商业化,它主要是由树脂及磁粉构成。其中树脂起粘结作用,磁粉是磁性的主要受体,目前用于填充的磁粉主要是铁氧体磁粉和稀土永磁粉。复合型功能复合材料特性又可分为两大类。

一类是磁性粒子最大易磁化方向是杂乱无章排列的,称为各向同性磁功能复合材料,这种复合材料的磁性能较低,一般有钡铁氧体类粘结磁体和Nd-Fe-B类稀土粘结磁体;另一类是在加工过程中通过外加磁场或机械力,使磁粉的最大易磁化方向顺序排列,称为各向异性磁功能复合材料,使用较多的是锶铁氧体磁功能复合材料。在相同材料及配比条件下,各向同性磁功能复合材料的磁性能仅为各向异性磁功能复合材料的1/2~1/3。(1)铁氧体类磁功能复合材料:制作各向异性功能复合材料的方法主要有磁场取向法和机械取向法。磁场取向法是将特定的磁粉与树脂、增塑剂、稳定剂、润滑剂等混合后,在混炼机中进行混炼、造粒,然后使用挤出机或注射剂成型,在成型的同时,外加一强磁场,使得磁粉发生旋转顺序排列,制成各向异性磁功能复合材料制品。机械取向法是应用特定的片状磁粉与树脂、增塑剂、稳定剂、润滑剂等混炼塑化后,用压延机使磁粉在机械力的作用下发生顺序排列取向。

(2)稀土类磁功能复合材料:填充稀土类磁粉制作的磁功能复合材料属于稀土类磁功能复合材料。稀土磁粉出现后,树脂粘结磁体飞速发展。作粘结剂的高分子主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂包括天然橡胶和合成橡胶,主要用于柔性复合磁体的制造,但与塑料相比,一般成型加工困难。热塑性粘结剂主要为聚酰胺、聚丙烯、聚乙烯等。聚酰胺(PA)类最为常见,综合考虑机械加工性、耐热性、吸湿性,目前最常见的PA基体是尼龙6、尼龙66等。日本一项专利用尼龙与聚烯烃复合树脂作基体粘结稀土磁粉所得材料,其熔体流动性有所增强,可以加工成形状相当复杂、磁性能也相当优越的磁体。

1983年日本开发了性能优良的稀土永磁材料Nd-Fe-B,几乎同时美国GM公司开发了用快淬法生产各项同性Nd-Fe-B磁粉的新工艺。之后该公司又与日本大同制钢公司合作,在原有MQP-A磁粉基础上,通过添加少量Nd,成工地开发出一种能用于180℃的超耐热磁粉,大大提高了Nd-Fe-B磁粉的工作温度。1990年,日本三菱材料公司利用稀土金属间化合物吸氢的特性开发出一种建立在全新构思基础上的HDDR法,用这种方法制得的粉末具有800KA/m以上的矫顽力,晶粒尺寸约为0.3μm。同时该方法通过在合金中添加Ga、Zr和Hf等微量元素,生产出各向异性磁粉,由该磁粉制成的粘结磁体,最大磁能积可达144KJ/m3。

Nd-Fe-B粘结磁体的成型工艺主要有:压缩成型、注射成型、挤出成型和压延法。其中应用最多的是压缩成型,其主要工艺过程是:将稀土磁粉进行表面包覆处理后与热固性树脂混合均匀,用750MPa的压力压缩成型,在150~170℃固化。通常使用液态双组份环氧树脂或酚醛树脂作粘结剂。稀土类磁功能复合材料与烧结稀土磁体相比,虽然在磁性和耐热性方面要差一点,但其成型性和力学性能优良,组装及使用方便,废品率低,

这是烧结磁体无法比拟的。稀土类磁功能复合材料性能虽不如烧结稀土磁体,但却优于铁氧体磁体,而且各向异性Nd-Fe-B粘结磁体在尺寸、质量和性能等方面均较铁氧体类粘结磁体有明显优势。例如,HDD主轴电机改用Nd-Fe-B粘结磁体,等效质量可降低9/10以上。

2.磁功能复合材料的种类

磁功能复合材料可分为磁性橡胶、磁性塑料、磁性高分子微球、磁性薄膜等。磁性橡胶、磁性塑料在技术上已较为成熟,广泛用于电子仪表、通讯、日用品等诸多领域,对电磁设备实现小型化、轻量化、精密化和高性能化的目标起着关键的作用。磁性高分子微球、磁性聚合物膜是目前研究的热点。

2.1磁性塑料

磁性塑料是一种重要的功能材料。通过改变高分子聚合物基体和磁性填充物的种类,可以充分体现各组分的特性及整体效应,获得满足不同应用要求的磁性塑料。直接填充法是制备磁性塑料最常用的方法,操作简单,经济实用。但用该法制备纳米磁性物质/高分子聚合物复合材料时,极易形成较大粒径的团聚体,这样磁性塑料中的纳米物质很难发挥其独特作用。可通过以高分子微球的形式,将纳米铁氧体引入到高分子聚合物基体中,组成新的磁性物质填充体系,赋予纳米铁氧体在聚合物基体中更佳分散性。

同传统烧结型磁性材料相比,磁性塑料具有如下特点:

(1)磁性塑料在成型加工中,制品收缩率小,可以生产高精度的产品,不需再用机械加工,即可直接使用,而且磁性稳定、易于装配,在生产小型化、轻量化、密度化和高性能化的电磁设备中起着关键的作用。

(2)加工性能好,可生产齿轮、螺纹、异型孔和薄壁型等外观复杂的产品,可整体成型。

(3)生产工艺简单,经济效益好,成本低,其价格仅为烧结磁体的1/3左右。(4)由于合成树脂包裹着磁性材料,使磁体有较高的抗冲击强度、弹性和韧性。与传统的烧结材料相比,其拉伸强度、弯曲强度和压缩强度也有很大的提高。由于质量轻,所以能使制品轻量化,可减少运输等费用,并且其磁性能可以调节。

2.2磁性高分子微球

磁性高分子微球是将高分子与磁性无机物通过包埋、单体聚合等方法结合形成的具有磁性、粒径为几纳米到几百微米不等的特殊结构微球,具有超顺磁特性,即在外部磁场作用下,磁性微球可迅速从分散介质中分离出来;撤去外部磁场,磁性微球又可重新悬浮于分散介质中,无残余磁性。它具有高分子微球的特征,可通过聚合、表面修饰等在磁球表面引入各种不同性质的官能团,广泛应用于分子生物学、体外临床诊断、环境

与食品分析等领域。

纳米磁性高分子微球按结构大致可分为两类:核-壳结构和三明治结构。核-壳式纳米磁性高分子复合微球的核可以是聚合物也可以是无机磁性材料;三明治结构外层和内层为聚合物,而中间为无机磁性材料。由于核为磁性无机物,壳为聚合物的纳米磁性高分子复合微球制备相对容易,且可通过共聚、表面改性等手段在聚合物表面接上多种反应性功能基团,因此研究报道较多。

龚荣洲等曾采用原位生成法制备出酞氰钴/纳米铁微球,比饱和磁化强度为76.3Am2/kg,矫顽场为4.15KA/m,热稳定性高于150℃,与甲基硅油组成的磁流变液有良好的抗沉降性。Wan等对γ-Fe2O3/PANI和Fe3O4/PANI纳米复合物的制备及性能进行了研究,但所制备的复合物室温电导率低(10-4~10-5S/cm),矫顽场低(H c=0),由于合成方法的原因其结构和性质也很难控制。Deng等在此基础上曾将磁性氧化铁粒子用PANI 包裹制成具有核-壳结构的电磁纳米复合材料,但发现将该复合物侵入3mol/L的硫酸时,由于PANI结构的无内聚(不粘结)力,氧化铁磁核要脱落。随后提出的改进合成方法是分散有Fe3O4纳米微粒的水溶液中原位聚合苯胺单体和苯胺-甲醛缩聚物(AFC)得到核-壳结构的Fe3O4-交联聚苯胺(CLPANI)复合物,分析表明该复合物表现出铁磁行为,具有高饱和磁化强度(M e=4.22~19.22emu/g),高矫顽场(H c=2~8Oe),其电导率取决于Fe3O4含量和掺杂程度,且由于Fe3O4粒子和CLPANI间存在某种相互作用使得复合物的热稳定性增加。

2.3磁性聚合物膜

大块磁性材料多以薄膜形式出现。磁性聚合物膜材料既具有磁记录、磁分离、吸波、缩波等磁特性,又具有质轻柔韧、加工性能优越等特点,可用作高磁记录密度的高分子磁膜、分离膜、电磁屏蔽膜,从而在功能性记忆材料、膜分离材料、隐身材料、微波通讯材料等多种军用、民用领域获得重要用途。

早期复合膜的应用,主要是讲超细铁氧体磁粉和聚合物基复合再涂覆在聚酯薄膜上形成记录用磁带。随着人们对尖端膜材料、先进成膜技术的发展,对膜结构的控制,及对膜的物理、化学行为的深入研究,将膜作为提供特异的反应场、信息传递场、能量转化场等特异功能的功能材料的研究和应用增多。

镍铁合金磁性材料通过电镀嵌入聚硅烷弹性薄膜,在外加磁场作用下,膜中磁性部分产生扭转力矩导致膜的变形。该磁性膜器可用作微流系统中的微泵装置、高分辨率轻小光学镜面及磁开关。利用电沉积技术结合模板合成法制备的磁性微米、纳米膜可用作高密度可擦写磁记录材料、微波基板材料。在基体膜上涂覆压电磁性材料。当机械压力施加于膜,膜的压电磁特性能引起磁导率变化,与微型螺线圈构成磁心电感器,用于远程传感。运用在水分散相中制备铁磁纳米粒子的技术,结合多分子层自组装技术,可制成有机-无机多层复合膜,它综合了磁性纳米粒子的特性及聚合物的可加工性,具有独

特的机械、电、光、磁性质,可用于发光二极管、抗蚀保护层、膜传感器、导电层、非线性光学器件及气体分离膜。

3.磁功能复合材料发展概况和应用

由于磁功能复合材料的生产可采用多种复合技术,因此在高聚物成型加工技术高度发达的今天,磁功能复合材料得到了迅速地发展。

磁功能复合材料中产量增长最快的是各向同性Nd-Fe-B粘结磁体,它是稀土类功能复合材料所占份额最大的一种材料。在过去的20年中,Nd-Fe-B粘结磁体已成工地占据了市场,现已广泛地应用于家用电器和办公用品,预计今后其在计算机外设中的应用还会继续增长。

我国的磁功能复合材料发展较晚,20世纪80年代初随着电冰箱生产的发展,从国外引进电冰箱门封条生产线。随后国内进行了仿制,年产磁条约3000t,除供国内电冰箱使用外,还有部分出口。但对于微电机及彩色电视机显像管会聚组件用磁功能复合材料等性能较高的塑料磁体研究较少。目前国内应用较多的是铁氧体磁功能复合材料和稀土类磁功能复合材料。铁氧体磁功能复合材料价格低廉磁性能较低,稀土类磁功能复合材料性能较高,价格昂贵,适用于小型器件。

铁氧体磁性材料有一个重要的特性是不导电,因而适用于具有高频磁场的地方。同时它可选择不同性质的塑料作为基材制成刚性或柔性制品,使得产品的设计较较烧结磁体更为灵活。其市场要求情况如下所示。

(1)直流微电机用磁体:直流微电极中必须有一个磁场,通常微型直流电机的磁场是永磁体产生的。我国微电机年产量上亿台,仅大连万宝至公司每月产量就达600万支,每种型号年需求磁功能复合材料条7200万条。

(2)气动元件磁环:气动元件磁环是用于气缸中与磁性传感器协作控制气缸动作的元件。目前国内有气动元件厂136家。另外日本SMC公司在北京建立了北京工厂,年需磁环5000万支,韩国丹海公司年需磁环360万支,中国台湾金器公司年需磁环1000万支。

(3)汽车仪表磁环:随着我国汽车工业的发展,仪表工业也迅速发展起来。北京仪表厂从日本引进了仪表生产线为北京吉普车配套,上海也引起生产线为桑塔纳配套。(4)装饰减震磁体:国外高档汽车对车内的宁静度有较高的要求,据资料报道,每辆车中需要几公斤的磁体分别安装在顶、边、门上,从而改变板金结构的震动频率,提高车内的安静度。由此可见,磁功能复合材料是一技术含量高、市场急需、效益较好的高新技术产品,生产磁功能复合材料具有广泛的市场,一定能取得极好的经济效应。

磁功能复合材料和导电塑料作为新型功能材料,以其固有的特性而广泛用于电子、电气、仪器仪表、通讯、文教、医疗卫生以及日常生活中的诸多领域中,其产量和需求

量正在不断地增加,生产技术日益完善。虽然目前磁功能复合材料的研究及应用在我国尚处于在发展的初级阶段,但在某些新的领域,已经得到应用,具有很大的发展潜力,尤其是稀土粘结磁体。因为随着全球信息产业的飞速发展,在未来的20年,我国IT产业将发生翻天覆地的变化,计算机产业,汽车产业和消费类电子产品市场对粘结Nd-Fe-B 的需求将呈现猛烈的增大。目前,全球汽车产量日益增多,每辆车需用永磁材料3kg以上,随着小型轻量化发展,部分将采用粘结Nd-Fe-B磁体。

4.磁功能复合材料发展前景

磁功能复合材料的研究已经取得了很大进展,但以下几个问题需深入研究:

(1)磁性机制的研究。如除结构表征外,磁性高分子微球的磁性起源、结构和性能的关系;无机物、聚合物对磁性的贡献;无机物间、无机物与聚合物间磁性相互作用等。(2)探索新的制备方法。包括对传统方法的改造,多种方法结合使用,与生物技术、激光技术新技术的结合等。纳米微粒在基材中的有效、可控、稳定分散和纳米微粒的稳定性,一直以来是纳米复合材料制备过程中最大的问题。

(3)探索新性能,扩展应用空间。如将纳米磁性无机粒子、导电聚合物符合于一体,有可能呈现出新的性质和功能,从而在微波、电磁屏蔽方面具有更广阔的应用前景,特别是在军事目标和武器的兼容隐身中具有重要价值。

随着纳米技术在航空航天、电子信息、生物医药等各领域的应用,磁功能复合材料还将在新理论、新机理基础上朝着特殊化、功能化、多元化、高级化的方向发展。

复合材料的发展和应用

复合材料的发展和应用 复合材料的发展和应用 具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候 论文格式论文范文毕业论文 全球复合发展概况复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电气、、健身器材等领域,在近几年更是得到了飞速发展。另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。树脂基复合材料的增强材料树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道

的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料热塑性树脂基复合材料热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料、连

梯度功能复合材料,,

采用铸造?倾析?铸造技术制备A390/A356铝合金功能梯度复合材料时过热和凝固层厚度对其 界面接合的影响 Abstract: T he cast?decant?cast is a new method for the preparation of the functionally graded components that has been developed in recent years. The functionally graded cylindrical shape component with a radial gradient, e.g. the first alloy (A390) with high wear resistance on the surface of the piece and toughness and the second alloy (A356) of low machining costs in the core of the piece can be produced via this melt process. The effectof the second alloy superheat at temperatures of 750, 820 and 860 °C as well as the effect of the first alloy solidified layer at 25, 35 and 45 s decanting time on achieving the perfect interface between the twoalloys was investigated. The characterization of the interface was carried out by optical microscopy and scanning electron microscopy,and its width was measured by the microhardness test. The results showed that the best interface was obtained at 860 °Cand 35 s decanting time with a width of 500 μm. Also, the wear resistance test was performed to measure and compare the surface wear resistance to the core. Key words: A390 alloy; A356 alloy; functionally graded material; cast?decant?cast process 摘要:铸造?倾析?铸造技术是近年来发展起来的一种制备功能梯度材料的新方法。采用这种方法制备在径向具有梯度功能的圆柱形试样,其外表层为具有高耐磨性的A390铝合金,芯部为具有较高韧性和加工性能的A356铝合金。研究芯部熔体在不同过热温度(750,820和860 °C)和表层在不同倾析时间(25,35和45 s)下的A390/A356铝合金界面接合情况。采用光学显微镜和扫描电镜对界面进行表征,对界面区的显微硬度进行测量。结果表明,在过热温度为860 °C,倾析时间为35 s的条件下,可以获得一宽度约为500 μm的接合良好的界面层。比较了试样表面层和芯部的耐磨性能。 关键词:A390铝合金;A356铝合金;功能梯度材料;铸造?倾析?铸造技术 1引言 工程中的许多组件需要材料的对立特性,如质轻和耐磨,耐磨性和可加工性,横截面的硬度和韧性等。梯度功能材料(FGM)填补了这种材料科学的缺口,就是组件需要在不同的位置有不同的属性和实现均相横截面的最优属性的材料。功能梯度材料是成分和显微结构沿厚度变化的材料[ 1 ]。在最近的几十年里,一些熔融工艺已被用于批量制作功能梯度材料。最常见的方法是离心铸造[ 2 ],功率超声铸造[ 3 ],沉降[4],磁分离[5]和熔体渗透[ 6]。2005年,都柏林大学开发了生产功能梯度轻合金铸造的新技术;该技术被称为铸造?倾析?铸造(CDC)技术。SCANLAN等人确定了三个与CDC(铸造?倾析?铸造)进程相关联的技术:转向,内部倾析和低压技术。通过这些方法生产的功能梯度材料,已被用于生产下面的

复合材料技术

航空预浸料- 热压罐工艺复合材料技术应用概况 发布时间:2011-11-23 15:34:27 先进复合材料自问世以来,由于其轻质、高强、耐疲劳、耐腐蚀等诸多优势,一直在航空材料领域得到重视。随着近几十年来的发展,尤其是最近10年在大型飞机上井喷式的应用,先进复材料已经证明了其在未来航空领域的重要地位,它在飞机上的用量和应用部位也已经成为衡量飞结构先进性的重要标志之一[1] 如目前代表世界最先进战机的美国F-22 和F-35,其复合材料占机结构重量达到了26%(F-22 机身、机翼、襟翼、垂尾、副翼、口盖、起落架舱门;F-35 机身翼进气道、操纵面、副翼、垂尾),欧洲EF-2000 战机更是达到了35%~40%(机翼、垂尾、方向舵[2] ;民机领域的两大巨头波音和空客,在其最新型的大型客机波音787、A350XWB 机型中,大幅使用复合材料,分别达到50% 和52%[3],在机身主承力结构中,除一些特殊需要外,基本上实现了全复合材料化。 从当前的复合材料应用来看,航空复合材料具备以下几个方面的特点:在材料方面,飞主承力结构应用高韧性复合材料;在工艺方面,呈现出以预浸料- 热压罐工艺为主,积极开发液体成型工艺及其他低成本成型工艺的态势,对复合材料构件的制造综合考虑性能/ 成本因机[4]设计理念的广泛认知,复合材料已逐渐在主承力结构上站稳了脚跟,而且,为了进一步将复合材料的优点充分发挥,飞机结构设计越来越趋向于整体化和大型化。复合材料在主承力结构上的应用技术是体现航空复合材料水平及应用程度的重要标志。目前复合材料主承力构件仍是以预浸料- 热压罐工艺为主。基于此,本文旨在介绍目前与航空预浸料- 热压罐工艺相关的复合材料技术。 主承力结构用预浸料 1 高性能复合材料体系 “计是主导,材料是基础,工艺是关键”[5]复合材料的制造技术与材料的发展息息相关。航空预浸料-热压罐工艺高性能复合材料到目前已经历了3个阶段。 第一阶段的复合材料采用通用T300 级碳纤维和未增韧热固性树脂,具有明显的脆性材料特征,主要用于飞机承力较小的结构件。第二善,应用范围扩大到垂尾、方向舵和平尾等部件。第三阶段的复合材料为高韧性复合材料,其应用扩大到机材料应用于飞机主承力结构,波音公司首先提出了高韧性复合材料预浸料标准BMS8-276,概述了主承力结构复合材料性能目标,并提出采用冲击后压缩强度

复合材料课程设计模板

复合材料成型加工课程设计 姓名 专业 学号 指导教师 二○一四年十二月

《复合材料成型加工》课程设计任务书 一、课程设计的目的 复合材料成型加工课程设计是材料学教学计划的组成部分,是在完成课堂学习、生产实习和其它相关专业课程学习之后进行的,是对本课程的综合知识掌握情况的一次全面检验。通过课程设计,可以进一步培养学生综合应用所学知识的能力,使学生能熟悉复合材料工艺设计、生产工艺流程图制定、合理选择制材设备的方法,加强自学能力,为今后从事相关工作打下坚实基础。 二、设计任务和设计依据 设计任务:日产量1500件树脂基复合材料注塑工艺设计 设计依据:1.每天工作班制:三班,8小时/班。 2.每件样品不超过500g,一模一件。 3.原料自选。 三、设计要求 1、查阅文献资料,了解注塑机结构及操作规程,按照设计要求合理选用设备,设置生产参数; 2、根据生产任务,制作典型生产工艺流程。

聚乙烯/碳纤维复合材料注射成型工艺设计 一、设计背景以及国内外发展现状 树脂基复合材料是由以有机聚合物为基体的纤维增强材料,通常使用玻璃纤维、碳纤维、玄武岩纤维或者芳纶等纤维增强体。纤维增强树脂基复合材料常用的树脂为环氧树脂和不饱和聚酯树脂。目前常用的有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。复合材料的树脂基体,以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F—4、F—111等军用飞机上采用了硼纤维增强环氧树脂作 方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A—2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A—3”,使壳体重量较钢制壳体轻50%,从而使“北极星A—3”导弹的射程由2700千米增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。碳纤维具有许多优良性能,碳纤维的轴向强度和模量高,密度低、比性能高,无蠕变,非氧化环境下耐超高温,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小且具有各向异性,耐腐蚀性好,X射线透过性好。良好的导电导热性能、电磁屏蔽性好碳纤维在传统使用中除用作绝热保温材料外。多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维已成为先进复合材料最重要的增强材料。由于碳纤维复合材料具有轻而强、轻而刚、耐高温、耐腐蚀、耐疲劳、结构尺寸稳定性好以及设计性好、可大面积整体成型等特点,已在航空航天、国防军工和民用工业的各个领域得到广泛应用。 [11]碳纤维可加工成织物、毡、席、带、纸及其他材料。高性能碳纤维是制造先进复合材料最重要的增强材料。聚乙烯/碳纤维复合材料是以聚乙烯、聚丙烯、聚氯乙烯等热塑性塑料为原料,热塑性塑料可采用新塑料或工业、生活废弃的各种塑料,而碳纤维可采用因此木塑复合材料的研制和广泛应用有助于减缓塑料废弃物的公害污染,也有助于减少农业废弃物焚烧给环境带来的压力。木塑复合材料的生产和使用不会向

电子封装用SiCp_Al复合材料开发可行性研究报告

电子封装用SiC p//Al复合材料开发与应用 可行性报告 一.项目的主要内容 铝碳化硅(AlSiC)电子封装材料是将金属的高导热性与陶瓷的低热膨胀性相结合,能满足多功能特性及设计要求,具有高导热、低膨胀、高刚度、低密度、低成本等综合优异性能的电子封装材料。在国际上,铝碳化硅属于微电子封装材料的第三代产品,是当今西方国家芯片封装的最新型材料。该复合材料的热膨胀系数比无氧铜低一半以上,且在一定范围内精确可控,比重仅为无氧铜的三分之一;与第一代kovar封装合金相比,导热率可提高十倍,减重三分之二;与第二代封装金属W/Cu、Mo/Cu相比,分别减重约83%和71%,且成本低得多。另外,SiCp/Al电子封装材料具备优异的尺寸稳定性,与其他封装金属相比,机械加工及钎焊引起的畸变最小,具有净成型、加工能力,可焊性也较好。自国际开发此类技术迄今十年多来,其应用范围从军工领域逐步向民用电子器材领域扩展,目前已占据整个电子封装材料市场近乎50%的使用覆盖面。由于此项技术产品具有重要的军工价值,被欧美国家视为导弹、火箭和卫星制造等方面的尖端基础材料,始终作为高度机密技术加以封锁,该产品早已是我国急需的军工和民用市场上的空白高技术产品。项目组在前期研究基础上将进一步优化自创的无压渗透法工艺中温度、摸具、气氛、时间等工艺参数;研究不同基体成分制备工艺参数,增强相颗粒尺寸、形状、比例等对该材料的导热性及膨胀系数影响;研究新材料镀镍及镀金工艺包括镀槽成分、酸洗工艺、退火工艺等,形成一套完整的铝碳化硅(AlSiC)电子封装零件制备工艺,制备出不同性能的电子封装材料和具体零件,为铝碳化硅(AlSiC)电子封装材料的产业化奠定基础。

改性塑料粒子复合材料项目计划书(项目投资分析)

第一章项目概述 一、项目概况 (一)项目名称 改性塑料粒子复合材料项目 (二)项目选址 xxx工业园 场址选择应提供足够的场地用以满足项目产品生产工艺流程及辅助生产设施的建设需要;场址应具备良好的生产基础条件而且生产要素供应充裕,确保能源供应有可靠的保障。节约土地资源,充分利用空闲地、非耕地或荒地,尽可能不占良田或少占耕地;应充分利用天然地形,选择土地综合利用率高、征地费用少的场址。项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。 (三)项目用地规模 项目总用地面积26833.41平方米(折合约40.23亩)。 (四)项目用地控制指标 该工程规划建筑系数74.85%,建筑容积率1.56,建设区域绿化覆盖率5.39%,固定资产投资强度196.17万元/亩。

(五)土建工程指标 项目净用地面积26833.41平方米,建筑物基底占地面积20084.81平 方米,总建筑面积41860.12平方米,其中:规划建设主体工程28573.71 平方米,项目规划绿化面积2257.41平方米。 (六)设备选型方案 项目计划购置设备共计132台(套),设备购置费2233.56万元。 (七)节能分析 1、项目年用电量1124478.12千瓦时,折合138.20吨标准煤。 2、项目年总用水量22801.52立方米,折合1.95吨标准煤。 3、“改性塑料粒子复合材料项目投资建设项目”,年用电量1124478.12千瓦时,年总用水量22801.52立方米,项目年综合总耗能量(当量值)140.15吨标准煤/年。达产年综合节能量44.26吨标准煤/年, 项目总节能率23.09%,能源利用效果良好。 (八)环境保护 项目符合xxx工业园发展规划,符合xxx工业园产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成

复合材料的发展和应用(1)

复合材料的发展和应用(1) 全球复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,20XX年欧洲的复

合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。20XX年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,20XX年的总产量约为145万吨,预计20XX年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。20XX年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到20XX年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在20XX年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.doczj.com/doc/a27590202.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

复合材料开发以及运用

复合材料开发以及使用 世界复合材料发展概况 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它能够发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用 范围。因为复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应 用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年 更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上持续进步,生产厂家的制 造水平普遍提升,使得玻纤增强复合材料的价格成本已被很多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。所以,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备, 已经成为众多产业的必备材料。当前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高 价值产品计入,其产值将更为惊人。从世界范围看,世界复合材料的 生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中 国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料世界占有率约为32%,年产量约200万吨。与 此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增 长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万 吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在世界市场 上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化 密切相关,各国的占有率变化很大。总体来说,亚洲的复合材料仍将 继续增长,2000年的总产量约为145万吨,预计2005年总产量将达 180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达14.8万吨,欧洲汽车复合材料

复合材料成型工艺模板

复合材料成型工艺模板 1

树脂基复合材料成型工艺介绍( 1) : 模压成型工艺 模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内, 经加热、加压固化成型的方法。模压成型工艺的主要优点: ①生产效 率高, 便于实现专业化和自动化生产; ②产品尺寸精度高, 重复性好; ③表面光洁, 无需二次修饰; ④能一次成型结构复杂的制品; ⑤因 为批量生产, 价格相对低廉。 模压成型的不足之处在于模具制造复杂, 投资较大, 加上受压机限制, 最适合于批量生产中小型复合材料制品。随着金属加工技术、压机制造水平及合成树脂工艺性能的不断改进和发展, 压机吨位 和台面尺寸不断增大, 模压料的成型温度和压力也相对降低, 使得模压成型制品的尺寸逐步向大型化发展, 当前已能生产大型汽车部件、浴盆、整体卫生间组件等。 模压成型工艺按增强材料物态和模压料品种可分为如下几种: ①纤维料模压法是将经预混或预浸的纤维状模压料, 投入到金属模具内, 在一定的温度和压力下成型复合材料制品的方法。该方法简便易行, 用途广泛。根据具体操作上的不同, 有预混料模压和预浸料模压法。②碎布料模压法将浸过树脂胶液的玻璃纤维布或其它织物, 如麻布、有机纤维布、石棉布或棉布等的边角料切成碎块, 然 2

后在金属模具中加温加压成型复合材料制品。③织物模压法将预先织成所需形状的两维或三维织物浸渍树脂胶液, 然后放入金属模具中加热加压成型为复合材料制品。④层压模压法将预浸过树脂胶液的玻璃纤维布或其它织物, 裁剪成所需的形状, 然后在金属模具中经加温或加压成型复合材料制品。⑤缠绕模压法将预浸过树脂胶液的连续纤维或布( 带) , 经过专用缠绕机提供一定的张力和 温度, 缠在芯模上, 再放入模具中进行加温加压成型复合材料制品。⑥片状塑料( SMC) 模压法将SMC片材按制品尺寸、形状、厚度等要求裁剪下料, 然后将多层片材叠合后放入金属模具中加热加压成型制品。⑦预成型坯料模压法先将短切纤维制成品形状和尺寸相似的预成型坯料, 将其放入金属模具中, 然后向模具中注入配制好的粘结剂( 树脂混合物) , 在一定的温度和压力下成型。 模压料的品种有很多, 能够是预浸物料、预混物料, 也能够是坯料。当前所用的模压料品种主要有: 预浸胶布、纤维预混料、 BM C、 DMC、 HMC、 SMC、 XMC、 TMC及ZMC等品种。 1、原材料 ( 1) 合成树脂复合材料模压制品所用的模压料要求合成树脂具有: ①对增强材料有良好的浸润性能, 以便在合成树脂和增强材料界面 3

功能复合材料作业

功能复合材料作业 1、简述功能复合材料的概念,组成及其所涉及的领域15% . 1、功能复合材料是指除机械性能以外而提供其他物理性能的复合材料。如:导电、超导、半导、磁性、压电、阻尼、吸波、透波、摩擦、屏蔽、阻燃、防热、吸声、隔热等凸显某一功能,统称为功能复合材料。 2、功能复合材料主要由功能体和增强体及基体组成。功能体可由一种或以上功能材料组成。 3、使用领域:军事,民用 2、你所理解的压电(或吸能)功能材料有什么特点15% 受到压力作用时会在两端面间出现电压的晶体材料。具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。 3、介绍一种相关的功能材料,并简要叙述其功能10% 高分子纳米复合材料,是指用具有纳米尺寸的其他材料与高分子材料以各种方式复合成型的一种新型复合材料。 性能:具有阻隔性能,生物性能,电学磁学性能,光学与光导电性能,催化活性等性能 4、如何理解材料的线性效应,非线性应,请举例说明30% 非线性效应是指强光作用下由于介质的非线性极化而产生的效应,包括光学谐波,倍频,受激啦曼散射,双光子吸收,饱和吸收,自聚焦,自散焦等。 光纤传输的非线性效应 光纤传输的衰耗和色散与光纤长度是呈线性变化的,呈线性效应,而带宽系数与光纤长度呈非线性效应。非线性效应一般在WDM系统上反映较多,在SDH 系统反映较少,因为在WDM 设备系统中,由于合波器、分波器的插入损耗较大,对16 波系统一般相加在10dB 左右,对32 波系统,相加在15dB 左右,因此需采用EDFA进行放大补偿,在放大光功率的同时,

复合材料与工程专业前景

专业前景 复合材料是科学技术发展的重要物质基础和先导,从航空航天到电子计算机等高技术领域,复合材料的应用已成为传统单一材料不可替代的关键技术材料。世界上各先进国家都将复合材料列为国家发展关键技术,我国“863”计划、国防科技发展战略及国家建材2010年发展规划都把复合材料列为重中之重。 我国复合材料工业产量从上世纪80年代初至今已翻了5.5番,平均年增长率为28%,近几年发展速度更快。但是我国复合材料专业的建设起步晚,和国外相比差距较大,而且开设该专业的高校数量较少(如:济南大学青岛大学青岛科技大学华东理工大学哈尔滨工业大学华中科技大学武汉大学武汉理工大学南京工业大学中北大学江苏大学西北工业大学安徽理工大学),每年的毕业生相比其他“热门”专业在数量上可谓是淡水与海水之比,目前在国内还有很多人没有听说过复合材料与工程这门专业,正是物以稀为贵,该专业具有较强的发展 潜力。鉴于目前我国复合材料工业的迅速发展,我国迫切需要大批高质量的复 合材料技术人才。 生活处处皆材料,复合材料作为材料科学的一个分支,研究生的范围较广,如:在从事复合材料或材料研究、开发和生产的高等院校、研究设计院、所担任研究员从事复合材料的研究工作。民用方面可以在与复合材料相关的建筑、电机、电子、信息通讯、轻工、化工企业和公司从事新型复合材料研究与开发工作,有能力者甚至可以进入国家军工企业从事军工复合材料的改进和研发工作。总之:研究生从事的一般为研究开发性的工作,也就是技术员、工程师。留校从事材料学科(如物理、化学、高等数学)的教学工作也是不错的选择。 本科生就业不如研究生广、待遇不如研究生高。材料本科生大多在与材料有关的企业工厂从事操作员、生产员、检测工和营销管理人员。当然,如果有足够的能力,可以尝试进入企业的技术开发和研究部门。若是有兴趣和意向,自主创业也是一条不错的就业选择。

复合材料建筑模板

复合材料建筑模板 摘要: 复合材料建筑模板钢化建筑模板混凝土建筑模板建筑用建筑模板新型建筑模板一种式建筑模板组合式建筑模板建筑模板十大品牌之一建筑模板之环保板材复合材料建筑模板钢化建筑模板混凝土建筑模板建筑用建筑模板新型建筑模板一种式建筑模板组合式建筑模板建筑模板十大品牌之一建筑模板之环保板材 中国模板网,在3月31日北京国家会议中心举办的2010年中国国际混凝土周展览会上,在一堆有关钢筋 混凝土的展品中,有一款与人迥异的展品——复合材料建筑模板,这是上海铂砾耐材料科技有限公司的产品。 据工作人员介绍,铂砾耐的这款建筑模板拥有 12项国家专利技术,包括7项外观专利技术和5项实用新型 专利技术。它还具有耐酸、耐碱、抗湿、防腐等特点,可在-20℃至60℃的温度条件下使用,有专用的卡 扣进行连接,支模和拆模非常容易,在沪、苏、皖等地使用,得到施工单位的认可。最难得的是该产品可以 大量替代钢材、竹木。目录[隐藏] 复合材料建筑模板钢化建筑模板混凝土建筑模板建筑用建筑模板新型建 筑模板一种式建筑模板组合式建筑模板建筑模板十大品牌之一建筑模板之环保板材复合材料建筑模板钢化 建筑模板混凝土建筑模板建筑用建筑模板新型建筑模板一种式建筑模板组合式建筑模板建筑模板十 大品牌之一建筑模板之环保板材 [编辑本段]复合材料建筑模板1、大型钢木(竹)组合模板2、 多功能混凝土模板3、防渗漏建筑模板4、多功能建筑拼块模板5、房屋建筑模板及其相关方 法6、复合材料建筑定型模板7、复合建筑模板8、复合建筑模板2 9、复合建筑模板 10、复合建筑模板及其加工工艺11、复合塑料建筑模板(采用再生塑料制造符合再回收使用资源,淄 博欧德森塑业有限公司采用先进生产技术生产的塑料建筑模板使用次数40次以上,可以和木、竹模板一样 锯、刨、钉,可以多次回收再利用)12、改良结构的建筑用组合式模板 [编辑本段]钢化建筑模板13、 钢化玻璃组合大模板14、钢筋混凝土构件成型组合模板15、钢框竹木胶合板大模板16、工 程施工用轻体模板17、化学建筑模板的生产工艺及化学配方 [编辑本段]混凝土建筑模板18、混凝 土成型用的保温增湿模板19、混凝土多用成型模板20、混凝土钢模板的涂膜工艺21、工程 塑料建筑模板22、混凝土工程一次性模板23、混凝土快速施工模板24、混凝土模板25、 混凝土模板2 26、混凝土模板3 27、混凝土模板变形防止件和用其组装混凝土模板的方法28、 混凝土模板的使用方法29、混凝土模板构件30、混凝土墙体水泥模板结构31、混凝土水泥 模板32、混凝土通用及真空两用模板33、混凝土箱梁永久性内芯施工模板 [编辑本段]建筑用建 筑模板34、建筑定型模板35、建筑工程塑料模板36、建筑框架梁体柱体预制钢筋混凝土模板 及施工安装工艺37、建筑模板38、建筑模板保养改进设备39、建筑模板的斜楔夹具及其装、 卸工具40、建筑模板漆41、建筑模板脱模方法及装置42、建筑模板用废合成树脂多用途面 板43、建筑模板用合成树脂建材44、建筑模板用聚乙烯平面面板45、建筑施工中的墙体模 板46、建筑物用分隔式中空内模板47、建筑物用分隔式中空内模板及其成墙施工方法48、 建筑用菱镁钢丝网复合模板49、建筑用免拆模板构造50、建筑用模板51、建筑用塑料模板 52、建筑用塑料模板2 53、建筑装饰用涂料和模板及其制造方法54、聚胺酯发泡复合模板55、 聚苯、钢网复合墙体免拆模板56、可调整组合式建筑大模板57、可兼作保温材料的永久性砌块式 建筑模板58、免擦油模板59、面砖一体成型的免拆建筑模板60、内墙模板施工方法及其装 置61、平板玻璃钢圆柱模板62、平板玻璃钢圆柱模板及其制作方法和施工工艺63、强化纤

粒子填充型导电复合材料的导电机理

万方数据

万方数据

万方数据

万方数据

万方数据

粒子填充型导电复合材料的导电机理 作者:周静, 孙海滨, 郑昕, 刘俊成, Zhou Jing, Sun Haibin, Zheng Xin, Liu Juncheng 作者单位:周静,孙海滨,刘俊成,Zhou Jing,Sun Haibin,Liu Juncheng(山东理工大学,淄博,255091), 郑昕,Zheng Xin(金晶玻璃集团,淄博,255200) 刊名: 陶瓷学报 英文刊名:JOURNAL OF CERAMICS 年,卷(期):2009,30(3) 被引用次数:0次 参考文献(20条) 1.张佐光功能复合材料 2004 2.贾向明.李光宪.陆玉本本证导电复合高分子材料的研究与进展 2003(154) 3.Fish D.Zhou G.Smid J Ring opening polymerization of cyclotetrasiloxanes with large substituents 1990(01) 4.Kirkpatrick S Electrical conduction in a nonconjugated polymer doped with SnCl4 and SbCl5 1973 5.Aharoni S M ElectricaI resistivity of a composite of conducting particles in an insulating matrix 1972(05) 6.Janzen J On the critical conductive filler loading in antistatic composites 1975(02) 7.Stauffer D.Ahamoy A Introduction to percolation theory 1991 8.樊中云论两相材料中结构与性能的关系 1996(zk) 9.Sumita M.Takenaka K Characterization of dispersion and percolation of filled polymers; molding time and temperature dependence of percolation time on carbon black filled low density polyethylene 1995 https://www.doczj.com/doc/a27590202.html,ndauer R Electrical conductivity in inhomogeneous media 1978 11.Mclachlan D S Measurement and analysis of a model dual-conductivity medium using a generalized effective medium theory 1988(08) 12.Mclachlan D S.Blaszkiewicz M.Newnham R E Electrical resistivity of composites 1990(08) 13.Rajagopal C.Stayam M Studies on electrical conductivity of insulator-conductor composites 1978(11) 14.Asada T Two-step percolation in polymer blends filled with CB PTC effect in CB/epoxy polymer composites 1987(04) 15.Medalia A I Electrical conduction in carbon black composites 1986(03) 16.Shklovskii B I.Efros A L Electronic processes of doped semiconductors 1984 17.Simmons J G Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film 1963(06) 18.Ezquerra T A.Kulescza M.Cruz C S Charge transport exponents 1990(12) 19.雷忠利.成长谋.孟雅新导电复合材料中的双逾渗行为及其应用 2002(06) 20.Van Beck L K.Van Pul B I Internal field emission in carbon black-loaded natural rubber vulcanizates 1962

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.doczj.com/doc/a27590202.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

国内外碳纤维复合材料现状及研究开发方向

--] 诺贝尔学术资源网->材料资源->《转》国内外碳纤维复合材料现状及研究开发方向[打印本页] 登录->注册->回复主题->发表主题 romanceliu 2008-01-15 17:37 查看完整版本: [-- 《转》国内外碳纤维复合材料现状及研究开发方向 一.国外情况 1996年世界碳纤维生产能力15000t,实际产量约10000t左右,其中日本约占60%。日本有三家大公司从事碳纤维的生产、研究和开发,东丽公司、东邦人造丝公司和三菱人造丝公司是世界著名的碳纤维生产企业,它们都在积极扩展碳纤维生产,继续加强其在世界市场上的主导地位,并纷纷实现从原丝到下游复合材料一体化的配套生产体制,碳纤维及其下游产品己成为这些公司的支柱产业和新的经济增长点。 随着航空航天飞行器各项性能的不断提高,对结构件用材料的性能要求也越来越高。今后日本先进复合材料的发展方向是:在增强材料方面,进一步提高碳纤维的强度和模量,降低成本;在树脂基体方面,主要提高树脂的冲击后压缩强度和耐湿热性;在复合材料成型技术方面,进一步实现整体成型技术、固化监控、自动化技术及三维复合材料技术,从而同时提高复合材料性能降低制造成本。 美国是碳纤维生产大国,更是消费大国,世界碳纤维40%以上的市场在美国。美国1996年碳纤维生产能力约为4500t,其中卓尔泰克(ZOLTEK)公司1997年在美国德克萨斯州的亚平伦城和匈亚利的布达佩斯附近建了5条碳纤维生产线,1997年的总生产能力达3000t左右,一跃成为世界上生产碳纤维的最大集团之一。 它的产品有许多特色,最主要是低成本、低价格、大丝束、采用纺织用的丙烯酸原丝和开发工业级碳纤维等。该公司生产的碳纤维价格已降至17.64$/kg,而日本东丽同类产品大约30$/kg。在应用方面,美国摩里逊(Morison)公司为达纳(Dcna)公司生产汽车传动轴,供通用汽车公司用;采用碳纤维复合材料可使原来由两件合并成一个传动轴简化成单件,与钢材料相比,可减重60%。美国斯道顿复合材料公司(Stoughton)开发碳纤维复合材料集装箱,重量轻、耐磨,在碳纤维价格降至17.6$/kg时,此集装箱的价格可与金属集装箱竞争。

相关主题
文本预览
相关文档 最新文档