当前位置:文档之家› 弹性力学的平面问题解法

弹性力学的平面问题解法

弹性力学的平面问题解法
弹性力学的平面问题解法

弹性力学的平面问题解法

发表时间:2018-10-22T13:37:54.003Z 来源:《防护工程》2018年第14期作者:朱曼丽

[导读] 文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段

朱曼丽

哈尔滨铁道职业技术学院黑龙江哈尔滨 150000

摘要:本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下基础。着眼于弹性力学求解方法中一些方法,通过其在平面问题中的应用来介绍几种方法的研究思路,研究方法以及优缺点。弹性力学作为固体力学的一个重要分支,它的研究对象是板、壳、实体以及单根杆件,它是研究弹性固体由于受外力作用,边界约束或者温度改变及其他一种或多种外界条件作用下产生的应力、应变和位移。它的研究对象是板、壳、实体以及单根杆件。

关键词:弹性力学;平面问题;解法

前言:弹性力学是材料力学问题的精确解,是结构力学,塑性力学等力学学科的基础,其广泛应用于土木工程、航空航天工程及机械工程等多个学科领域。并且随着科学技术手段的进步,电子计算机得以应用到弹性力学的计算分析中,这极大地促进了弹性力学问题的分析计算更加深入,促使了有限单元法得以实现。本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下坚实的基础。

1 问题解法

1.1解析法

解析法是根据研究对象在结构中的静力平衡条件,几何关系和物理关系建立边界条件,平衡微分方程,几何方程和物理方程,并以此求解应力分量,应变分量和位移分量的一种平面问题的精确解法。按求解时的基本未知量选取不同可分为按位移求解的位移法和按应力求解的应力法。第一个位移法:以位移为基本未知量时的基本方程如下:

位移边界条件如下

从上面的公式可以看出位移法求解平面问题时的基本未知量只有两个,与应力法的三个基本未知量相比求解简单很多,并且不但能求解位移边界条件,还能求解应力边界条件与混合边界条件。第二个应力法:应力法以应力分量作为基本未知量,由此平面问题的平衡微分方程,几何方程,物理方程以及边界条件经过推导可变为如下形式:

基本方程:

应力边界条件:

值得注意的是按应力求解时边界条件应全部为应力边界条件。对于位移边界条件,虽然在局部边界上可用圣维南定理转化为应力边界条件,但此时得到的解答已不是精确解,同时上述推导过程是基于平面应力问题的,对于平面应变问题应把弹性常数作相应调整。

1.2 数值解法

弹性力学平面问题的解法虽然针对某些问题来说可以得到精确解,但是其不适合实际工程中复杂问题的计算。相反的,数值分析方法虽然只是对实际问题的近似解答,但其求解时的过程清晰,步骤明确,便于编程,并且工程上常有安全系数的保证,因此近似解与不会对实际工程造成太大影响。从而使数值分析方法在工程问题中得到大量应用。数值分析方法有以下三种:差分法:用差分方程替代平衡微分方程,将求解微分方程变为求解代数方程,简化了计算。变分法:变分法其实是一种能量法,以外力所做的功及弹性体的应变势能来建立弹性力学的求解方程。其中基本未知量为弹性体的虚位移,运用的基本原理为虚位移原理和最小势能原理。有限单元法:在力学模型上进行近似将弹性体简化为有限个单元体,且各单元体之间仅在有限个结点处交铰结而成的结构物。然后进行单元分析,形成单元刚度矩

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

(完整word版)徐芝纶弹性力学主要内容及知识点,推荐文档

1.弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。 2外力分为体积力和面积力。体力是分布在物体体积内的力,重力和惯性力。体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。 3内力,即物体本身不同部分之间相互作用的力。 3弹性力学中的基本假定:连续性,完全弹性,均匀性,各向同性,小变形假定。凡是符合连续性、完全弹性、均匀性、各向同性等假定的物体称之为理想弹性体。连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。均匀性,整个物体时统一材料组成。各向同性,物体的弹性在所有各个方向都相同。 4求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。解释在物体内同一点,不同截面上的应力是不同的。应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。负面上沿坐标轴负方向为正,沿正方向为负。材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。 5.形变:所谓形变,就是形状的改变。包括线应变(各各线段每单位长度的伸缩,即单位伸缩和相对伸缩,伸长时为正,收缩时为负);切应变(各线段直接直角的改变,用弧度表示,以直角变小时为正,变大为负) 6试述弹性力学平面应力问题与平面应变问题的主要特征及区别:平面应力问题:几何形状,等厚度薄板。外力约束,平行于板面且不沿厚度变化。平面应变问题:几何形状,横断面不沿长度变化,均匀分布。外力约束,平行于横截面并不沿长度变化。 7.主应力:设经过P点的某一斜面上的切应力等于0,则该斜面上的正应力称为P点的一个主应力;应力主向:该斜面的法线方向称为该斜面的一个应力主向。 6. 平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。在推导平衡微分方程时我们主要用了连续性假定。 7几何方程表示的是形变分量与位移分量之间的关系式。当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。在推导几何方程主要用了小变形假定。 8.在平面问题中,为了完全确定位移,就必须有3个适当的刚体约束条件。为什么?既然物体在形变为零时可以有刚体位移,可见,当物体发生一定形变时,由于约束条件的不同,他可能具有不同的刚体位移,因而它的位移并不是完确定的,在平面问题中,常数U0 V0 W的任意性就反应位移的不确定性,而为了安全确定位移,就必须有三个何时得刚体约束来确定这三个常数。 9.物理方程表示的应力分量与应变分量之间的关系式。两种平面问题的物理方程是不一样的,然而如果在平面应力问题的物理方程,降E换为E/1-μ2,将μ换为μ/1-μ,就可以得到平面应变问题的物理方程。推导物理方程时,主要用了完全弹性、各向同性以及均匀性(此处写小变形假定也可以)等假设。 10.边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为应力边界条件、位移边界条件以及混合边界条件。

弹性力学习题(新)

1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应 力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是 相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是 相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的 改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

2-1 已知薄板有下列形变关系:式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。 解: 1、相容条件: 将形变分量带入形变协调方程(相容方程)

其中 所以满足相容方程,符合连续性条件。 2、在平面应力问题中,用形变分量表示的应力分量为 3、平衡微分方程

其中 若满足平衡微分方程,必须有

分析:用形变分量表示的应力分量,满足了相容方程和平衡微分方程条件,若要求出常数A,B,C,D还需应力边界条件。 例2-2 如图所示为一矩形截面水坝, 其右侧面受静水压力(水的密度为ρ), 顶部受集中力P作用。试写出水坝的应 力边界条件。 解: 根据在边界上应力与面力的关系 左侧面:

弹性力学重点(适合入门)

1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理 2 (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途? 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。 3 (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy平面,外力沿板厚均匀分布,只有平面应力分量xσ,yσ,xyτ存在,且仅为x,y的函数。平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分量xε,yε,xyγ存在,且仅为x,y的函数。4简述按应力求解平面问题时的逆解法。 所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。 5有限元分析的解题步骤。 答:(1)力学模型的确定;(2)结构的离散化;(3)计算载荷的等效节点力;(4)计算各单元的刚度矩阵;(5)组集整体刚度矩阵;(6)施加便捷约束条件;(7)求解降阶的有限元基本方程;(8)求解单元应力;(9)计算结果的输出 7逆解法: 设定各种形式的、满足相容方程的应力函数, 求出应力分量后,根据应力边界条件判断该应力函数能解决什么问题。 8半逆解法: 针对所求问题,假定部分或全部应力分量的函数形式、从而推出应力函数的形式。然后代入相容方程,求出应力函数的具体表达式。最后求出应力分量,并考虑这些应力分量是否满足全部应力边界条件及多连体中的位移单值条件 9圣维南(Saint Venant)原理:

弹性力学的平面问题解法

弹性力学的平面问题解法 发表时间:2018-10-22T13:37:54.003Z 来源:《防护工程》2018年第14期作者:朱曼丽 [导读] 文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段 朱曼丽 哈尔滨铁道职业技术学院黑龙江哈尔滨 150000 摘要:本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下基础。着眼于弹性力学求解方法中一些方法,通过其在平面问题中的应用来介绍几种方法的研究思路,研究方法以及优缺点。弹性力学作为固体力学的一个重要分支,它的研究对象是板、壳、实体以及单根杆件,它是研究弹性固体由于受外力作用,边界约束或者温度改变及其他一种或多种外界条件作用下产生的应力、应变和位移。它的研究对象是板、壳、实体以及单根杆件。 关键词:弹性力学;平面问题;解法 前言:弹性力学是材料力学问题的精确解,是结构力学,塑性力学等力学学科的基础,其广泛应用于土木工程、航空航天工程及机械工程等多个学科领域。并且随着科学技术手段的进步,电子计算机得以应用到弹性力学的计算分析中,这极大地促进了弹性力学问题的分析计算更加深入,促使了有限单元法得以实现。本文从弹性力学最基本的平面问题出发,通过求解平面问题的解析法、数值法和试验方法来感受弹性力学研究问题的手段、方法,体会弹性力学的魅力,并为其它力学学科的学习打下坚实的基础。 1 问题解法 1.1解析法 解析法是根据研究对象在结构中的静力平衡条件,几何关系和物理关系建立边界条件,平衡微分方程,几何方程和物理方程,并以此求解应力分量,应变分量和位移分量的一种平面问题的精确解法。按求解时的基本未知量选取不同可分为按位移求解的位移法和按应力求解的应力法。第一个位移法:以位移为基本未知量时的基本方程如下: 位移边界条件如下 从上面的公式可以看出位移法求解平面问题时的基本未知量只有两个,与应力法的三个基本未知量相比求解简单很多,并且不但能求解位移边界条件,还能求解应力边界条件与混合边界条件。第二个应力法:应力法以应力分量作为基本未知量,由此平面问题的平衡微分方程,几何方程,物理方程以及边界条件经过推导可变为如下形式: 基本方程: 应力边界条件: 值得注意的是按应力求解时边界条件应全部为应力边界条件。对于位移边界条件,虽然在局部边界上可用圣维南定理转化为应力边界条件,但此时得到的解答已不是精确解,同时上述推导过程是基于平面应力问题的,对于平面应变问题应把弹性常数作相应调整。 1.2 数值解法 弹性力学平面问题的解法虽然针对某些问题来说可以得到精确解,但是其不适合实际工程中复杂问题的计算。相反的,数值分析方法虽然只是对实际问题的近似解答,但其求解时的过程清晰,步骤明确,便于编程,并且工程上常有安全系数的保证,因此近似解与不会对实际工程造成太大影响。从而使数值分析方法在工程问题中得到大量应用。数值分析方法有以下三种:差分法:用差分方程替代平衡微分方程,将求解微分方程变为求解代数方程,简化了计算。变分法:变分法其实是一种能量法,以外力所做的功及弹性体的应变势能来建立弹性力学的求解方程。其中基本未知量为弹性体的虚位移,运用的基本原理为虚位移原理和最小势能原理。有限单元法:在力学模型上进行近似将弹性体简化为有限个单元体,且各单元体之间仅在有限个结点处交铰结而成的结构物。然后进行单元分析,形成单元刚度矩

河南理工弹性力学-逆解法与半逆解法

第12讲逆解法与半逆解法

内容回顾 如果体力是常数(如重力)时,引入应力函数Φ 后,其应力分量可以表示为:而应力函数还应该满足如下的双调和条件: 除此之外,应力分量还应该满足相应的边界条件位移单值条件(对于多连域)22222, ,.x x y xy y y x x y x x y f f y 444442220x x y y

1.逆解法 所谓逆解法,就是先设定各种形式的满足相容方程的应力函数Φ。然后利用应力函数计算出各应力分量,根据边界条件来考察,这样的应力函数对应于什么样的弹性力学问题。444442220x x y y 22222, ,.x x y xy y y x x y x x y f f y

2.逆解法之多项式解答 下面在忽略体力的条件下,用逆解法,求出几个简单平面问题的多项式解答,以熟悉逆解法。1)一次函数a x by c 22222, ,.x x y xy y y x x y x x y f f y 应力分量444442220x x y y 相容方程 将一次函数代入相容方程,可以满足;再代入应力分量,得。 00, 0,x y xy 结论:(1)一次应力函数对应于无面力无应力状态; (2)应力函数加减一次项,不影响计算结果。

2.逆解法之多项式解答 22222, ,.x x y xy y y x x y x x y f f y 444442220x x y y 2)二次函数2ax 将二次函数代入相容方程,可以满足;再代入应力分 量,得 结论:纯二次函数对应于沿 坐标轴方向单向均布拉力模型。 0, 2,x y xy a

弹性力学基础知识归纳知识讲解

弹性力学基础知识归

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.—组可能的应力分量应满足平衡微分方程和相容方程。 二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。

4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号? 由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。5.什么叫平面应力问题和平面应变问题?举出工程实例。 平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。 平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1 )完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4 )各向同性假定。 (5)小变形假定。 满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。一般混凝土构件和一般土质地基可以看做为理想

弹性力学--纳维解法(板壳理论)

板壳理论课程设计 对工科各专业说来,弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。然而,它们之间还存在着一些不同。材力中,基本上只研究杆状结构,即长度远大于高度和宽度的构件。而材料力学中主要研究的是这种构件在拉压、剪切、弯曲、扭转作用下的应力和位移。结构力学中,主要是在材料力学的基础上研究杆状构件所组成的结构,即杆件系统。至于非杆状结构,则是弹性力学的主要研究内容。在弹性力学中,研究杆状结构一般都不用诸如一些关于构建的形变状态或应力分布的假定,因而得到的结果就比较精确。 从8个方程8个未知量,到圣维南原理、相容方程;从逆解法、半逆解法到差分法、变分法,邱老师的课讲的十分生动,同学们也听得十分认真。到弹性力学下册,也就是板壳理论,主要是研究薄板的小挠度变形及其应力、应变。求解四边简支矩形薄板在载荷下的挠度,以及矩形薄板的莱维法解及一般解法。另外,变厚度矩形和圆形薄板的挠度求解问题。差分法中引进了较为精确的边界条件以及在均布载荷和集中载荷下的不同解法。 在课程设计的过程中,在自学Matlab 的过程中完成了纳维解法中挠度表达式的表示和循环收敛过程,并且完成了差分法中不同网格划分下的差分方程化为矩阵形式后的求解过程。除此之外,还学会了使用ABAQUS 创建板并定义厚度以减少同等情况下创建实体添加边界条件不准确对计算结果产生的影响。尽管和差分法与精确解的误差分析相比,误差还是比较大,但相比于创建三维实体并在底边添加约束条件相比,误差还是减少了很多。 在计算过程中,先是采用厚度0.2m 薄板,有限元方法的误差过大,而当把薄板的厚度改为0.1m 时,误差变小。两种厚度的薄板都进行了同样的计算。 四边简支的薄板在均布载荷作用下位移的最大值,薄板的尺寸为长宽高: 110.1??,均布载荷为21000/q N m =,弹性模量E=205GPa ,泊松比=0.3μ, 分别用:纳维法、差分法以及有限元方法进行求解并比较求得的结果。 得到结果如下:

弹性力学基本知识考试必备

弹性力学基本知识考试必备 一、 基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变 问题。

(5)一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6)圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。(7)差分法的基本概念: 是微分方程的近似解法,具体的讲,差分法就是把微分用差分来代替,把导数用差分商来代替,从而把基本方程和边界条件(微分方程)近似用差分方程来表示,把求解微分方程的问题变成求解代数方程问题。 (8)极小势能原理: 在给定外力作用下,在满足位移边界条件的所有各组位移中间,实际存在的一组位移应使总势能成为极值,对于稳定平衡状态,这个值是极小值。 (9)轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。

第10章 弹性力学空间问题

第十章弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。

§10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,坐标系的选取直接影响问题求解的难易程度。 例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。 本节讨论有关空间柱坐标形式的基本方程。特别是关于空间轴对称问题的基本方程。 学习要点: 1、空间柱坐标系; 2、柱坐标基本方程; 3、空间轴对称问题的基本方程。 1、空间柱坐标系 在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,?,z)表示。 直角坐标与柱坐标的关系为:x =ρ cos ?,y =ρ sin ? ,z = z 柱坐标下的位移分量为:uρ,u? , w 柱坐标下的应力分量为:σρ,σ? ,σz,τρ?,τ? z,τzρ 柱坐标下的应变分量为:ερ,ε? ,εz,γρ?,γ? z,γzρ 以下讨论柱坐标系的弹性力学基本方程。 2、柱坐标基本方程

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

弹性力学题

一、单项选择题 1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。 A.相容方程 B.近似方法 C.边界条件 D.附加假定 2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。 A.几何上等效 B.静力上等效 C.平衡 D.任意 3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。 A.平衡方程、几何方程、物理方程完全相同 B.平衡方程、几何方程相同,物理方程不同 C.平衡方程、物理方程相同,几何方程不同 D.平衡方程相同,物理方程、几何方程不同 4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A ) ①区域内的相容方程;②边界上的应力边界条件;③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。 A.①②④ B. ②③④ C. ①②③ D. ①②③④ 5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 图1 A. ①③ B. ②④ C. ①④ D. ③⑤ 6.平面应变问题的微元体处于( C ) A.单向应力状态 B.双向应力状态 C.三向应力状态,且z σ是一主应力 D.纯剪切应力状态 7.圆弧曲梁纯弯时,( C ) A.应力分量和位移分量都是轴对称的 B.应力分量和位移分量都不是轴对称的 C.应力分量是轴对称的,位移分量不是轴对称的 D.位移分量是轴对称的,应力分量不是轴对称的 8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C ) 相同,B 也相同 不相同,B 也不相同 相同,B 不相同 不相同,B 相同

弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理 一.内容介绍 通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。 弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。根据这一要求,本章的主要任务有三个: 一是综合弹性力学的基本方程,并按边界条件的性质将问题分类; 二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。应该注意的是对于应力解法,基本方程包括变形协调方程。 三是介绍涉及弹性力学求解方法的一些基本原理。主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。 如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。 二. 重点 1.弹性力学基本方程与边界条件分类; 2.位移解法与位移表示的平衡微分方程; 3. 应力解法与应力表示的变形协调方程; 4. 混合解法; 5. 逆解法和半逆解法; 6. 解的唯一性原理、叠加原理和圣维南原理 知识点 弹性力学基本方程边界条件位移表示的平衡微分方程应力解法 体力为常量时的变形协调方程物理量的性质逆解法和半逆解法 解的迭加原理弹性力学基本求解方法位移解法位移边界条件 变形协调方程混合解法应变能定理解的唯一性原理圣维南原理

§5.1 弹性力学的基本方程及其边值问题 学习思路: 通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。 弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。 由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。 根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。 上述三种求解方法对应于偏微分方程的三种边值问题。 学习要点: 1. 弹性力学基本方程; 2. 本构方程; 3. 边界条件; 4. 弹性力学边值问题; 首先将弹性力学基本方程综合如下: 1. 平衡微分方程 用张量形式描述 2. 几何方程

寮规

《弹性力学》课程教学大纲 课程英文名称:Theory of Elasticity 课程编号:193990360 课程类别:专业课 课程性质:必修课 学分: 3 学时: 48(其中:讲课学时48:实验学时:0 上机学时: 0) 适用专业:工程力学本科专业 开课部门:土木工程与建筑学院 一、课程教学目的和课程性质 本课程属于工程力学专业必修课。该课程是在理论力学和材料力学的基础上,进一步学习弹性力学的基本概念、基本原理和基本方法,了解线弹性体简单经典问题的计算方法和基本解答,分析各种结构物或构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法,提高分析与计算能力,为学习有关专业课程打好初步的弹性力学基础。 本课程教学目的主要目的:培养学生的逻辑思维能力;培养学生估计和评价弹性固体中应力和应变的分布规律及计算结果的能力;培养学生用弹性力学方法研究和解决实际工程中力学问题的能力;使学生掌握分析一般工程结构在外力作用下的变形、内力分布与承载能力的方法,以及为进一步研究工程结构的强度、刚度、稳定性等力学问题打下基础,并着重在基础理论和实践应用两方面进行科研能力的培养。 二、本课程与相关课程的关系 先修课程:《高等数学》、《理论力学》、《材料力学》 后续课程:《土力学》、《岩石力学》、《塑性力学》等 三、课程的主要内容及基本要求 第1单元绪论( 2 学时) [知识点] 弹性力学的研究内容和研究方法;弹性力学中的一些基本概念;弹性力学中的基本假设条件;弹性力学与其它学科的关系;弹性力学的学习方法。 [重点] 弹性力学的研究内容和研究方法;弹性力学的基本假设;弹性体、弹性变形、应力、应变、位移与变形、面力、体力的概念。

弹性力学边值问题

第五章弹性力学边值问题 本章任务 总结对弹性力学基本方程 讨论求解弹性力学问题的方法

目录 §5.1弹性力学基本方程 §5.2问题的提法 §5.3弹性力学问题的基本解法 解的唯一性 §5.4圣维南局部影响原理 §5.5叠加原理

§5.1弹性力学基本方程 ?总结弹性力学基本理论; ?讨论已知物理量、基本未知量;以及物理量之间的关系——基本方程和边界条件。

弹性力学基本方程 1.平衡微分方程 000=+??+??+??=+??+??+??=+??+??+??bz z yz z by zy y xy bx zx yx x F z y x F z y x F z y x στττστττσ0 ,=+bj i ij F σ2.几何方程 x w z u z v y w y u x v z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,,,),,(2 1i j j i ij u u +=ε

3.变形协调方程 y x z y x z z x z y x y z y z y x x z x x z z y z y y x y x z xy xz yz y xy xz yz x xy xz yz xz z x yz y z xy x y ???=??-??+???????=??+??-???????=??+??+??-?????=??+?????=??+?????=??+??εγγγεγγγεγγγγεεγεεγεε2222222222222222222)(2)(2)(位移作为基本未知量时,变形协调方程自然满足。

最新弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。

同济大学弹性力学往年试题

同济大学本科课程期终考试(考查)统一命题纸 A 卷 2006—2007学年第 一 学期 课程名称:弹性力学 课号: 任课教师: 专业年级: 学号: 姓名: 考试(√)考查( ) 考试(查)日期: 2007 年1月 22 日 出考卷教师签名:朱合华、许强、王君杰、李遇春、陈尧舜、邹祖军、赖永瑾、蔡永昌 教学管理室主任签名: 1.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)薄板小挠度弯曲时,体力可以由薄板单位面积内的横向荷载q 来等代。 ( ) (2)对于常体力平面问题,若应力函数),(y x ?满足双调和方程02 2 =???,那 么由),(y x ?确定的应力分量必然满足平衡微分方程。 ( ) (3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的 结 果 会 有 所 差 别 。 ( ) (4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。 ( ) (5)无论是对于单连通杆还是多连通杆,其截面扭矩均满足如下等式: ??=dxdy y x F M ),(2,其中),(y x F 为扭转应力函数。 ( ) (6)应变协调方程的几何意义是:物体在变形前是连续的,变形后也是连续的。 ( ) (7)平面应力问题和平面应变问题的应变协调方程相同,但应力协调方程不同。 ( ) (8)对于两种介质组成的弹性体,连续性假定不能满足。 ( ) (9)位移变分方程等价于以位移表示的平衡微分方程及以位移表示的静力边界条件。( ) (10)三个主应力方向一定是两两垂直的。 ( ) 2.填空题(在每题的横线上填写必要的词语,以使该题句意完整。)(共20分,每小 题2分) (1)弹性力学是研究弹性体受外界因素作用而产生的 的一门学科。 (2)平面应力问题的几何特征是: 。

弹性力学简答部分(纯粹个人总结)

1.什么是弹性力学 弹性力学,也称弹性理论,固体力学学科的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。 2.弹性力学的基本假定 (1)连续性——假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在任何空隙。 (2)完全弹性——对应一定的温度,如果应力和应变之间存在一一对应关系,而且这个关系和时间无关,也和变形历史无关,称为完全弹性材料。 完全弹性分为线性弹性和非线性弹性 材料弹性常数不随应力或应变的变化而改变 (3)均匀性——假设弹性物体是由同一类型的均匀材料组成的。 (4)各向同性——假定物体在各个不同的方向上具有相同的物理性质。 (5)小变形——假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。 3.概念: 体力:分布在物体体积内的力,如重力和惯性力。 面力:分布在物体表面上的力,如流体压力和接触力。 内力:外界因素作用下,物体内部各个部分之间的相互作用力 应力:分布在物体内部任意点上的力,实质上是面力的一种 应变:是描述物体受力后发生变形的相对概念的力学量 位移:物体内任一点位置的移动 平面应力问题:只在板边上受有平行于板面并且不沿厚度变化的面力或约束。(1) 几何特征:一个方向的尺寸比另两个方向的尺寸小得多。(2)应力特征:平面应力问题只有三个应力分量:应变分量、位移分量也仅为x、y 的函数,与z 无关。 平面应变问题:(1) 几何特征:一个方向的尺寸比另两个方向的尺寸大得多,且沿长度方向几何形状和尺寸不变化。(2)应力特征:以任一横截面为xy 面,任一纵线为z 轴。设z方向为无限长,则沿z 方向其他变量都不变化,仅为x,y 的函数。 4.圣维南原理(用积分的方式表示)见例题 圣维南原理: 若把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,则近处的应力分布将有显著改变,而远处所受的影响可忽略不计。

弹性力学

1、连续体力学包括固体力学、流体力学、热力学和电磁动力学,非连续体力 学包括原子级、波动方程、量子力学。 2、弹性力学所研究的范围属于固体力学中弹性阶段。 3、弹性力学的基本假定为:假设物体是连续的、假设物体是匀质的和各项同 性的、假设物体是完全弹性的、假设物体的变形是很少的、和假设物体内无初 应力。 4、连续性假设是指:物体内部由连续介质组成,物体中应力、应变和位移分量为连续的,可用连续函数表示。 5、均匀性和各向同性假设是指:物体内各点和各方向的介质相同,即物理性质相同,物体的弹性常数弹性模量和泊松比不随坐标和方向的变化而变化。 6、完全弹性假设是指:物体在外载荷作用下发生变形,在外载荷去除后,物体能够完全恢复原形,材料服从胡克定律,即应力与形变成正比。 7、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程为:平衡方程、几何方程和物理方程,三组方程分别表示:应 力与载荷关系、应变与位移关系、应力与应变关系。 8、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。 9、在弹性力学中规定,线应变以伸长时为正,压缩时为负,与正应力的正负号规定相适应。 10、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 11、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变 和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L-1 MT-2 。 12、建立平衡方程时,在正六面微分体的6个面上共有9 个应力分量,分别为:,其中正应力为:,剪应力为:,这些应力分量与外载荷共同建立3个方程。

相关主题
文本预览
相关文档 最新文档