当前位置:文档之家› 可燃气体燃爆特性MicrosoftWord文档(2)(精)

可燃气体燃爆特性MicrosoftWord文档(2)(精)

可燃气体燃爆特性MicrosoftWord文档(2)(精)
可燃气体燃爆特性MicrosoftWord文档(2)(精)

可燃气体燃爆特性

凡是遇火,受热或与氧化剂接触能着火或爆炸的气体,统称为可燃气体。

燃烧形式气体的燃烧与液体和固体的燃烧不同,它不需要经过蒸发、熔化等过程,气体在正常状态下就可具有燃烧条件,所以比液体和固体都容易燃烧。有扩散燃烧和动力燃烧两种形式。

(1)扩散燃烧。如果可燃气体与空气的混合是在燃烧过程中进行的,则发生稳定式的燃烧,称为扩散燃烧,燃烧速度一般小于0.5m/s。由于可燃气体与空气是逐渐混合的,并逐渐燃烧消耗掉,因而形成稳定式燃烧,只要控制得当,就不会造成火灾。如火炬、气焊的火焰、燃气加热等属于这类扩散燃烧。

(2)动力燃烧。如果可燃气体与空气是在燃烧之前按一定比例均匀混合的,形成预混气,遇火源则发生爆炸式燃烧,称动力燃烧。在预混气的空间里,充满了可以燃烧的混合气,一处点火,整个空间立即燃烧起来,发生瞬间的燃烧,即爆炸现象。

此外,如果可燃气体处于压力而受冲击、摩擦或其他着火源作用,则发生喷流式燃烧。像气井的井喷火灾,高压气体从燃气系统喷射出来时的燃烧等。对于这种喷流燃烧形式的火灾,较难扑救,需较多救火力量和灭火剂,应当设法断绝气源,使火灾彻底熄灭。

分类按照爆炸下限分为两级。

(1)一级可燃气体的爆炸下限≤10%,如氢气、甲烷、乙烯、乙炔、环氧乙烷、氯乙烯、硫化氢、水煤气、天然气等绝大多数气体均属此类。

(2)二级可燃气体的爆炸极限>10%,如氨、一氧化碳、发生炉煤气等少数可燃气体属于此类。

(3)在生产或贮存可燃气体时,将一级可燃气体划为甲类火灾危险,二级可燃气体划为乙类火灾危险。

影响爆炸极限的因素可燃气体(蒸气)的爆炸极限受诸多因素的影响,主要有下列几种因素:

(1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。

(2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。

(3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显著,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。

(4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显著提高。

值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。

(5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。

容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。

(6)着火源。能源的性质对爆炸极限范围的影响是:能源强度越高,加热面积越大,作用时间越长,爆炸极限范围越宽。以甲烷为例,100V·A的电火花不引起曝炸,2V·A的电火花可引起爆炸,爆炸极限为5.9%~13.6%,3V·A的电火花则爆炸极限扩大为5.85%~14.8%。

各种爆炸性混合物都有一个最低引爆能量,即点火能量,它是指能引起爆炸性混合物发生爆炸的最小火源所具有的能量,它也是混合物爆炸危险性的一项重要的性能参数。爆炸性混合物的点火能量越小,其燃爆危险性就越大。

火花的能量、热表面的面积、火源和混合物的接触时间等,对爆炸极限均有影响。此外,光对爆炸极限也有影响,如前所述,氢和氯混合,在避光黑暗处反应十分缓慢,但在强光照射下则发生剧烈反应(链锁反应)并导致爆炸。

评价气体燃爆危险性的技术参数评价生产与生活中广泛使用的各种可燃气体火灾爆炸危险性,主要依据以下技术参数。

(1)爆炸危险度。可燃气体或蒸气的爆炸危险性可以用爆炸极限和爆炸危险度来表示,爆炸危险度即是爆炸浓度极限范围与爆炸下限浓度之比值:

爆炸下限浓度限浓度

爆炸上限浓度-爆炸下

爆炸危险度=

爆炸危险度说明,当气体或蒸气的爆炸浓度极限范围越宽,爆炸下限浓度越低,爆炸上限浓度越高时,其爆炸危险性就越大。

(2)传爆能力。是爆炸性混合物传播燃烧爆炸能力的一种度量参数,用最小传爆断面表示。

1)当可燃性混合物的火焰经过两个平面间的缝隙或小直径管子时,如果其断面小到某个数值,由于游离基的大量销毁而破坏了燃烧条件,火焰即熄灭,这种阻断火焰传播的原理称为缝隙隔爆。

2)爆炸性混合物的火焰尚能传播而不熄灭的最小断面称为最小传爆断面。设备内部的可燃混合气被点燃后,通过25mm长的结合面,能阻止将爆炸传至外部的可燃混合气的最大间隙,称为最大试验安全间隙。可燃气体或蒸气爆炸性混合物,按照传爆能力的分级如表1:表1可燃气体或蒸气爆炸性混合物按照传爆能力的分级

(3)爆炸威力指数。可燃性混合物爆炸时产生的压力为爆炸压力,它是度量可燃性混合物将爆炸时产生的能量用于作功的能力,如果爆炸压力大于容器的极限强度,容器便发生破裂。

气体爆炸的破坏性还可以用爆炸威力来表示,爆炸威力是反映爆炸对容器或建筑物冲击度的一个量,它与爆炸形成的最大压力有关,同时还与爆炸压力的上升速度有关。这两者的乘数为爆炸威力指数,因此,爆炸威力可用下式爆炸威力指数表示:

爆炸威力指数=最大爆炸压力×爆炸压力上升速度。

典型气体和蒸气的爆炸威力指数如表2:

表2典型气体和蒸气的爆炸威力指数

(4)自燃点。可燃气体的自燃点不是固定不变的数值,而是受压力、密度、容器直径、催化剂等因素的影响。

1)一般规律是:受压越高、自燃点越低,因此,可燃气体在压缩过程中(例如在压缩机中)较容易发生爆炸,其原因之一就是自燃点降低的缘故。密度越大,自燃点越低,容器直径越小,自燃点越高,在氧气中测定时,所得自燃点数值一般较低,而在空气中测定则较高。

2)同一物质的自燃点随一系列条件而变化,这种情况使得自燃点在表示物质火灾危险性方面降低了作用。但在判定火灾原因时,就不能不知道物质的自燃点。所以在利用文献中的自燃点数据时,必须注意它们的测定条件。测定条件与所考虑的条件不符时,应该注意其间的变化关系。

3)爆炸性混合气处于爆炸下限浓度或爆炸上限浓度的自燃点最高,处于反应当量浓度时的自燃点最低。在通常情况下,都是采用反应当量浓度的自燃点作为标准自燃点,例如硫化氢在爆炸下限时的自燃点为373℃,在爆炸上限时的自燃点为304℃,在反应当量浓度时的自燃点是246℃,故取用246℃作为硫化氢的标准自燃点。

4)应当根据爆炸性混合气的自燃点选择防爆电器型式,控制反应温度,设计阻火器的直径,采取隔离热源的措施等。

5)与爆炸性混合物接触的任何物体如电动机、反应缸、暖气管道等,其外表面的温度必须控制在相接触的爆炸性混合气的自燃点以下。

为了使防爆设备的表面温度限制在一个合理的数值上,将在标准试验条件下的爆炸性混合物按其自燃点分为下列T1至T6六组,见表3:

表3爆炸性混合物按自燃点分组

(5)化学活泼性。可燃气体的化学活泼性越强,其火灾爆炸的危险性越大。化学活泼性强的可燃气体在通常条件下即能与氯、氧及其他氧化剂起反应,发生火灾和爆炸。

气态烃类分子结构中的价键越多,化学活泼性越强,火灾爆炸的危险性越大。例如乙烷、乙烯和乙炔分子结构中的价键分别为单键(H3C—CH3)、双键(H2C=CH2)和叁键(HC≡CH),它们的燃烧爆炸和自燃的危险性则依次增加。

(6)比重

1)与空气比重相近的可燃气体,容易相互均匀混合,形成爆炸性混合物。

2)比空气重的可燃气体则沿着地面扩散。并易窜入沟渠、厂房死角处长时间聚集不散,遇火源则发生燃烧或爆炸。

3)比空气轻的可燃气体容易扩散。而且易顺风飘动,会使燃烧火焰蔓延扩散。

4)应当根据可燃气体的比重特点,正确选择通风排气口的位置,确定防火间距值以及采取防止火势蔓延等措施。

(7)扩散性

1)扩散性是指物质在空气及其他介质中的扩散能力。

2)可燃气体(蒸气)在空气中的扩散速度越快,火灾蔓延扩展的危险性就越大。气体的扩散速度取决于扩散系数的大小。

(8)可缩性和受热膨胀性和液体比较,气体有很大的弹性,气体在压力和温度的作用下,容易改变其体积,受压时体积缩小,受热即体积膨胀。当容积不变时,温度与压力成正比,则气体受热温度越高,它膨胀后形成的压力也越大。据此,装盛压缩气体或液体的容器(液化钢瓶),如受高温、日晒等作用,气体就会急剧膨胀,产生很大压力,当压力超过容器的极限强度时,就会引起容器的爆炸。

化学危险物品燃爆特性化学危险品

化学危险物品燃爆特性——化学危险品一、化学危险物品分类说明 (1)爆炸品 此类物品具有易于燃烧和爆炸性能。当受到高热、震动、摩擦、撞击等外加作用或与酸碱等物品接触、发生剧烈的化学反应,产生 大量气体和热量,同时气体急剧膨胀而引起爆炸。 按其性质,分为四项: ①点火器材包括异火索,点火绳等; ②起爆器材包括异爆索,雷管等; ③炸药及爆炸性药品包括三硝基甲苯(梯恩梯),硝化甘油混合炸药,黑火药,硝铵炸药,叠氮化钠等;

④其他爆炸品包括猎枪子弹,礼花炮和爆竹(鞭炮)等。 (2)氧化剂 此类物品具有强烈氧化性能,具体品种之间还可能互有抵触。除部分有机氧化剂外,其本身虽不燃烧,但在一定的条件下,经受摩擦、震动撞击、高热或遇酸碱的物质,在受潮,接触易燃物、有机物、还原剂以及和性质有抵触的物品混存时,即能分解,发生燃烧和爆炸。 按氧化剂的性质将之分为四项: ①一级无机氧化剂包括碱金属及碱土金属的氯酸盐及高氯酸盐(如氯酸钾、氯酸钠、高氯酸钾、高氯酸钠等),过氧化物(如过氧化钾、过氧化钠等),和碱金属及碱土金属的硝酸盐(如硝酸钾、硝酸钠等);

②一级有机氧化剂包括过氧化氢和硝酸的有机衍生物(如过氧化二苯甲酰、硝酸胍等); ③二级无机氧化剂包括重铬酸盐、亚硝酸盐(如重铬酸铵、重铬酸钾、重铬酸钠、亚硝酸钾、亚硝酸钠等); ④二级有机氧化剂包括过醋酸、土荆芥油等。 为了贮存上的安全、在上述划分二级四项的基础上,再划分为七个小项: 甲过氧化氢的无机衍生物(如过氧化钾、过氧化钠等); 乙氯酸盐、溴酸盐、碘酸及高碘酸盐、高氯酸盐等; 丙硝酸盐(硝酸铵单存); 丁高锰酸盐及重铬酸盐;

化学危险物品燃爆特性-可燃气体(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 化学危险物品燃爆特性-可燃气 体(新版) Safety management is an important part of production management. Safety and production are in the implementation process

化学危险物品燃爆特性-可燃气体(新版)备注说明:安全管理是生产管理的重要组成部分,安全与生产在实施过程,两 者存在着密切的联系,存在着进行共同管理的基础。 我们日常生活中遇到的可能导致火灾事故的气体主要是各种燃气,包括管道煤气、天然气、液化石油气等。甲类可燃气体(爆炸浓度下限<10%)有:氢气、硫化氢、甲烷、乙烷、丙烷、丁烷、乙烯、丙烯、乙炔、氯乙烯、甲醛、甲胺、环氧乙烷、炼焦煤气、水煤气、天然气、油田伴生气、液化石油气等;乙类可燃气体(爆炸浓度下限≥10%)有:氨、一氧化碳、硫氧化碳、发生炉煤气等。可燃气体具有以下的危险性: 1.燃烧性。可燃气体一般遇到明火极易发生燃烧,容易引起大面积的火灾。 2.爆炸性。可燃气体与空气以一定比例混合后,遇明火可发生爆炸。另外,液化可燃气体在容器中因受热等外界因素影响,体积迅速膨胀,也会引起爆炸。 3.受热自燃性。可燃气体有时不需要接触明火,只要受热达到

一定温度就可能发生燃烧。 4.扩散性。可燃气体一旦泄漏很容易向四周扩散,一旦成灾,往往波及面较大。 5.毒害腐蚀性。可燃气体大部分有毒,人体吸入后能引起中毒。有的气体燃烧时消耗掉空气中的大量氧气,也会导致人因缺氧而窒息。 由于有了以上的危险性,一旦可燃气体导致火灾的发生,其产生的危害更大。因为气体火灾具有以下特点: 1.容易蔓延扩展。气体比液体和固体物质更容易着火,而且燃烧速度快,特别是有可燃气体泄漏的火场,能迅速蔓延扩展到气体所能充满的有限空间以及所波及的区域,造成大面积火灾。 2.容易发生爆炸。如果未燃烧的可燃气体大量扩散,积累到一定的浓度,就容易爆炸;盛在容器中的可燃气体再受到一定压力或温度升高到一定限度时,也容易爆炸,危及人的生命。 3.容易复燃。可燃气体在很多情况下是处于高压状态和压缩状态的,扑救从高压喷出的燃烧气体而导致的火灾是十分困难的,因

危险化学品特性表 第5类

目录 5.1类氧化剂 过氧化氢的理化性质及危险特性(表-) (1) 过氧化钠的理化性质及危险特性(表-) (2) 高氯酸[含酸50%~72%]的理化性质和危险特性(表-) (3) 高氯酸钠的理化性质和危险特性(表-) (4) 氯酸钠的理化性质和危险特性(表-) (5) 氯酸钾的理化性质和危险特性(表-) (6) 亚氯酸钠的理化性质及危险特性(表-) (7) 高锰酸钠的理化性质及危险特性(表-) (8) 高锰酸钾的理化性质及危险特性(表-) (9) 硝酸钠的理化性质及危险特性(表-) (10) 硝酸钾的理化性质和危险特性(表-)............. 错误!未定义书签。硝酸钙的理化性质和危险特性(表-) . (12) 硝酸锶的理化性质和危险特性(表-) (13) 硝酸钡的理化性质及危险特性(表-) (14) 硝酸锌的理化性质和危险特性(表-) (15) 硝酸银的理化性质及危险特性(表-) (17) 硝酸铅的理化性质及危险特性(表-) (18) 亚硝酸钾的理化性质及危险特性(表-) (19) 过(二)碳酸钠的理化性质及危险特性(表-) (20) 过硫酸铵的理化性质及危险特性(表-) (21)

过硫酸钾的理化性质及危险特性(表-) (23) 过硼酸钠的理化性质及危险特性(表-) (24) 漂白粉的理化性质及危险特性(表-) (25) 溴酸钠的理化性质和危险特性(表-) (26) 溴酸钾的理化性质和危险特性(表-) (27) 高碘酸的理化性质和危险特性(表-) (28) 高碘酸钠的理化性质和危险特性(表-) (29) 高碘酸钾的理化性质和危险特性(表-) (30) 碘酸钠的理化性质和危险特性(表-) (31) 碘酸钾的理化性质和危险特性(表-) (32) 三氧化铬[无水]的理化性质及危险特性(表-) (33) 重铬酸钾的理化性质及危险特性(表-) (34) 硝酸镁的理化性质和危险特性(表-) (35) 硝酸铁的理化性质和危险特性(表-) (36) 硝酸镍的理化性质和危险特性(表-) (37) 硝酸钴的理化性质及危险特性(表-) (38) 硝酸铝的理化性质和危险特性(表-) (39) 硝酸锰的理化性质和危险特性(表-) (40) 硝酸铜的理化性质和危险特性(表-) (41) 硝酸铋的理化性质和危险特性(表-) (42) 硝酸镧的理化性质和危险特性(表-) (43)

主要危险化学品危害特性全解

主要危险化学品危害特性 甲醛 一、标识 中文名甲醛、蚁醛、福尔马林 英文名Formaldehyde 分子式CH2O;HCHO 相对分子质量30.03 CAS号50-00-0 危险性类别第8.2类其他腐蚀品 化学类别醛类。 二、主要组成与性状 主要成分纯品 外观与性状无色,具有刺激性和窒息性的气体,商品为其水溶液 主要用途是一种重要的有机原料,也是炸药、染料、医药、农药的原料,也作杀菌剂、消毒剂等。 三、健康危害 侵入途径:吸入、食入、经皮吸收 健康危害:本品对粘膜、上呼吸道、眼睛和皮肤有强烈刺激性。接触其蒸气,引起结膜炎、角膜炎、鼻炎、支气管炎;重者发生喉痉挛、声门水肿和肺炎等。对皮肤有原发性刺激和致敏作用;浓溶液可引起皮肤凝固性坏死。口服灼伤口腔和消化道,可致死。 慢性影响:长期低浓度接触甲醛蒸气,可出现头痛、头晕、乏力、两侧不对称感觉障碍和排汗过盛以及视力障碍。本品能抑制汗腺分泌,长期接触可致皮肤干燥皲裂。

甲醛是一种具强还原性的原生质毒素,进入人体器官后,能与蛋白质中的氨基结合生成所谓甲酰化蛋白而残留在体内,其反应速度受pH值温度的显著影响。进入人体的甲醛亦可能转化成甲酸强烈地刺激粘膜,并逐渐排出体外。 四、急救措施 皮肤接触:脱去污染的衣着,用肥皂水及清水彻底冲洗。或用2%碳酸氢溶液冲洗。 眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。必要时进行人工呼吸。就医。 食入:患者清醒时立即漱口,洗胃。就医。 五、燃爆特性与消防 燃烧性不燃 闪点(℃)50℃/37% 爆炸下限(%)7 引燃温度(℃)300℃ 爆炸上限(%)73 最小点火能(Mj)无资料 最大爆炸压力(Mpa)无资料 危险特性其蒸气与空气形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。若遇高热,容器内压增大,有开裂和爆炸的危险。 灭火方法灭火方法:雾状水、泡沫、二氧化碳、砂土。 六、泄漏应急处理

化学危险物品燃爆特性-可燃气体

编号:SY-AQ-09100 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 化学危险物品燃爆特性-可燃 气体 Combustion and explosion characteristics of dangerous chemicals combustible gases

化学危险物品燃爆特性-可燃气体 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 我们日常生活中遇到的可能导致火灾事故的气体主要是各种燃气,包括管道煤气、天然气、液化石油气等。甲类可燃气体(爆炸浓度下限<10%)有:氢气、硫化氢、甲烷、乙烷、丙烷、丁烷、乙烯、丙烯、乙炔、氯乙烯、甲醛、甲胺、环氧乙烷、炼焦煤气、水煤气、天然气、油田伴生气、液化石油气等;乙类可燃气体(爆炸浓度下限≥10%)有:氨、一氧化碳、硫氧化碳、发生炉煤气等。可燃气体具有以下的危险性: 1.燃烧性。可燃气体一般遇到明火极易发生燃烧,容易引起大面积的火灾。 2.爆炸性。可燃气体与空气以一定比例混合后,遇明火可发生爆炸。另外,液化可燃气体在容器中因受热等外界因素影响,体积迅速膨胀,也会引起爆炸。 3.受热自燃性。可燃气体有时不需要接触明火,只要受热达到

一定温度就可能发生燃烧。 4.扩散性。可燃气体一旦泄漏很容易向四周扩散,一旦成灾,往往波及面较大。 5.毒害腐蚀性。可燃气体大部分有毒,人体吸入后能引起中毒。有的气体燃烧时消耗掉空气中的大量氧气,也会导致人因缺氧而窒息。 由于有了以上的危险性,一旦可燃气体导致火灾的发生,其产生的危害更大。因为气体火灾具有以下特点: 1.容易蔓延扩展。气体比液体和固体物质更容易着火,而且燃烧速度快,特别是有可燃气体泄漏的火场,能迅速蔓延扩展到气体所能充满的有限空间以及所波及的区域,造成大面积火灾。 2.容易发生爆炸。如果未燃烧的可燃气体大量扩散,积累到一定的浓度,就容易爆炸;盛在容器中的可燃气体再受到一定压力或温度升高到一定限度时,也容易爆炸,危及人的生命。 3.容易复燃。可燃气体在很多情况下是处于高压状态和压缩状态的,扑救从高压喷出的燃烧气体而导致的火灾是十分困难的,因

TVOC气体基本特性

1. VOCs的定义 VOCs的学术定义:是指在正常状态下(20℃,101.3kPa),蒸气压在0.1mmHg(13.3Pa)以上沸点在260℃(500℉)以下的有机化学物质。 2.VOCs的特性 ●均含有碳元素,还含有H、O、N、P、S及卤素等非金属元素。 ●熔点低,易分解,易挥发,均能参加大气光化学反应,在阳光下产生光化学烟雾。 ●常温下,大部分为无色液体,具有刺激性或特殊气味。 ●大部分不溶于水或难溶于水,易溶于有机溶剂。 ●种类达数百万种,大部分易燃易爆,部分有毒甚至剧毒。 ●相对蒸气密度比空气重。 3.VOCs的分类 VOCs按其化学结构,可以分为:烃类(烷烃、烯烃和芳烃)、酮类、酯类、醇类、酚类、醛类、胺类、腈(氰)类等。

4.常见VOCs的理化性质 所列部分VOCs选自GBZ2.1《国家职业卫生标准---工作场所有害因素职业接触限值—化学有害因素》 VOCs的主要危害 1.总体危害 (1)危害环境 ①在阳光和热的作用下参与氧化氮反应形成臭氧,导致空气质 量变差并且是夏季光化学烟雾、城市灰霾的主要成分; ②VOCs是形成细粒子(PM2.5)和臭氧的重要前体物质,大气 中VOCs在PM2.5中的比重占20%~40%左右,还有部分PM2.5由

VOCs转化而来; ③VOCs大多为溫室效应气体--导致全球范围内的升温。 (2)危害健康 ①刺激性&毒性 VOCs超过一定浓度时,会刺激人的眼睛和呼吸道,使皮肤过敏、咽痛与乏力;VOCs很容易通过血液-大脑的障碍,损害中枢神经;VOCs伤害人的肝脏、肾脏、大脑和神经系统。 ②致癌性、致畸作用和生殖系统毒性 2.常见毒性VOCs的具体危害 注:皮:指因皮肤、黏膜和眼睛直接接触蒸气、液体和固体,通过完整的皮肤吸收引起的全身效应敏:指已被人或动物资料证实该物质可能有致敏作用 G1:指国际癌症组织(IARC)确认为致癌物; G2B:指为可疑人类致癌物

危险化学品安全技术特性(甲酸)

危险化学品安全技术特性(甲酸) 第一部分化学品及企业标识 中文名:甲酸蚁酸 英文名:formic acid 分子式:CH2O2 相对分子质量:46.03 CAS号:64-18-6 危险性类别:第8.1类酸性腐蚀品 化学类别:有机酸 第二部分主要组成与性状 主要成分:含量一级≥90.0%;二级≥85.0%。 外观与性状:无色透明发烟液体,有强烈刺激性酸味。 主要用途:用于制造化学药品、橡胶凝固剂及纺织、印染、电镀等。 第三部分健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:主要引起皮肤、粘膜的刺激症状。接触后可引起结膜炎、眼脸水肿、鼻炎、支气管炎,重者可引起急性化学性肺炎。浓甲酸口服后可腐蚀口腔及消化道粘膜,引起呕吐、腹泻及胃肠出血,甚至因急性肾功能衰竭或呼吸功能衰竭而致死。皮肤接触可引起炎症和溃疡。偶有过敏反应。 第四部分急救措施 皮肤接触:立即脱去被污染的衣着,用大量流动清水冲洗,至少15分钟。就医。 眼睛接触:立即提起眼脸,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:误服者用水漱口,给饮牛奶或蛋清。就医。 第五部分燃爆特性与消防 燃烧性:可燃闪点(℃):68.9(开杯) 爆炸下限(%):18.0 引燃温度(℃):410 爆炸上限(%):57.0 最小点火能(mJ) :0.62 最大爆炸压力(Mpa):无资料 危险特性:可燃,其蒸气与空气可形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。与强氧化剂接触可发生化学反应。具有较强的腐蚀性。 灭火方法:消防人员须穿全身防护服、佩戴氧气呼吸器灭火。但用水保持火场容

工业气体危险特性概述

工业气体危险特性概述集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

工业气体危险特性概述 工业气体的危险特性主要有燃烧性、毒害性、窒息性、腐蚀性、爆炸性以及可能发生氧化、分解、聚合等产生的危险特性。由于工业气体用气瓶属于移动式压力容器,流动范围广,使用条件复杂,无专人监督其日常使用,因此工业气体的危险特性导致事故的可能性及危害性会很大,必须引起足够重视。熟悉掌握工业气体的各种危险特性,对于预防事故和减少灾害,具有十分重要的作用。本节将对工业气体的危险特性进行概述。 一、燃烧性 可燃气体的燃烧往往同时伴有发光、发热的激烈反应,对周围环境的破坏很大,危险性十分明显。根据燃烧条件,燃烧必须同时具备可燃物,助燃物和点火源。而对易燃气体而言,一旦泄露,与空气接触,就已存在两个条件,如若存在点火源,则燃烧就无法避免。由 此可知,要消除易燃气体的燃烧危险性,就必须严防易燃气体泄露到空气中,同时阻止点火源引入其中;或在易燃气体容易泄露的场所,严格控制点火源的出现。能导致易燃气体燃烧的点火源种类很多,主要

有:撞击、摩擦、绝热压缩、冲击波、明火、加热、高温、热辐射、电火花、电弧、静电、雷击、紫外线、红外线、放射线辐射、化学反应热、催化作用等,必须处处注意、时刻防备。在国家标准GB16163-1996中,列入可燃气体的工业纯气品种多达四十余种,其中,以可燃性液化气体居多。液化气体的特点是沸点低,极易气化,泄压时闪蒸且扩散,与空气混合形成易燃、易爆气体,火灾危险性极大。易燃气体酿成火灾的严重后果不堪设想:人员受到直接辐射热或沾附可燃性液化气体,就会烧伤或死亡,其他可燃物会受到大量辐射热,形成大面积火灾,而且灭火以后极有可能会发生二次燃爆危险。此外,易燃气体会发生空间燃爆。 二、毒害性 工业气体的毒害性通过吸入途径侵入人体,与人体组织发生化学或物理化学作用,从而造成对人体器官的损害,并破坏人体的正常生理机能,引起功能或器质性病变,导致暂时性或持久性病理损害,甚至危及生命。瓶装气体中有一部分属于有毒气体。有毒气体的毒性影响,与有毒气体的本身性质、侵入人体的途径及侵入数量、暴露接触时间长短、作业人员防护设施用品及身体素质等各种因素有关。有毒气体易散发于作业场所的空气中,对作业人员的影响最大。有毒气体的气瓶在充装、储运、使用过程中,其主要危害是由于有毒气体泄露造成人体慢性中毒或由于气瓶(包括瓶阀)破损导致有毒气体外溢所引起的人体急性中毒。

危险化学品特性表_第3.2类 (1)

目录 表- 石油醚的理化性质及危险特性 (1) 表- 石油原油的理化性质及危险特性 (2) 表- 石脑油的理化性质及危险特性 (3) 表- 正庚烷的理化性质及危险特性 (4) 表- 正辛烷的理化性质及危险特性 (5) 表- 异辛烷的理化性质及危险特性 (6) 表- 甲基环己烷的理化性质及危险特性 (7) 表- 二氯乙烷的理化性质及危险特性 (8) 表- 苯的理化性质及危险特性 (9) 表- 溶剂苯的理化性质及危险特性 (10) 表- 粗苯的理化性质及危险特性 (11) 表- 甲苯的理化性质及危险特性 (12) 表- 甲醇的理化性质及危险特性 (13) 表- 乙醇的理化性质及危险特性 (14) 表- 正丙醇的理化性质及危险特性 (15) 表- 异丙醇的理化性质及危险特性 (16) 表- 叔丁醇的理化性质及危险特性 (17) 表- 正戊醛的理化性质及危险特性 (18) 表- 2-丁酮的理化性质及危险特性 (19) 表- 甲基异丁基(甲)酮的理化性质及危险特性 (20) 表- 双丙酮醇的理化性质及危险特性 (21)

表- 甲基叔丁基醚的理化性质及危险特性 (23) 表- 乙二醇二甲醚的理化性质及危险特性 (24) 表- 四氢噻吩的理化性质及危险特性 (25) 表- 甲酸正丙酯的理化性质及危险特性 (26) 表- 甲酸异丙酯的理化性质及危险特性 (27) 表- 甲酸正丁酯的理化性质及危险特性 (28) 表- 甲酸异丁酯的理化性质及危险特性 (29) 表- 乙酸乙酯的理化性质及危险特性 (30) 表- 乙酸正丙酯的理化性质及危险特性 (31) 表- 乙酸异丙酯的理化性质及危险特性 (32) 表- 乙酸正丁酯的理化性质及危险特性 (33) 表- 乙酸异丁酯的理化性质及危险特性 (34) 表- 丙烯酸甲酯的理化性质及危险特性 (35) 表- 丙烯酸乙酯的理化性质及危险特性 (36) 表- 异丁烯酸甲酯的理化性质及危险特性 (37) 表- 甲基丙烯酸乙酯的理化性质及危险特性 (38) 表- 碳酸(二)甲酯的理化性质及危险特性 (39) 表- 钛酸(四)乙酯的理化性质及危险特性 (40) 表- 钛酸(四)正丙酯的理化性质及危险特性 (41) 表- 钛酸(四)异丙酯的理化性质及危险特性 (42) 表- 乙腈的理化性质及危险特性 (43)

可燃气体燃爆特性MicrosoftWord文档(2)(精)

可燃气体燃爆特性 凡是遇火,受热或与氧化剂接触能着火或爆炸的气体,统称为可燃气体。 燃烧形式气体的燃烧与液体和固体的燃烧不同,它不需要经过蒸发、熔化等过程,气体在正常状态下就可具有燃烧条件,所以比液体和固体都容易燃烧。有扩散燃烧和动力燃烧两种形式。 (1)扩散燃烧。如果可燃气体与空气的混合是在燃烧过程中进行的,则发生稳定式的燃烧,称为扩散燃烧,燃烧速度一般小于0.5m/s。由于可燃气体与空气是逐渐混合的,并逐渐燃烧消耗掉,因而形成稳定式燃烧,只要控制得当,就不会造成火灾。如火炬、气焊的火焰、燃气加热等属于这类扩散燃烧。 (2)动力燃烧。如果可燃气体与空气是在燃烧之前按一定比例均匀混合的,形成预混气,遇火源则发生爆炸式燃烧,称动力燃烧。在预混气的空间里,充满了可以燃烧的混合气,一处点火,整个空间立即燃烧起来,发生瞬间的燃烧,即爆炸现象。 此外,如果可燃气体处于压力而受冲击、摩擦或其他着火源作用,则发生喷流式燃烧。像气井的井喷火灾,高压气体从燃气系统喷射出来时的燃烧等。对于这种喷流燃烧形式的火灾,较难扑救,需较多救火力量和灭火剂,应当设法断绝气源,使火灾彻底熄灭。 分类按照爆炸下限分为两级。 (1)一级可燃气体的爆炸下限≤10%,如氢气、甲烷、乙烯、乙炔、环氧乙烷、氯乙烯、硫化氢、水煤气、天然气等绝大多数气体均属此类。 (2)二级可燃气体的爆炸极限>10%,如氨、一氧化碳、发生炉煤气等少数可燃气体属于此类。 (3)在生产或贮存可燃气体时,将一级可燃气体划为甲类火灾危险,二级可燃气体划为乙类火灾危险。 影响爆炸极限的因素可燃气体(蒸气)的爆炸极限受诸多因素的影响,主要有下列几种因素: (1)温度。混合物的原始温度越高,则爆炸下限越低,上限提高,爆炸极限范围扩大,爆炸危险性增加。这是因为混合物温度升高,其分子内能增加,引起燃烧速度的加快,而且,由于分子内能的增加和燃烧速度的加快,使原来含有的过量空气(低于爆炸下限)或可燃物高于爆炸上限,而不能使火焰蔓延的混合物浓度变成为可以使火焰蔓延的浓度,从而改变了爆炸极限范围。 (2)氧含量。混合物中含氧量增加,爆炸极限范围扩大,尤其爆炸上限提高得更多。例如氢与空气混合的爆炸极限为4%~75%,而氢与纯氧混合的爆炸极限为4%~95%。 (3)惰性介质。如若在爆炸混合物中掺入不燃烧的惰性气体(如氮、二氧化碳、水蒸气、氩、氦等),随着惰性气体的百分数增加,爆炸极限范围则缩小,惰性气体的浓度提高到某一数值,亦可以使混合物变成不可爆炸。一般情况下,惰性气体对混合物爆炸上限的影响较之对下限的影响更为显著,因为惰性气体浓度加大,表示氧的浓度相对减小,而在上限中氧的浓度本来已经很小,故惰性气体稍为增加一点,即产生很大影响,而使爆炸上限剧烈下降。 (4)压力。混合物的原始压力对爆炸极限有很大影响,压力增大,爆炸极限范围也扩大,尤其是爆炸上限显著提高。 值得重视的是当混合物的原始压力减小时,爆炸极限范围缩小,压力降至某一数值时,下限与上限合成一点,压力再降低,混合物即变成不可爆。爆炸极限范围缩小为零的压力称为爆炸的临界压力。临界压力的存在表明,在密闭的设备内进行减压操作,可以免除爆炸的危险。 (5)容器或管道直径。容器或管道直径越小,火焰在其中越难蔓延,混合物的爆炸极限范围则越小。当容器直径小到某一数值时,火焰不能蔓延,可消除爆炸危险,这个直径称为临界直径。如甲烷的临界直径为0.4~0.5mm,氢和乙炔为0.1~0.2mm等。 容器直径大小对爆炸极限的影响,可以用链式反应理论解释。燃烧是自由基产生的一系列链锁反应的结果,管径减小时,游离基与管壁的碰撞几率相应增大,当管径减小到一定程度时,即因碰撞造成游离基的销毁的反应速度大于游离基产生的反应速度,燃烧反应便不能继续进行。

危险化学品理化特性表汇总(很全哦).doc

项目 标识 理化性质 燃烧爆炸危 险性 甲烷理化特性表 内容 中文名甲烷别名沼气 分子式CH4 危险货物类别第类易燃气体 分子量危险货物编号21007 CAS 74-82-8 UN 编号1971 外观与性状无色无臭气体。 主要用途用作燃料和用于炭黑、氢、乙炔、甲醛等的制造。 溶解性微溶于水,溶于醇、乙醚。 熔点 (℃) 燃烧热 (kJ/mol) 沸点 (℃) 饱和蒸汽压 (kPa) ℃ ) 相对密度 (水=1) (-164 ℃) 临界温度 (℃ ) 相对密度 (空气 =1) 临界压力 (MPa) 火灾危险类别甲类稳定性 闪点 (℃) -188 聚合危害 引燃温度 (℃) 538 避免接触的条件 爆炸下限 (V/%) 燃烧 (分解 )产物一氧化碳、二氧化碳。爆炸上限 (V/%) 15 禁忌物强氧化剂、氟、氯。燃爆危险本品易燃,具窒息性。 包装与储存运输 毒性与健康 危害性危险特性 灭火方法 包装标志 包装方法 储存注意事项 运输注意事项 接触极限 毒性 健康危害 侵入途径 环境危害 皮肤接触 眼睛接触 易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃烧爆炸的危险。与五氧化 溴、氯气、次氯酸、三氟化氮、液氧、二氟化氧及其它强氧化剂接触剧烈反应。 切断气源。若不能切断气源,则不允许熄灭泄漏处的火焰。喷水冷却容器,可能的话 将容器从火场移至空旷处。灭火剂:雾状水、泡沫、二氧化碳、干粉。 包装类别052 钢质气瓶。 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过 30℃。应与氧化剂等分开存 放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工 具。储区应备有泄漏应急处理设备。 采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向, 不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。运输时运 输车辆应配备相应品种和数量的消防器材。装运该物品的车辆排气管必须配备阻火装 置,禁止使用易产生火花的机械设备和工具装卸。严禁与氧化剂等混装混运。夏季应 早晚运输,防止日光曝晒。中途停留时应远离火种、热源。公路运输时要按规定路线 行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。中国 MAC(mg/m 3):未制定标准 前苏联 MAC(mg/m 3):300 TLVIN: ACGIH 窒息性气体 TLVWN:未制定标准 LD50:无资料 LC50:无资料 甲烷对人基本无毒,但浓度过高时,使空气中氧含量明显降低,使人窒息。当空气中甲 烷达 25%~ 30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共 济失调。若不及时脱离,可致窒息死亡。皮肤接触液化本品,可致冻伤。 若有冻伤,就医治疗。 急救措施防护措施 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止, 吸入 立即进行人工呼吸。就医。 食入 工程控制生产过程密闭,全面通风。 呼吸系统防护一般不需要特殊防护,但建议特殊情况下,佩戴自吸过滤式防毒面具(半面罩)。眼睛防护一般不需要特殊防护,高浓度接触时可戴安全防护眼镜。 身体防护穿防静电工作服。 手防护戴一般作业防护手套。

危险化学品分类及其危险特性(正式版)

文件编号:TP-AR-L5667 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 危险化学品分类及其危险特性(正式版)

危险化学品分类及其危险特性(正式 版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 化工生产危险的原因: 1. 化工生产的物料绝大多数具有火灾、爆炸、 毒性等危险性; 2. 生产工艺过程复杂、工艺条件苛刻,高温、 高压、强腐蚀; 3. 生产规模大,积聚的危险物质数量大; 4. 生产设备高大等特点。 何谓危险化学品? ?具有易燃、易爆、毒害、放射性等危险特性, 在生产、储存、运输、使用、废弃处置过程中容易造

成人生伤亡、财产毁损、环境污染的化学品均属危险化学品。 第一节危险化学品分类 ?第l类:爆炸品; ?第2类:压缩气体和液化气体; ?第3类:易燃液体; ?第4类:易燃固体、自燃物品和遇湿易燃物品; ?第5类:氧化剂和有机过氧化物; ?第6类:有毒品; ?第7类放射性物品; ?第8类:腐蚀品。 ?依据《常用危险化学品分类及标志》 (GB13690-1992) 第二节爆炸品

TVOC气体基本特性.

1. VOCs 的定义 VOCs 的学术定义:是指在正常状态下(20℃,101.3kPa ),蒸气压在0.1mmHg (13.3Pa )以上沸点在260℃(500℉以下的有机化学物质。 2.VOCs 的特性 ●均含有碳元素,还含有H 、O 、N 、P 、S 及卤素等非金属元素。● 熔点低,易分解,易挥发,均能参加大气光化学反应,在阳光下产生光化学烟雾。

●常温下,大部分为无色液体,具有刺激性或特殊气味。● 大部分不溶于水或难溶于水,易溶于有机溶剂。 ● 种类达数百万种,大部分易燃易爆,部分有毒甚至剧毒。● 相对蒸气密度比空气重。 3.VOCs 的分类 VOCs 按其化学结构,可以分为:烃类(烷烃、烯烃和芳烃)、酮类、酯类、醇类、酚类、醛类、胺类、腈(氰)类等。 4. 常见VOCs 的理化性质 所列部分VOCs 选自GBZ2.1《国家职业卫生标准---工作场所有害因素职业接触限值—化学有害因素》 VOCs 的主要危害

1. 总体危害 (1)危害环境 ①在阳光和热的作用下参与氧化氮反应形成臭氧,导致空气质量变差并且是夏季光化学烟雾、城市灰霾的主要成分; ② VOCs 是形成细粒子(PM2.5)和臭氧的重要前体物质,大气 中VOCs 在PM2.5中的比重占20%~40%左右,还有部分PM2.5由 VOCs转化而来; ③ VOCs 大多为溫室效应气体--导致全球范围内的升温。 (2)危害健康 ①刺激性&毒性 VOCs超过一定浓度时,会刺激人的眼睛和呼吸道,使皮肤过敏、 咽痛与乏力; VOCs 很容易通过血液-大脑的障碍,损害中枢神经;VOCs 伤害人的肝脏、肾脏、大脑和神经系统。 ②致癌性、致畸作用和生殖系统毒性 2. 常见毒性VOCs 的具体危害

《危险化学品重大危险源基本特征表》

附件1危险化学品重大危险源基本特征表

填表人:联系电话:填表日期:年月日 (盖章)注:本表格不能满足需要时,可自行设置续表,格式和内容要求应与本表一致。

填表说明: 1.为保证重大危险源辨识的统一性,危险化学品单位厂区内存在多个(套)危险化学品的生产装置、设施或场所并且相互之间的边缘距离小于500m时,都应按一个单元来进行重大危险源辨识。当危险化学品单位存在两个以上重大危险源时,应分别填写危险化学品重大危险源基本特征表。 2.填报单位为重大危险源生产运行所在的产业活动单位或法人单位。 3.重大危险源名称以重大危险源主要生产装置名称或项目立项名称命名。当企业整个厂区构成一个重大危险源时,可以以企业名称(厂区)方式命名。 4.重大危险源投用时间为重大危险源的装置、设施或场所正式投入生产使用的日期。当重大危险源所涉及的各装置、设施或场所投入生产使用的日期不同时,按投用最早的日期填写。 5. 化工(工业)园区为重大危险源所在的化工园区、工业园区或主导产业包含化工(包括危险化学品储存)的开发区,不属于以上所列情形的则应填“否”。 6.重大危险源与周边重点防护目标最近距离情况,应填写重大危险源四周最近的重点防护目标(标明方位)及最近距离。重大危险源与周边重点防护目标最近距离为重大危险源的设备、装置、设施的边缘到周边重点防护目标边缘的最近距离。周边重点防护目标为《危险化学品重大危险源监督管理暂行规定》(国家安全生产监督管理总局令第40号)附件2表1中所列出的危险化学品单位周边重要目标和敏感场所。 7.厂区边界外500m范围内人数估算值,根据对厂区周边500m范围内建筑、设施或单位内存在的人员数量进行估算。 8.近三年内危险化学品事故情况为填报之日起之前三年内发生的危险化学品事故情况,应包括事故人员伤亡和经济损失情况、事故涉及到的危险化学品和事故原因等内容。 9.危险化学品名称应按《危险化学品目录》中的名称填写,当该危险化学品为混合物时,应标注各成分所占质量百分比。危险性类别按《危险化学品目录》中的类别填写。UN编号为联合国《关于危险货物运输的建议书》中给出的编号。生产用途是指该危险化学品主要为①原料(包括辅料),②中间产物,③产品,④其它。单个最大容器是指储存该危险化学品数量最多的单个储罐、设备、容器或仓储间,其操作温度、压力应填写最高操作温度和压力。分级指标R值的计算值保留到小数点后一位。 危险化学品存量按数量最大的原则确定。对于存放危险化学品的储罐,危险化学品存量是该危险化学品储罐最大容积所对应的危险化学品数量;对于其他容器、设备或仓储间,危险化学品存量是容器、设备或仓储区存放危险化学品的实际最大存量与设计最大存量中的较大者。

气体特性及系统简介

课程内容:大宗与特殊气体特性介绍 一、大宗气体种类: 半导体厂所使用的大宗气体,以台积厂常见有:CDA、GN2、PN2、PAr、PO2、PH2、PHe等七种。 二、大宗气体的制造: CDA / ICA (Clean Dry Air / Instrument Air): CDA之来源取之于大气经压缩机压缩后除湿,再经过滤器或活性炭吸附去除粉尘及炭氢化合物以供给无尘室CDA/ICA (Clean Dry Air)。 GN2 (Nitrogen): 利用压缩机压缩冷却气体成液态气体,经过触媒转化器,将CO反应成CO2,将H2反应成H2O,再由分子筛吸附CO2、H2O,再经分溜分离O2 & CnHm。 N2=-195.6℃,O2=-183℃。 PN2 (Nitrogen): 将GN2经由纯化器(Purifier)纯化处理,产生高纯度的氮气。 一般液态氮气纯度约为99.9999﹪,总共是6个9。 经纯化器纯化过的氮气纯度约为99.9999999﹪,总共是9个9。 PO2 (Oxygen): 利用压缩机压缩冷却气体成液态气体,经二次分溜获得99.0﹪以上纯度之氧,再除去N2、Ar、CnHm。另外可由水电解方式解离H2 &O2,产品液化后易于运送储存。 PAr (Argon): 利用压缩机压缩冷却气体成液态气体,经二次分溜获得99.0﹪以上纯度之氩气,因氩气在空气中含量仅0.93﹪,生产成本相对较高。 PH2 (Hydrogen): 利用压缩机压缩冷却气体成液态气体,经二次分溜获得99.0﹪以上纯度之氢气。另外可由水电解方式解离H2 &O2,制程廉价但危险性高易触发爆炸,液化后易于运送储存。 PHe (Helium): 由稀有富含氦气之天然气中提炼,其主要产地为美国及俄罗斯。利用压缩机压缩

危险化学品的火灾危险性及燃爆特性全解

常见化学品危险性及火灾分类 序号品名危险性类 别 主要危险特性 火灾危 险性类 别 1 H2氢气 第 2.1类 易燃气体 与空气混合能形成爆炸性混合物,遇热或明火即会发生爆炸。 气体比空气轻,在室内使用和储存时,漏气上升滞留屋顶不 易排出,遇火星会引起爆炸。 甲类 2 O2氧气 第 2.2类 不燃气体 是易燃物、可燃物燃烧爆炸的基本要素之一,能氧化大多数 活性物质。 乙类 3 CL2氯气 第 2.2类 不燃气体 是易燃物、可燃物燃烧爆炸的基本要素之一,能氧化大多数 活性物质。 乙类 4 NH3氨气 第 2.3类 有毒气体 与空气混合能形成爆炸性混合物。遇明火、高热能引起燃烧 爆炸。与氟、氯等接触会发生剧烈的化学反应。若遇高热, 容器内压增大,有开裂和爆炸的危险。 乙类 5 CO一氧化 碳 第 2.1类 易燃气体 是一种易燃易爆气体。与空气混合能形成爆炸性混合物,遇 明火、高热能引起燃烧爆炸。 乙类 6 SIH4硅烷 第2.1类 易燃气体 硅烷为一无色、具窒息性的气味,会与空气反应,有窒息性 影响。与空气接触会自燃,燃烧时会释放出未结晶的二氧化 硅浓烟。高温或火焰时,若钢瓶的释压装置故障可能引起钢 瓶爆炸。若硅甲烷在高压下释放或在高流速下,可能与空气 形成混合物而发生延迟性的爆炸。 甲类 7 AsH3砷化 氢 第2.3类 有毒气体 强还原剂。与空气混合能形成爆炸性混合物。遇明火、高热 能引起燃烧爆炸。 甲类 8 PH3磷化 氢 第2.3类 有毒气体 强还原剂。与空气混合能形成爆炸性混合物。遇明火、高热 能引起燃烧爆炸。 甲类 9 CH4甲烷 第2.1类 易燃气体 易燃,与空气混合能形成爆炸性混合物,遇热源和明火有燃 烧爆炸的危险。 甲类 10 CH3F氟甲 烷 第 2.1类 易燃气体 与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧 化剂易燃烧爆炸。受热分解放出有毒的氟化物气体。气体比 空气重,能在较低处扩散到相当远的地方,遇火源会着火回 燃。 甲类 11 CH2F2二 氟甲烷 第 2.1类 易燃气体 与空气混合能形成爆炸性混合物。接触热、火星、火焰或氧 化剂易燃烧爆炸。受热分解放出有毒的氟化物气体。气体比 空气重,能在较低处扩散到相当远的地方,遇火源会着火回 燃。 甲类 12 NO一氧化 氮 第 2.3类 有毒气体 具有强氧化性。与易燃物、有机物接触易着火燃烧。乙类 13 NF3三氟 化氮 第 2.3类 有毒气体 强氧化剂。受热或与火焰、电火化、有机物等接触会引起燃 烧,甚至爆炸。与易燃物和可燃物接触会发生剧烈反应,甚 至引起燃烧。与还原剂能发生剧烈反应,引起燃烧爆炸。 甲类 14 C4F6 六氟-1,3- 丁二烯 第 2.3类 有毒气体 遇明火、高热可燃。与氧化剂能发生强烈反应。受高热分解, 放出剧毒的光气和有腐蚀性的氯化氢烟气。 甲类 15 SiH2Cl2 二氯二氢 硅 第 2.3类 有毒气体 遇明火、高热可燃。与氧化剂能发生强烈反应。受高热分解, 放出剧毒的光气和有腐蚀性的氯化氢烟气。 甲类 16 B2H6 第 2.1类易燃气体,剧毒。在潮湿的空气中自燃。甲类

常用危险品种类特性及处置方法(精)

常见危险品及其安全处理 ID 名称压缩气体和液化气体有关知识 三甲胺名称:三甲胺别名:无水三甲胺拼音缩写:SJA 分子式: 灭火物质:水 , 泡沫 , 二氧化碳 , 干粉 主要信息相对密度 =0.662闪点 =-6.67自燃点 =190沸点 =3爆炸下限 =2爆炸上限 =11.6理化特性:无色液化气体 , 有鱼腥的氨气味 , 能溶于水 , 易燃烧 , 有毒处置方法:雾状水 , 泡沫 , 二氧化碳 , 干粉 二甲胺名称:二甲胺别名:无水二甲胺拼音缩写:RJWWS 分子式: 灭火物质:水 , 泡沫 , 二氧化碳 , 干粉 主要信息相对密度 =0.680闪点 =-17.78自燃点 =400沸点 =6.88爆炸下限 =2.8爆炸上限 =14.4理化特性:无色易燃气体或液体 , 具有强烈的令人不愉快的胺味 , 浓度极低时有鱼腥恶臭 . 易溶于水 , 有毒 . 处置方法:雾状水 , 泡沫 , 二氧化碳 , 干粉急救措施:吸入时 , 离开现场 , 进行休息 一甲胺名称:一甲胺别名:无水一甲胺拼音缩写:YJAWS AJ 分子式: 灭火物质:水 , 泡沫 , 二氧化碳 , 干粉 主要信息相对密度 =1.09闪点 =0自燃点 =430沸点 =-6.79爆炸下限 =4.95爆炸上限 =20.75理化特性:无色气体或液体 , 有氨的气味 . 易溶于水 . 易燃烧 , 其蒸气能与空气形成爆炸性混合物 . 有毒 . 处置方法:雾状水 , 泡沫 , 二氧化碳 , 干粉急救措施:吸入时 , 离开现场 , 进行休息 环氧乙烷名称:环氧乙烷别名:氧化乙烯拼音缩写:HYYW(YHY分子式:

灭火物质:水 , 泡沫 , 二氧化碳 主要信息相对密度 =0.871闪点 =<-17,78自燃点 =429沸点 =10.7爆炸下限 =3.0爆炸上限 =100理化特性:在常温下为气体 ,4度以下为无色液体 . 易溶于水 . 易燃 , 有毒 . 对皮肤和眼睛有剌激性 . 遇火星 , 高热有燃烧爆炸危险 处置方法:水 , 泡沫 , 二氧化碳 溴代乙烯 名称:溴代乙烯别名:溴乙烯 ; 乙烯基溴拼音缩写:XDYX XYX 分子式:灭火物质:水 , 泡沫 , 二氧化碳 , 干粉 主要信息相对密度 =1.51沸点 =-15.6理化特性:无色气体 , 在 15度以下为液体 . 易燃 , 有微毒 . 不溶于水 处置方法:雾状水 , 泡沫 , 二氧化碳 , 干粉急救措施:中毒者速移离毒区 , 作人工呼吸 氯乙烯名称:氯乙烯别名:拼音缩写:LYX 分子式: 灭火物质:水 , 泡沫 , 二氧化碳 主要信息相对密度 =0.919闪点 =-78自燃点 =472沸点 =-13.4爆炸下限 =3.6爆炸上限 =33理化特性:在常温常压下为无色气体 , 在 -12--14度以下为液体 . 略带芳香气味 , 其蒸气易燃 . 难溶于水 . 见光及含有催化剂时易聚合 . 有麻醉作用 , 吸入有毒处置方法:雾状水 , 泡沫 , 二氧化碳急救措施:中毒者速移离毒区 , 作人工呼吸 氯乙烷名称:氯乙烷别名:氯化乙烷 ; 乙基氯拼音缩写:LYW LHYW 分子式: 灭火物质:水 , 泡沫 , 二氧化碳

气体燃料的组成及特性(精)上课讲义

《锅炉与锅炉房设备施工》教案模块一:锅炉房设备的基本知识 单元三:锅炉燃料 1.3.3 气体燃料的组成及特性 学院内蒙古建筑职业技术学院 院(部)机电与暖通工程学院 教师王思文 气体燃料的组成及特性

教学目的 通过课程教学,挖掘学生潜在创造力,激发学生的工程设计能力。以工作任务形式组织学生进行项目训练,培养学生团队意识,组织协调能力、创新思维能力,沟通交流能力,自我学习能力、分析问题和解决问题的能力。通过学习,学生能够掌握锅炉与锅炉房的基本知识,为今后继续学习锅炉打下结实的基础。 教学目标 能力(技能)目标知识目标素质目标 1.具有分析气体燃料基 本特性的能力。 1.掌握燃气的组成成分。 2.掌握燃气的基本特性(体 积分数;平均密度;比体 积;相对密度;粘度;临 界参数;体积热容;着火 温度;爆炸极限;发热量; 华白数) 1.挖掘学生潜在创造力, 激发学生的自主学习积极 性; 2.培养学生的与人交流、 与人合作的能力,培养学 生解决问题、自我学习能 力。 任务与案例任务:根据教学内容,掌握燃气的组成成分及基本特性。案例:1. 利用教材的内容进行理论学习。 重点难点 及 解决方法重点:1.燃气的组成成分及基本特性。难点:无 参考资料《锅炉与锅炉房设备》夏喜英主编哈尔滨工业大学出版社《锅炉及锅炉房设备》杜渐主编中国电力出版社 《工业锅炉设备》丁崇功主编机械工业出版社 工具 与 媒体计算机、打印机、录像、课件、图纸、笔、橡皮、专业相关资料等。 授课教案

一、气体燃料的基本概念 1.气体燃料:指在常温、常压下保持气态的燃料,简称燃气。 2.燃气的特点:易点火、易燃烧、易操作、易实现自动调节,而且燃烧产物 中无废渣和废液,烟气中SO x和NO x的含量少。燃气是最理想的洁净燃料。 二、燃气的组成 1.可燃组分 一氧化碳(CO)、氢气(H2)和碳氢化合物(C m H n)等。 2.不可燃组分 氮气(N2)、氧气(O2)和二氧化碳(CO2)等。 3.有害杂质 1)焦油与灰尘的危害:堵塞通道、附件及燃烧器喷嘴,影响锅炉正常燃烧。 2)萘的危害:当燃气中含萘量大于燃气温度相应的饱和含萘量时,过饱和 部分的气态萘以结晶状态析出,沉积于管内而使管道流通断面减小,堵 塞甚至堵死管道,造成供气中断。 3)硫化氢的危害:可燃的有害杂质,腐蚀储罐、管道、设备和燃烧器,硫 化氢燃烧产生的SO2和SO3,不仅腐蚀锅炉金属受热面,而且还污染大 气环境。 4)一氧化碳的危害:无色、无臭、无味、有剧毒的气体。规定燃气中一氧 化碳的体积分数应小于10%。 5)氨的危害:氨对燃气管道、设备及燃烧器起腐蚀作用。燃烧时产生NO、 NO2等有害气体,影响人体健康,并污染大气环境。 6)水分的危害:水和水蒸汽能与液态和气态碳氢化合物作用,生成固态结 晶水化物,堵塞管道、阀门、仪表(流量计、压力表、液位计等)和设 备(调压器、过滤器等),影响正常供气;水蒸气还能加剧O2、H2S、SO2 对管道、阀门、燃烧器及锅炉金属受热面的腐蚀作用。 7)残液的危害:液化石油气中C5及C5以上的碳氢化合物组分的沸点高, 在常温、常压下不能气化,而留存在钢瓶、储罐等压力容器内,称为残 液。它增加了用户更换气瓶的次数,而且增加了交通运输量。

相关主题
文本预览
相关文档 最新文档