当前位置:文档之家› 21.2.1配方法同步练习含答案

21.2.1配方法同步练习含答案

21.2.1配方法同步练习含答案
21.2.1配方法同步练习含答案

21

21.2.1 配方法(1) ◆随堂检测

1、方程32x +9=0的根为( )

A 、3

B 、-3

C 、±3

D 、无实数根 2、下列方程中,一定有实数解的是( )

A 、210x +=

B 、2(21)0x +=

C 、2(21)30x ++=

D 、21

()2

x a a -=

3、若224()x x p x q -+=+,那么p 、q 的值分不是( ) A 、p=4,q=2 B 、p=4,q=-2 C 、p=-4,q=2 D 、p=-4,q=-2

4、若28160x -=,则x 的值是_________.

5、解一元二次方程是22(3)72x -=.

6、解关于x 的方程(x +m )2=n .

◆典例分析

已知:x2+4x+y2-6y+13=0,求

22

2x y

x y -+的值.

分析:本题中一个方程、两个未知数,一样情形下无法确定x 、y 的值.但观看到方程可配方成两个完全平方式的和等于零,能够挖掘出隐含条件x=-2和y=3,从而使咨询题顺利解决.

解:原方程可化为(x+2)2+(y-3)2=0, ∴(x+2)2=0,且(y-3)2=0,

∴x=-2,且y=3, ∴原式=268

1313

--=-. ◆课下作业 ●拓展提升

1、已知一元二次方程032=+c x ,若方程有解,则c ________.

2、方程b a x =-2)((b >0)的根是( )

A 、b a ±

B 、)(b a +±

C 、b a +±

D 、b a -± 3、填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2

4、若22(3)49x m x +-+是完全平方式,则m 的值等于________.

5、解下列方程:(1)(1+x)2-2=0; (2)9(x-1)2-4=0.

6、如果

+13=0,求()z xy 的值.

●体验中考

1、一元二次方程2(6)5x +=可转化为两个一次方程,其中一个一

次方程是6x +=_____________.

2、用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x += B .2(1)6x -= C .2(2)9x += D .2(2)9x -=

●挑战能力

2.已知a,b为实数,且

(

1-

-

+b

a b

a-

参考答案:

◆随堂检测

1、D

依据方程的根的定义可判定此方程无实数根,故选D.

2、B D选项中当0

a<时方程无实数根,只有B正确.

3、B 依据完全平方公式可得B正确.

4.

5、解:方程两边同除以2,得2

(

3)36

x-=,

∴3

6

x-=±,∴

12

9,

3

x x

==-.

6、解:当n≥0时,x+m=,∴-m,-m.当n

<0时,方程无解.

◆课下作业

●拓展提升

1、0

原方程可化为2c

x=-,∴0

c≤.

2、A 原方程可化为x a-=x a

3、按照完全平方公式可得:(1)16 4;(2)4 2.

4、10或-4 若22(3)

49

x m x

+

-+是完全平方式,则37

m-=±,

12

10,4

m m

==-.

5、(1)

12

1,1

x x

=;(2)12

51

,

3

x x

==.

6、解:原方程可化为(x-2)2+(y+3)

=0,

∴x=2,y=-3,z=-2,∴2

()

(6)

z

xy-

=-=1

36

●体验中考

1、6

x+=原方程可化为6

x+=

6

x+=

2、B 原方程可化为22160

x x

-+-=,∴2

(1)6

x-=.故选B.

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

第九讲 因式分解 (添拆项与最值)

第八讲 因式分解(添拆项与最值) 知识点回顾: 1、因式分解:因式分解就是把一个多项式变为几个整式的积的形式。 2、因式分解的方法: (1)提公因式法,即ma+mb+mc=m(a+b+c); (2)运用公式法,平方差公式: ()()b a b a b a -+=-2 2 ; 完全平方公式:222b ab a ++=()2 b a +和)(b a b ab a -= +-2 222 (3)十字相乘法:对于二次三项式2x Px q ++,若能找到两个数a 、b ,使, ,a b p a b q +=???=? 则就有22()()()x Px q x a b x ab x a x b ++=+++=++. 注:若q 为正,则a ,b 同号;若q 为负,则a ,b 异号; 立方和差公式: 典型例题: 例1(1)计算 29982 +2998×4+4= 。 (2)若442 -+x x 的值为0,则51232 -+x x 的值是________。 例2:分解因式: 2 2 288a axy a y x -+ 4a 2(x -y )+9b 2(y -x ) 例3:已知a –b = 1 ,252 2 =+b a 求ab 和a+b 的值。 例4 代数式2x 2+4x+5有最 值,是 ;﹣x 2 +3x 有最 值,是 例 5 题目:分解因式:x 2﹣120x +3456. 分析:由于常数项数值较大,则常采用将 x 2﹣120x 变形为差的平方的形式进行分解,这样简便易行. (1)x 2﹣140x +4875 (2)4x 2﹣4x ﹣575. 三、强化训练: 1、已知x +y =6,xy =4,则x 2 y +xy 2 的值为 . 2、分解因式: (2a -b )2-(a +b )2 -3ma 3+6ma 2-3ma a 2(m -n )+b 2 (n -m ) 4416n m - (8)4224817216b b a a +- 4、已知:a=2999,b=2995,求65522 2 -+-+-b a b ab a 的值。 5、利用因式分解计算 ?? ? ??-??? ??-??? ??-??? ??-??? ?? -2222211......511411311211n 6、已知a 为任意整数,且()2 2 13a a -+的值总可以被n 整除(n 为自然数,且n 不等于1),则n 的值为 。 7、已知x(x-1)-(y x -2 )=-2, xy y x -+2 2 2的值。 8、把下列各式分解因式: (1)4x 3﹣31x +15; (2)2a 2b 2+2a 2c 2+2b 2c 2﹣a 4﹣b 4﹣c 4; (3)x 5+x +1; (4)x 3+5x 2+3x ﹣9;

解一元二次方程(直接开方法-配方法)练习题100+道

解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D .6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662 =--y y 2、x x 4232 =- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842 =+--x x 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232 =- 3、9642=-x x 2 2 2

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

(完整版)解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 5.若 x 2+6x+m 2是一个完全平方式,则 m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

活用配方法分解因式

活用配方法分解因式 陈怀东 配方法是数学中极其重要的一个方法。在代数式中,利用添项的方法,给原多项式配上适当的部分,使添项后的多项式的一部分成为一个完全平方式,这种方法叫做配方法。 配方法的难点是配方,要求学生必须熟练掌握公式2 22b ab a +±,判断什么是:“a ”或“b ”,或“ab ”,怎样从ab a 22、这两项去找出“b ”,或“从22b a 、这两项去找出ab 2”,或“从ab 2去找出2a 和2 b ”。同学们要熟练掌握这些基本方法,从而做到心中有数,配方有路可循。 应用配方法分解因式,常能将多项式配成2 2N M -的形式并应用开方差公式分解。 例1 分解因式8612942 2+++-b a b a 分析 第一、三项,第二、四项分别结合后再配以恰当的常数分别构成完全平方公式,进而两者又构成一平方差,因此拆常数项198-=即可。 解:原式)169()9124(2 2 +--++=b b a a ) 432)(232()13()32(2 2+-++=--+=b a b a b a 例2 分解因式4 2 2 4 n n m m ++ 分析 此式中各项均为平方式,可采用添项法将式中某一部分配方,构造平方差公式。 解:原式2 2 4 2 2 4 )2(n m n n m m -++= 2 2 22 )()(mn n m -+= ))((2 2 2 2 mn n m mn n m -+++= 例3 分解因式 )2)(2()(22+--+-n m mn t n m t 分析 将多项式中前两项t n m t )(22 +-进行配方,添上2 2 )()(n m n m +-+即可分组分解。 解:原式)2)(2()()()(22 2 2 +--+-+++-=n m mn n m n m t n m t ]4)(2)[()]([2 2 2 2 mn n m mn n m n m n m t --+++-+-= ) 2)(2() ()(] )()(2)[()(2 2 222mn m t mn n t mn n m n m t mn mn n m n m n m t --+-=+----=+?-+----= 例4 分解因式 42224)()()(b a b a b a -+-++ 分析:此题中只含b a +和b a -两个式子,可分别运用和差换元后再考虑配方。 解:设t b a s b a =-=+,,则 原式2242244224 )2(t s t t s s t t s s -++=++= )] )(()())][()(()()[() )(()()(222222222 222b a b a b a b a b a b a b a b a st t s st t s st t s -+--++-++-++=-+++=-+= )3)(3(2 2 2 2 b a b a ++=

解一元二次方程配方法练习题

! 解一元二次方程配方法练习题 1.用适当的数填空: ①、x2+6x+ =(x+ )2; ②、x2-5x+ =(x-)2; ③、x2+ x+ =(x+ )2; ④、x2-9x+ =(x-)2 2.将二次三项式2x2-3x-5进行配方,其结果为_________. 3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______. ! 4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,?所以方程的根为_________. 5.若x2+6x+m2是一个完全平方式,则m的值是() A.3 B.-3 C.±3 D.以上都不对 6.用配方法将二次三项式a2-4a+5变形,结果是() A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1 7.把方程x+3=4x配方,得() A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为() 【 A.2.-2.. 9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数 10.用配方法解下列方程: (1)3x2-5x=2.(2)x2+8x=9 #

(3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ; ? (2)求-3x2+5x+1的最大值。 12. 用配方法证明: (1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0. | 13. 某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率. \

2013中考总结复习冲刺练:初中数学“最值问题” 集锦

2013中考总结复习冲刺练:“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P 点时A’P’+B’P’=A’B,所以这时PA+P B最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB ∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R 的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有

因式分解经典题与解析

2013组卷 1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法: x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣① =(x+1)2﹣22﹣﹣﹣﹣﹣﹣② =… 解决下列问题: (1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3; (3)请用上述方法因式分解x2﹣4x﹣5. 2.请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念菲?热门给出这一解法,就把它叫做“热门定理”,请你依照菲?热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. 3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步) =(x2﹣4x+4)2(第四步) 回答下列问题: (1)该同学第二步到第三步运用了因式分解的_________. A、提取公因式B.平方差公式 C、两数和的完全平方公式D.两数差的完全平方公式 (2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________. (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解. 4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数围)的整数值a,并且将其进行因式分解. 5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.

配方法解一元二次方程的教案

配方法解一元二次方程的教案 教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。 一、教学目标 (一)知识目标 1、理解求解一元二次方程的实质。 2、掌握解一元二次方程的配方法。 (二)能力目标 1、体会数学的转化思想。 2、能根据配方法解一元二次方程的一般步骤解一元二次方程。 (三)情感态度及价值观 通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。 二、教学重点 配方法解一元二次方程的一般步骤 三、教学难点 具体用配方法的一般步骤解一元二次方程。 四、知识考点 运用配方法解一元二次方程。 五、教学过程 (一)复习引入 1、复习:

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。 2、引入: 二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。 (二)新课探究 通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。 问题1: 一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来, 具体解题步骤: 解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2 列出方程:60x2=1500 x2=25 x=±5 因为x为棱长不能为负值,所以x=5 即:正方体的棱长为5dm。 1、用直接开平方法解一元二次方程

精选初中数学常见8种最值问题

初中数学最值问题常见的8种解题方法一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则的最大值为________。 解:设,易知 由,得

从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为() A. 3 B. C. D. 6 解:设,则 从而可知,当时,取得最小值。故选(B)。

三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法

例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。设,记为m的最小值,y为m的最大值。则__________。 解:由得 解得 由是非负实数,得 从而,解得。 又, 故

于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。 解:设矩形B的边长为x和y,由题设可得。从而x和y可以看作是关于t的一元二次方程 的两个实数根,则 因为, 所以, 解得

所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为 _________。 解:由得,代入得。 而由和可知的整数。 所以,当时,取得最大值,为。 七. 借助几何图形法 例8. (2004年四川省初中数学联赛)函数 的最小值是________。 解:显然,若,则。因而,当取最小值时,必然有。

青岛版九年级数学上册用因式分解法解一元二次方程练习题

4.4 用因式分解法解一元二次方程 一、填空题 1.如果两个因式的积是零,那么这两个因式至少有__________等于零;反之,如果两个因式中有__________等于零,那么它们之积是__________. 2.方程x 2-16=0,可将方程左边因式分解得方程__________,则有两个一元一次方程___________或 ___________,分别解得:x 1=_________,x 2=_________. 3.填写解方程3x(x+5)=5(x+5)的过程 解:3x(x+5)__________=0 (x+5)(__________)=0 x+5=__________或__________=0 ∴x 1=__________,x 2=__________ 4.用因式分解法解一元二次方程的关键是 (1)通过移项,将方程右边化为零 (2)将方程左边分解成两个__________次因式之积 (3)分别令每个因式等于零,得到两个一元一次方程 (4)分别解这两个__________,求得方程的解 5.x 2-(p+q)x ≠qp=0因式分解为____________. 6.用因式分解法解方程9=x 2-2x+1 (1)移项得__________; (2)方程左边化为两个平方差,右边为零得__________; (3)将方程左边分解成两个一次因式之积得__________; (4)分别解这两个一次方程得x 1=__________,x 2=__________. 二、选择题 1.方程x 2-x=0的根为 A.x=0 B.x=1 C.x 1=0,x 2=1 D.x 1=0,x 2=-1 2.方程x(x -1)=2的两根为 A.x 1=0,x 2=1 B.x 1=0,x 2=-1 C.x 1=1,x 2=-2 D.x 1=-1,x 2=2 3.用因式分解法解方程,下列方法中正确的是 A.(2x -2)(3x -4)=0 ∴2-2x=0或3x -4=0 B.(x+3)(x -1)=1 ∴x+3=0或x -1=1 C.(x -2)(x -3)=2×3 ∴x -2=2或x -3=3 D.x(x+2)=0 ∴x+2=0 4.方程ax(x -b)+(b -x)=0的根是 A.x 1=b,x 2=a B.x 1=b,x 2=a 1 C.x 1=a,x 2=b 1 D.x 1=a 2,x 2=b 2 5.已知a 2-5ab+6b 2=0,则a b b a 等于 21331D.2 31 321C.2 31B.3 21A.2或或

一元二次方程的解法(二)配方法(基础)

一元二次方程的解法(二)配方法—知识讲解(基础) 【学习目标】 1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤; 3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能 力. 【要点梳理】 知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式: . (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释: (1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 知识点二、配方法的应用 1.用于比较大小: 在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小. 2.用于求待定字母的值: 配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值. 3.用于求最值: “配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明: “配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. 【典型例题】

用配方法解一元二次方程教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

2.1.2用配方法解一元二次方程 教学目标 【知识目标】 使学生会用配方法解一元二次方程。 【技能目标】 经历列方程解决实际问题的过程,熟练地运用配方法解一元二次方程,使学生理解转化变形思想,掌握一些转化的技能。 【情感目标】 通过配方法的探索活动,培养学生勇于探索的良好学习习惯,感受数学的严谨性。 教学重点难点 【重点】用配方法解一元二次方程 【难点】配方的过程 教法:引导、观察、归纳、探究 教具:多媒体、课件 教学过程: 一、复习回顾 上一节我们学习了配方法,首先我们回顾上一节学习的内容: 1、配方法的具体步骤是什么? 对二次三项式ax 2+bx+c 配方的一般步骤是: (1)把ax 2+bx+c 变形为a (x 2+a b x )+c (2)配方为:a[x 2 +a b x+(a b 2)2-224a b ]+c

(3)整理成a(x+a b 2)2+a b a c 442 的形式 议一议:配方的关键是什么? 点拨:配方的关键是把x 2+a b x 加上一次项系数一半的平方(a b 2)2。 2、将下列各式配成完全平方式。 (1)a 2+12a+ 62 =(a+ 6 )2; (2)x 2 - x +41=(x- 2 1 )2 二、讲授新课 这一节我们就来学习一下用配方法解一元二次方程 (一) 提出问题 归纳定义 1、 提出问题 如图 现有长方形的纸片一张,长20cm ,宽14cm ,在其四个角上各剪去一个边长相等的小正方形,然后把四边折起,如果恰好能将其做成底面积是72cm 2的无盖长方体纸盒,求剪去的小正方形边长是多少? 分析: 设剪去的小正方形的边长是xcm ,则盒子底面长方形的长是(20-2x )cm,宽是(14-2x )cm 。根据题意,列出方程

初中数学《最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

因式分解与配方法练习题

分解因式 1、1522--x x ; 2、2 265y xy x +-. 3、3522--x x ; 4、3832-+x x . 5、91024+-x x ; 6、 22157x x ++ 7、 2384a a -+ 8、2 61110y y -- 9、2252310a b ab +- 10、222231710a b abxy x y -+ 11、 22 712x xy y -+ 12、 42718x x +- 13、 22483m mn n ++ 14、532 51520x x y xy -- 15、672+-x x ; 16、1232-+x x ; 17、652-+x x ; 18、9542--x x ; 19、823152+-x x ; 20、121124-+x x 21、6724+-x x ; 22、36524--x x ; 23、4 22416654y y x x +-; 24、633687b b a a --; 25、234456a a a --; 26、2224)3(x x --; 27、9)2(2 2--x x ; 28、 2222)332()123(++-++x x x x 29、60)(17)(222++-+x x x x ; 30、8)2(7)2(2 22-+-+x x x x ; 31、48)2(14)2(2++-+b a b a . 32、 2576x x +-)(2)(5)(723y x y x y x +-+-+;

33、120)8(22)8(222++++a a a a . 34、90)242)(32(2 2+-+-+x x x x . 35、653856234++-+x x x x . 36、655222-+-+-y x y xy x 37、 a 2-7a+6; 38、8x 2+6x -35; 39、18x 2-21x+5; 40、 20-9y -20y 2; 41、2x 2+3x+1; 42、2y 2+y -6; 43、6x 2-13x+6; 44、3a 2-7a -6; 45、6x 2-11x+3; 46、4m 2+8m+3; 47、10x 2-21x+2; 48、8m 2-22m+15; 49、4n 2+4n -15; 50、6a 2+a -35; 51、5x 2-8x -13; 52、4x 2+15x+9; 53、15x 2+x -2; 54、6y 2+19y+10; 55、7(x -1) 2+4(x -1)-20; 56、.=-+1032x x __________. 57.=--652m m (m +a )(m +b ). a =__________,b =__________. 58.=--3522 x x (x -3)(__________). 59.+2x ____=-22y (x -y )(__________). 60.22____)(____(_____)+=++a m n a . 61.当k =______时,多项式k x x -+732有一个因式为(__________).

解一元二次方程练习题(直接开平方法、配方法)

? 解一元二次方程(直接开平方法、配方法) 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2(21)3x +=; ( (3)2(61)250x --=. (4)281(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2) 21(31)644 x +=; 【 (3)26(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ … 4. 填空 (1)28x x ++( )=(x + )2 . (2)223 x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空: 23x x -+ (x =- 2);

2x px -+ =(x - 2) % 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02 x x ---+= ' 7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= ? 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. ( 12. 用适当的方法解方程 (1)23(1)12x +=; (2)2 410y y ++=;

初中数学最值问题专题分类讲解全书

初中数学最值问题专题分类讲解全书 ●平面几何中的最值问题 ●几何的定值与最值 ●最短路线问题 ●对称问题 ●巧作―对称点‖妙解最值题 ●数学最值题的常用解法 ●求最值问题 ●有理数的一题多解

●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’=AP,

在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好?

相关主题
文本预览
相关文档 最新文档