当前位置:文档之家› 配方法因式分解

配方法因式分解

配方法因式分解
配方法因式分解

§2.3运用配方法的因式分解法

【学习目标】

1. 理解掌握运用配方法进行因式分解;

2. 能根据具体情况灵活运用各种方法进行因式分解。

【重点、难点】

1. 配方法的运用方法;

2. 根据具体情况灵活选择方法进行因式分解

【新课引入】

1. 把下列各多项式因式分解:

1)962-+x x ;2)2842--x x

小结:这种设法配成有完全平方式的方法叫做配方法。 说明:配方法的关键是将二次三项式变形为:A 2—B 2

的形式,然后要平方差公式继续分解。

【例题选讲】

例1. 把下列各多项式因式分解:

1)12366+--x y x ;2)422497y y x x +-;★3)ab b ax x 2222+-- 例2.把下列各多项式因式分解:

1)362025422--+ab b a ;2)16)5(6)5(222--+-x x x x

说明:把一个多项式因式分解的基本步骤:

1) 如果多项式各项有公因式,那么先提取公因式;

2) 如果多项式各项没有公因式,那么可以尝试运用公式来分解;

3) 如果上述两种方法不能分解,那么可以尝试分组或十字相乘法或配方法来分解;

4) 分解因式时,必须进行到每一个多项式因式都不能再分解为止。

【巩固练习】

把下列各多项式因式分解:

1)18724--x x ;2)22484n mn mx x -+-

【小结】

把一个多项式因式分解的基本方法:

提取公因式法、公式法、分组分解法、十字相乘法和配方法

【课后练习】

把下列各多项式因式分解:

1)y xy x x 621552-+-;2)432234ab b a b a b a --+;

3)142222---+xy y x y x

第九讲 因式分解 (添拆项与最值)

第八讲 因式分解(添拆项与最值) 知识点回顾: 1、因式分解:因式分解就是把一个多项式变为几个整式的积的形式。 2、因式分解的方法: (1)提公因式法,即ma+mb+mc=m(a+b+c); (2)运用公式法,平方差公式: ()()b a b a b a -+=-2 2 ; 完全平方公式:222b ab a ++=()2 b a +和)(b a b ab a -= +-2 222 (3)十字相乘法:对于二次三项式2x Px q ++,若能找到两个数a 、b ,使, ,a b p a b q +=???=? 则就有22()()()x Px q x a b x ab x a x b ++=+++=++. 注:若q 为正,则a ,b 同号;若q 为负,则a ,b 异号; 立方和差公式: 典型例题: 例1(1)计算 29982 +2998×4+4= 。 (2)若442 -+x x 的值为0,则51232 -+x x 的值是________。 例2:分解因式: 2 2 288a axy a y x -+ 4a 2(x -y )+9b 2(y -x ) 例3:已知a –b = 1 ,252 2 =+b a 求ab 和a+b 的值。 例4 代数式2x 2+4x+5有最 值,是 ;﹣x 2 +3x 有最 值,是 例 5 题目:分解因式:x 2﹣120x +3456. 分析:由于常数项数值较大,则常采用将 x 2﹣120x 变形为差的平方的形式进行分解,这样简便易行. (1)x 2﹣140x +4875 (2)4x 2﹣4x ﹣575. 三、强化训练: 1、已知x +y =6,xy =4,则x 2 y +xy 2 的值为 . 2、分解因式: (2a -b )2-(a +b )2 -3ma 3+6ma 2-3ma a 2(m -n )+b 2 (n -m ) 4416n m - (8)4224817216b b a a +- 4、已知:a=2999,b=2995,求65522 2 -+-+-b a b ab a 的值。 5、利用因式分解计算 ?? ? ??-??? ??-??? ??-??? ??-??? ?? -2222211......511411311211n 6、已知a 为任意整数,且()2 2 13a a -+的值总可以被n 整除(n 为自然数,且n 不等于1),则n 的值为 。 7、已知x(x-1)-(y x -2 )=-2, xy y x -+2 2 2的值。 8、把下列各式分解因式: (1)4x 3﹣31x +15; (2)2a 2b 2+2a 2c 2+2b 2c 2﹣a 4﹣b 4﹣c 4; (3)x 5+x +1; (4)x 3+5x 2+3x ﹣9;

活用配方法分解因式

活用配方法分解因式 陈怀东 配方法是数学中极其重要的一个方法。在代数式中,利用添项的方法,给原多项式配上适当的部分,使添项后的多项式的一部分成为一个完全平方式,这种方法叫做配方法。 配方法的难点是配方,要求学生必须熟练掌握公式2 22b ab a +±,判断什么是:“a ”或“b ”,或“ab ”,怎样从ab a 22、这两项去找出“b ”,或“从22b a 、这两项去找出ab 2”,或“从ab 2去找出2a 和2 b ”。同学们要熟练掌握这些基本方法,从而做到心中有数,配方有路可循。 应用配方法分解因式,常能将多项式配成2 2N M -的形式并应用开方差公式分解。 例1 分解因式8612942 2+++-b a b a 分析 第一、三项,第二、四项分别结合后再配以恰当的常数分别构成完全平方公式,进而两者又构成一平方差,因此拆常数项198-=即可。 解:原式)169()9124(2 2 +--++=b b a a ) 432)(232()13()32(2 2+-++=--+=b a b a b a 例2 分解因式4 2 2 4 n n m m ++ 分析 此式中各项均为平方式,可采用添项法将式中某一部分配方,构造平方差公式。 解:原式2 2 4 2 2 4 )2(n m n n m m -++= 2 2 22 )()(mn n m -+= ))((2 2 2 2 mn n m mn n m -+++= 例3 分解因式 )2)(2()(22+--+-n m mn t n m t 分析 将多项式中前两项t n m t )(22 +-进行配方,添上2 2 )()(n m n m +-+即可分组分解。 解:原式)2)(2()()()(22 2 2 +--+-+++-=n m mn n m n m t n m t ]4)(2)[()]([2 2 2 2 mn n m mn n m n m n m t --+++-+-= ) 2)(2() ()(] )()(2)[()(2 2 222mn m t mn n t mn n m n m t mn mn n m n m n m t --+-=+----=+?-+----= 例4 分解因式 42224)()()(b a b a b a -+-++ 分析:此题中只含b a +和b a -两个式子,可分别运用和差换元后再考虑配方。 解:设t b a s b a =-=+,,则 原式2242244224 )2(t s t t s s t t s s -++=++= )] )(()())][()(()()[() )(()()(222222222 222b a b a b a b a b a b a b a b a st t s st t s st t s -+--++-++-++=-+++=-+= )3)(3(2 2 2 2 b a b a ++=

一元二次方程配方法-公式法-因式分解法

一元二次方程的根 一元二次方程的解也叫做一元二次方程的根 因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解. 例1:下面哪些数是方程0121022 =++x x 的根? —4、—3、—2、—1、0、1、2、3、4 分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可. 复习 ()222 2b ab a b a ++=+ 2222)(b ab a b a +-=- 根据公式完成下面的练习: (1)()2 2____________8-→+-x x x (2)()2 2 ______3______129+→++x x x (3)()2 2____________+→++x px x (4) ()2 2 ____________6+→++x x x (5)()2 2____________5-→+-x x x (6) ()2 2 ____________9-→+-x x x 例2:解方程:2963=++x x 2532 =-x x 解:由已知,得:()232 =+x 解:方程两边同时除以3,得3 2352 =- x x 直接开平方,得:23±=+x 配方,得2 2 2 65326535??? ??+=?? ? ??+-x x 即23=+x ,23-=+x 即 3649652 =??? ? ? -x ,6765±=-x ,6765±=x 所以,方程的两根231+ -=x ,232--=x 所以,方程的两根267651=+= x ,3 167652-=-=x 像这种求出一元二次方程的根的方法叫做配方法。 练一练: (1)982=+x x (2)015122 =-+x x (3)044 12 =--x x (4) 03832=-+x x (5)08922 =+-x x (6) ()x x 822 =+

因式分解经典题与解析

2013组卷 1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法: x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣① =(x+1)2﹣22﹣﹣﹣﹣﹣﹣② =… 解决下列问题: (1)填空:在上述材料中,运用了_________的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3; (3)请用上述方法因式分解x2﹣4x﹣5. 2.请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念菲?热门给出这一解法,就把它叫做“热门定理”,请你依照菲?热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. 3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步) =(x2﹣4x+4)2(第四步) 回答下列问题: (1)该同学第二步到第三步运用了因式分解的_________. A、提取公因式B.平方差公式 C、两数和的完全平方公式D.两数差的完全平方公式 (2)该同学因式分解的结果是否彻底_________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________. (3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解. 4.找出能使二次三项式x2+ax﹣6可以因式分解(在整数围)的整数值a,并且将其进行因式分解. 5.利用因式分解说明:两个连续偶数的平方差一定是4的倍数.

青岛版九年级数学上册用因式分解法解一元二次方程练习题

4.4 用因式分解法解一元二次方程 一、填空题 1.如果两个因式的积是零,那么这两个因式至少有__________等于零;反之,如果两个因式中有__________等于零,那么它们之积是__________. 2.方程x 2-16=0,可将方程左边因式分解得方程__________,则有两个一元一次方程___________或 ___________,分别解得:x 1=_________,x 2=_________. 3.填写解方程3x(x+5)=5(x+5)的过程 解:3x(x+5)__________=0 (x+5)(__________)=0 x+5=__________或__________=0 ∴x 1=__________,x 2=__________ 4.用因式分解法解一元二次方程的关键是 (1)通过移项,将方程右边化为零 (2)将方程左边分解成两个__________次因式之积 (3)分别令每个因式等于零,得到两个一元一次方程 (4)分别解这两个__________,求得方程的解 5.x 2-(p+q)x ≠qp=0因式分解为____________. 6.用因式分解法解方程9=x 2-2x+1 (1)移项得__________; (2)方程左边化为两个平方差,右边为零得__________; (3)将方程左边分解成两个一次因式之积得__________; (4)分别解这两个一次方程得x 1=__________,x 2=__________. 二、选择题 1.方程x 2-x=0的根为 A.x=0 B.x=1 C.x 1=0,x 2=1 D.x 1=0,x 2=-1 2.方程x(x -1)=2的两根为 A.x 1=0,x 2=1 B.x 1=0,x 2=-1 C.x 1=1,x 2=-2 D.x 1=-1,x 2=2 3.用因式分解法解方程,下列方法中正确的是 A.(2x -2)(3x -4)=0 ∴2-2x=0或3x -4=0 B.(x+3)(x -1)=1 ∴x+3=0或x -1=1 C.(x -2)(x -3)=2×3 ∴x -2=2或x -3=3 D.x(x+2)=0 ∴x+2=0 4.方程ax(x -b)+(b -x)=0的根是 A.x 1=b,x 2=a B.x 1=b,x 2=a 1 C.x 1=a,x 2=b 1 D.x 1=a 2,x 2=b 2 5.已知a 2-5ab+6b 2=0,则a b b a 等于 21331D.2 31 321C.2 31B.3 21A.2或或

配方法因式分解

配方法因式分解集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

§2.3运用配方法的因式分解法 【学习目标】 1. 理解掌握运用配方法进行因式分解; 2. 能根据具体情况灵活运用各种方法进行因式分 解。 【重点、难点】 1. 配方法的运用方法; 2. 根据具体情况灵活选择方法进行因式分解 【新课引入】 1. 把下列各多项式因式分解: 1)962-+x x ;2)2842--x x 小结:这种设法配成有完全平方式的方法叫做配方法。 说明:配方法的关键是将二次三项式变形为:A 2—B 2 的形式,然后要平方差公式继续分解。 【例题选讲】 例1. 把下列各多项式因式分解: 1)12366+--x y x ;2)422497y y x x +-;★3) ab b ax x 2222+--

例2.把下列各多项式因式分解: 1)362025422--+ab b a ;2)16)5(6)5(222--+-x x x x 说明:把一个多项式因式分解的基本步骤: 1) 如果多项式各项有公因式,那么先提取公 因式; 2) 如果多项式各项没有公因式,那么可以尝 试运用公式来分解; 3) 如果上述两种方法不能分解,那么可以尝 试分组或十字相乘法或配方法来分解; 4) 分解因式时,必须进行到每一个多项式因 式都不能再分解为止。 【巩固练习】 把下列各多项式因式分解: 1)18724--x x ;2)22484n mn mx x -+- 【小结】 把一个多项式因式分解的基本方法: 提取公因式法、公式法、分组分解法、十字相乘法和配方法 【课后练习】

因式分解与配方法练习题

分解因式 1、1522--x x ; 2、2 265y xy x +-. 3、3522--x x ; 4、3832-+x x . 5、91024+-x x ; 6、 22157x x ++ 7、 2384a a -+ 8、2 61110y y -- 9、2252310a b ab +- 10、222231710a b abxy x y -+ 11、 22 712x xy y -+ 12、 42718x x +- 13、 22483m mn n ++ 14、532 51520x x y xy -- 15、672+-x x ; 16、1232-+x x ; 17、652-+x x ; 18、9542--x x ; 19、823152+-x x ; 20、121124-+x x 21、6724+-x x ; 22、36524--x x ; 23、4 22416654y y x x +-; 24、633687b b a a --; 25、234456a a a --; 26、2224)3(x x --; 27、9)2(2 2--x x ; 28、 2222)332()123(++-++x x x x 29、60)(17)(222++-+x x x x ; 30、8)2(7)2(2 22-+-+x x x x ; 31、48)2(14)2(2++-+b a b a . 32、 2576x x +-)(2)(5)(723y x y x y x +-+-+;

33、120)8(22)8(222++++a a a a . 34、90)242)(32(2 2+-+-+x x x x . 35、653856234++-+x x x x . 36、655222-+-+-y x y xy x 37、 a 2-7a+6; 38、8x 2+6x -35; 39、18x 2-21x+5; 40、 20-9y -20y 2; 41、2x 2+3x+1; 42、2y 2+y -6; 43、6x 2-13x+6; 44、3a 2-7a -6; 45、6x 2-11x+3; 46、4m 2+8m+3; 47、10x 2-21x+2; 48、8m 2-22m+15; 49、4n 2+4n -15; 50、6a 2+a -35; 51、5x 2-8x -13; 52、4x 2+15x+9; 53、15x 2+x -2; 54、6y 2+19y+10; 55、7(x -1) 2+4(x -1)-20; 56、.=-+1032x x __________. 57.=--652m m (m +a )(m +b ). a =__________,b =__________. 58.=--3522 x x (x -3)(__________). 59.+2x ____=-22y (x -y )(__________). 60.22____)(____(_____)+=++a m n a . 61.当k =______时,多项式k x x -+732有一个因式为(__________).

配方法因式分解

配方法因式分解(总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

3 §2.3运用配方法的因式分解法 【学习目标】 1. 理解掌握运用配方法进行因式分解; 2. 能根据具体情况灵活运用各种方法进行因式分解。 【重点、难点】 1. 配方法的运用方法; 2. 根据具体情况灵活选择方法进行因式分解 【新课引入】 1. 把下列各多项式因式分解: 1)962-+x x ; 2)2842 --x x 小结:这种设法配成有完全平方式的方法叫做配方法。 说明:配方法的关键是将二次三项式变形为:A 2—B 2的形式,然后要平方差公式继续分解。 【例题选讲】 例1. 把下列各多项式因式分解: 1)12366+--x y x ; 2)422497y y x x +-; ★3)ab b ax x 2222+-- 例2. 把下列各多项式因式分解: 1)362025422--+ab b a ; 2)16)5(6)5(2 22--+-x x x x 说明:把一个多项式因式分解的基本步骤: 1) 如果多项式各项有公因式,那么先提取公因式; 2) 如果多项式各项没有公因式,那么可以尝试运用公式来分解; 3) 如果上述两种方法不能分解,那么可以尝试分组或十字相乘法或配方法来分解; 4) 分解因式时,必须进行到每一个多项式因式都不能再分解为止。 【巩固练习】

4 把下列各多项式因式分解: 1)18724--x x ; 2)2 2484n mn mx x -+- 【小结】 把一个多项式因式分解的基本方法: 提取公因式法、公式法、分组分解法、十字相乘法和配方法 【课后练习】 把下列各多项式因式分解: 1)y xy x x 621552-+-; 2 ) 432234ab b a b a b a --+; 3)142222---+xy y x y x

配方法因式分解

§2.3运用配方法的因式分解法 【学习目标】 1. 理解掌握运用配方法进行因式分解; 2. 能根据具体情况灵活运用各种方法进行因式分解。 【重点、难点】 1. 配方法的运用方法; 2. 根据具体情况灵活选择方法进行因式分解 【新课引入】 1. 把下列各多项式因式分解: 1)962-+x x ;2)2842--x x 小结:这种设法配成有完全平方式的方法叫做配方法。 说明:配方法的关键是将二次三项式变形为:A 2—B 2 的形式,然后要平方差公式继续分解。 【例题选讲】 例1. 把下列各多项式因式分解: 1)12366+--x y x ;2)422497y y x x +-;★3)ab b ax x 2222+-- 例2.把下列各多项式因式分解: 1)362025422--+ab b a ;2)16)5(6)5(222--+-x x x x

说明:把一个多项式因式分解的基本步骤: 1) 如果多项式各项有公因式,那么先提取公因式; 2) 如果多项式各项没有公因式,那么可以尝试运用公式来分解; 3) 如果上述两种方法不能分解,那么可以尝试分组或十字相乘法或配方法来分解; 4) 分解因式时,必须进行到每一个多项式因式都不能再分解为止。 【巩固练习】 把下列各多项式因式分解: 1)18724--x x ;2)22484n mn mx x -+- 【小结】 把一个多项式因式分解的基本方法: 提取公因式法、公式法、分组分解法、十字相乘法和配方法 【课后练习】 把下列各多项式因式分解: 1)y xy x x 621552-+-;2)432234ab b a b a b a --+;

因式分解之配方法与主元法

第6讲 因式分解 -----配方法与主元法、换元法 知识要点】 配方法:配方法是一种特殊的添项法,如何拆项或添项,依赖于对题目所给代数式特点的观察和分析。 主元法:当题目中的字母较多、问题较复杂时,我们可以把某一字母作为主元,而将其他字母作为常数去解决问题。 换元法:换元法是根据代数式中的特征,把其中的某些部分看成一个整体,并用一个新的文字(新元)代替之,从而使这个代数式的结构简化,便于解题。 【经典例题】 例1、分解因式:(1)2616x x +- (2)()444y x y x +++ 例2、已知,19911990,19901990,1989 1990+=+=+=x c x b x a 那么ca bc ab c b a ---++2 22的值是多少? 例3、若c b 、、a 是不全相等的实数,且ab c z ca b y bc a x -=-=-=222,,,求证:z y 、、x 中至少有一个大于0

例4、分解因式:2910322-++--y x y xy x 例5、分解因式:)()()(222y x z x z y z y x -+-+- 例6、分解因式:2005)12005(200522---x x 例7、2)6)(3)(2)(1(x x x x x +++++ 例8、分解因式:262234+---x x x x

【经典练习】 1、分解因式:)(4)(22222y x xy y xy x +-++ 2、分解因式:90)384)(23(22+++++x x x x 3、分解因式:222222)3(4)5()1(+-+++a a a 4、分解因式:56422-++-y x y x 5、分解因式:67222-+--+y x y xy x 6、分解因式:613622-++-+y x y xy x

因式分解培优题(超全面、详细分类)

因式分解专题培优 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下: 因式分解的一般方法及考虑顺序: 1、基本方法:提公因式法、公式法、十字相乘法、分组分解法. 2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法. 3、考虑顺序:(1)提公因式法;(2)公式法;(3)十字相乘法;(4)分组分解法. 一、运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1),其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例题1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7.

初中因式分解详解及提高篇

初中因式分解详解及提 高篇 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中因式分解详解及提高篇 因式分解作为初中代数中一门重要的内容,在因式分解之前的整式运算是因式分解的反方向,而一元二次方程则是以因式分解作为基础,因式分解起到了承上启下的作用,而且因式分解学习的好坏不仅影响到对方程的了解,同时对今后高中学习内容也会有或多或少的影响,学好因式分解十分重要。 对于目前初中教材上老师所讲的因式分解内容只能处理一些基本的问题,对于有更深层次内容的东西则是比较难以处理,为了弥补这些缺陷,让大家更好地打牢初中的学习内容,在此我将所有的因式分解方法全部列举出来并进行详细叙述,从而让各位同学能够真正地了解因式分解。由于有些方法对于初中有一定的难度,对于不同的学生,我会对每一个方法进行说明。 1.提公因式法(所有学生必须掌握) 典型形式:()ma mb mc m a b c ++=++ 注意上面的m 是一个数也可以是一个整式,再比如 ()()()()()x y a x y b x y c x y a b c -+-+-=-++ 2.平方差(所有学生必须掌握) 典型形式:22()()a b a b a b -=-+ 同样上面的a b 、既可以是数也可以是一个整式 3.配方法(所有学生必须掌握) 对于因式分解的配方法主要是搭配平方差进行应用,比如下面的两个例子 22268(+69)1(3)1(2)(4)x x x x x x x ++=+-=+-=++ 祖冲之杯奥赛题:4271x x -+(这个问题在下面的试根法中叙述会更好,所以在这里不给出具体做法) 4.十字相乘法(所有学生必须掌握) 十字相乘法是初中数学中因式分解的难点和重点,在此首先说明2x 前系数为1的处理方法,我们先观察整式运算2()()()x a x b x a b x ab ++=+++

因式分解的16种方法-凑因式 方法

因式分解得16种方法 因式分解没有普遍得方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项与添减项法,分组分解法与十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:) 分解因式技巧 1、分解因式与整式乘法就就是互为逆变形。 2、分解因式技巧掌握: ①等式左边必须就就是多项式;②分解因式得结果必须就就是以乘积得形式表示; ③每个因式必须就就是整式,且每个因式得次数都必须低于原来多项式得次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数与因式两个方面考虑。 基本方法 ⑴提公因式法 各项都含有得公共得因式叫做这个多项式各项得公因式。 如果一个多项式得各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积得形式,这种分解因式得方法叫做提公因式法。 具体方法:当各项系数都就就是整数时,公因式得系数应取各项系数得最大公约数;字母取各项得相同得字母,而且各字母得指数取次数最低得;取相同得多项式,多项式得次数取最低得。 如果多项式得第一项就就是负得,一般要提出“-”号,使括号内得第一项得系数成为正数。提出“-”号时,多项式得各项都要变号。 提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式得方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得得商即就就是提公因式后剩下得 一个因式,也可用公因式分别除去原多项式得每一项,求得剩下得另一个因式; ③提完公因式后,另一因式得项数与原多项式得项数相同。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形瞧奇偶。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把2 +变成2(+)不叫提公因式 ⑵公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:=(a+b)(a-b); 完全平方公式:±2ab+= 注意:能运用完全平方公式分解因式得多项式必须就就是三项式,其中有两项能写成两个数(或式)得平方与得形式,另一项就就是这两个数(或式)得积得2倍。

因式分解法、配方法解一元二次方程

一、填空题(因式分解法) 1.如果两个因式的积是零,那么这两个因式至少有__________等于零;反之,如果两个因式中有__________等于零,那么它们之积是__________. 2.方程x2-16=0,可将方程左边因式分解得方程__________,则有两个一元一次方程___________或___________,分别解得: x1=_________,x2=_________. 3.填写解方程3x(x+5)=5(x+5)的过程 解:3x(x+5)__________=0 (x+5)(__________)=0 x+5=__________或__________=0 ∴x1=__________,x2=__________ 4.用因式分解法解一元二次方程的关键是 (1)通过移项,将方程右边化为零 (2)将方程左边分解成两个__________次因式之积 (3)分别令每个因式等于零,得到两个一元一次方程 (4)分别解这两个__________,求得方程的解 5.x2-(p+q)x+qp=0因式分解为____________. 6.用因式分解法解方程9=x2-2x+1 (1) 移项得__________; (2)将方程左边分解成两个一次因式之积得__________; (3)分别解这两个一次方程得x1=__________,x2=__________ 二、选择题 1.用因式分解法解方程,下列方法中正确的是() A.(2x-2)(3x-4)=0 ∴2-2x=0或3x-4=0 B.(x+3)(x-1)=1 ∴x+3=0或x-1=1 C.(x-2)(x-3)=2×3 ∴x-2=2或x-3=3 D.x(x+2)=0 ∴x+2=0 2.方程ax(x-b)+(b-x)=0的根是() A.x1=b,x2=a B.x1=b,x2= a 1 C.x1=a,x2= a 1 D.x1=a2,x2=b2 三、计算题 1.x2-25=0 2.(x+1)2=(2x-1)2 3.x2-2x+1=4 4.x2=4x

配方法因式分解

§运用配方法的因式分解法 【学习目标】 1. 理解掌握运用配方法进行因式分解; 2. 能根据具体情况灵活运用各种方法进行因式分解。 【重点、难点】 1. 配方法的运用方法; 2. 根据具体情况灵活选择方法进行因式分解 【新课引入】 1. 把下列各多项式因式分解: 1)962-+x x ; 2)2842--x x

小结:这种设法配成有完全平方式的方法叫做配方法。 说明:配方法的关键是将二次三项式变形为:A2—B2的形式,然后要平方差公式继续分解。

【例题选讲】 例1. 把下列各多项式因式分解: 1)12366+--x y x ; 2)422497y y x x +-; ★3)ab b ax x 2222+-- 例2. 把下列各多项式因式分解: 1)362025422--+ab b a ; 2)16)5(6)5(222--+-x x x x

说明:把一个多项式因式分解的基本步骤: 1)如果多项式各项有公因式, 那么先提取公因式; 2)如果多项式各项没有公因 式,那么可以尝试运用公式来 分解; 3)如果上述两种方法不能分

解,那么可以尝试分组或十字相乘法或配方法来分解; 4) 分解因式时,必须进行到每一个多项式因式都不能再分解为止。 【巩固练习】 把下列各多项式因式分解: 1)18724--x x ; 2)22484n mn mx x -+-

【小结】 把一个多项式因式分解的基本方法: 提取公因式法、公式法、分组分解法、十字相乘法和配方法 【课后练习】 把下列各多项式因式分解: 1)y xy x x 621552-+-; 2) 432234ab b a b a b a --+; 3)142222---+xy y x y x

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解方法归纳总结 第一部分:方法介绍 初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍. 一、提公因式法.:ma+mb=m(a+b) 二、运用公式法. (1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b); (2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2; (3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2); (4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2). 下面再补充两个常用的公式: (5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2; (6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 例.已知a b c ,,是ABC ?的三边,且222 a b c ab bc ca ++=++, 则ABC ?的形状是( ) A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++?++=++ 222()()()0a b b c c a a b c ?-+-+-=?== 三、分组分解法 例2、分解因式:bx by ay ax -+-5102 解法一:第一、二项为一组; 解法二:第一、四项为一组; 第三、四项为一组。 第二、三项为一组。 解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a -- 练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy (二)分组后能直接运用公式 例3、分解因式:ay ax y x ++-2 2

配方法因式分解

配方法因式分解集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

§2.3运用配方法的因式分解法 【学习目标】 1. 理解掌握运用配方法进行因式分解; 2. 能根据具体情况灵活运用各种方法进行因式分解。 【重点、难点】 1. 配方法的运用方法; 2. 根据具体情况灵活选择方法进行因式分解 【新课引入】 1. 把下列各多项式因式分解: 1)962-+x x ;2)2842--x x 小结:这种设法配成有完全平方式的方法叫做配方法。 说明:配方法的关键是将二次三项式变形为:A 2—B 2的形式,然后要平方差公式继续分解。 【例题选讲】 例1. 把下列各多项式因式分解: 1)12366+--x y x ;2)422497y y x x +-;★3)ab b ax x 2222+-- 例2.把下列各多项式因式分解: 1)362025422--+ab b a ;2)16)5(6)5(222--+-x x x x 说明:把一个多项式因式分解的基本步骤: 1)如果多项式各项有公因式,那么先提取公因式; 2)如果多项式各项没有公因式,那么可以尝试运用公式来分解; 3)如果上述两种方法不能分解,那么可以尝试分组或十字相乘法或配方法来分解; 4)分解因式时,必须进行到每一个多项式因式都不能再分解为止。 【巩固练习】 把下列各多项式因式分解: 1)18724--x x ;2)22484n mn mx x -+- 【小结】 把一个多项式因式分解的基本方法:

提取公因式法、公式法、分组分解法、十字相乘法和配方法 【课后练习】 把下列各多项式因式分解: 1)y xy x x 621552-+-;2)432234ab b a b a b a --+; 3)142222---+xy y x y x

因式分解之技巧一配方法和十字交叉法

因式分解之配方法和十字交叉法 因式分解 是七年级数学的知识,放在代数式的乘法之后,现在我们学习的是因式分解的基本方法,1、提取公因式法,2、公式法(平方差公式和完全平方公式)。往往在题目中多少会涉及一些其他的知识,例如配方法和十字交叉法等。下面带大家学习配方法和十字交叉法。 一、十字交叉法 2()()()x p x q x p q pq ++=+++这是乘法,反过来 2()()()x p q pq x p x q +++=++这是一个恒等变形,研究系数x 的一次项系 数为()p q +,常数项是pq 。例如2215(3)(5)x x x x +-=-+ x 5 x 3- 其中1535-=-? ,23+5=-。 例题:多项式212x m x +?-可以分解为()(6)x m x ++,则 m n += 。 练习:2221x m x +?-分解中有一个因式为27x +,则m = . 二、配方法 配方法其实是完全平方公式和平方差公式的应用,对于完全平方 公式要有一种敏感性,找到符合的三项.222()2a b a ab b ±=±+, 他们不是孤立的个体而是一个整体.首先要学会审题,从题目中发现他们。

例题:已知22 26100x x y y -+++=,求2x y +的值。 分析:见到2 2x x +,26y y +我们就想到添加一项构成完全项,22222226102169(1)(3)0x x y y x x y y x y -+++=-++++=-++=, 得到1,3x y ==-. ∴ 221(3)1x y +=?+-=- 练习:1、已知222450m m n n ++-+=,则m n = . 2、已知22 912480a a b b ++++=,求24b a 的值。 思考:已知22 22440m m n n n +?+-+=,求24m n -的值.

因式分解拆项

第一讲添拆项与配方法 知识点 【版块一】添拆项 拆项:把代数式中的某项拆成两项或几项的代数和,叫做拆项 添项:在代数式中填上两个相反项,叫做添项 X3 - 4x+3 奥巴马老师语录:拆添项法形式多样,技巧性较灵活。其解题的关键,往往在于仔细观察各项系数之间的关系,然后拆添项,以便进行分组分解。 【例1】因式分解:乂-4? + 3 【例题2】因式分解:x9+x6+x3-3 【例题3】因式分解:x4+x3-3x2-4x-4 【例题4】因式分解:x5+x + 1

板块二】配方法 配方:利用添项的方法,将原式配上某些需要的缺项,使添项后的多项式的一部分成 为一个完全平方式,这种方法叫做配方法。 【例题】P+4 原式=x4+ 4x2+ 4 - 4x2 =(x2+ 2)2- (2x )2 =(X + 2x+2)(x—2x+2) 奧巴马老师语录:在因式分解的配方法中,我们往往需要配上的是中间项2ab,将多项式配成平方差公式J2-B2,使多项式可以分解成为(J+B)(A—B)的形式。 【例5】因式分解:x4+ x2y2+y4 因式分解:a4— 27a2b2+ b4 【例6】因式分解:4x2-4x-y2+4y-3 【例7】a4+b4+c4- 2a2b2- 2b2c2- 2c2a2 【例8】若a为自然数,则V-3a2+9是素数还是合数?请证明你的结论。

奥巴马老师总结 1.为了便于分组分解,常常采用添拆项的方法,使得分成的每一组都有公因式可以提 戒者可以应用公式。 2.对于一些按某一字母降幂排列的三项式,拆开中项是最常见的。 3.对于一些次数相差比较大的“跳水题型”,往往可以把所缺的次数一一补齐。 4.在使用配方法时,注意所配中间项的符号,以便于迚一步的平方差分解。 同学们再见~~~ 【课后作业】 【练习1】因式分解:X3-9X+8 【练习2】因式分解:X4-6X2-7X-6

因式分解之技巧一配方法和十字交叉法

因式分解之配方法和十字交叉法 因式分解 是七年级数学的知识,放在代数式的乘法之后,现在我们学习的是因式分解的基本方法,1、提取公因式法,2、公式法(平方差公式和完全平方公式)。往往在题目中多少会涉及一些其他的知识,例如配方法和十字交叉法等。下面带大家学习配方法和十字交叉法。 一、十字交叉法 2()()()x p x q x p q pq ++=+++这是乘法,反过来 2()()()x p q pq x p x q +++=++这是一个恒等变形,研究系数x 的一次项系 数为()p q +,常数项是pq 。例如2215(3)(5)x x x x +-=-+ x 5 x 3- 其中1535-=-? ,23+5=-。 例题:多项式212x m x +?-可以分解为()(6)x m x ++,则 m n += 。 练习:2221x m x +?-分解中有一个因式为27x +,则m = 。 二、配方法 配方法其实是完全平方公式和平方差公式的应用,对于完全平方 公式要有一种敏感性,找到符合的三项。222()2a b a ab b ±=±+, 他们不是孤立的个体而是一个整体。首先要学会审题,从题目中发现他们。

例题:已知22 26100x x y y -+++=,求2x y +的值。 分析:见到2 2x x +,26y y +我们就想到添加一项构成完全项,22222226102169(1)(3)0x x y y x x y y x y -+++=-++++=-++=, 得到1,3x y ==-。 ∴ 221(3)1x y +=?+-=- 练习:1、已知222450m m n n ++-+=,则m n = 。 2、已知22 912480a a b b ++++=,求24b a 的值。 思考:已知2222440m m n n n +?+-+=,求24m n -的值。

相关主题
文本预览
相关文档 最新文档