当前位置:文档之家› 偶数阶幻方

偶数阶幻方

偶数阶幻方
偶数阶幻方

偶数阶幻方的一种制作方法-双偶阶、单偶阶幻方

1. 双偶阶幻方(对称交换法)

n为偶数,且能被4整除(n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……)

先说明一个定义。互补:如果两个数字的和,等于幻方最大数和最小数的和,即 n×n+1,称为互补。

先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:

这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。

这里,n×n+1 = 4×4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。

对于n=4k阶幻方,我们先把数字按顺序填写。写好后,按4×4把它划分成k×k个方阵。因为n是4的倍数,一定能用4×4的小方阵分割。然后把每个小方阵的对角线,象制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方。

2. 单偶阶幻方(斯特雷奇Ralph Strachey法)

n为偶数,且不能被4整除(n=6,10,14,18,22……) (n=4k+2,k=1,2,3,4,5……)

这是三种里面最复杂的幻方。

以n=10为例,10=4×2+2,这时k=2

(1)把方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用楼梯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。

(2)在A象限的中间行、中间格开始,按自左向右的方向,标出k 格。A象限的其它行则标出最左边的k格。将这些格,和C象限相对位置上的数,互换位置。

(3)在B象限任一行的中间格,自右向左,标出k-1列。(注:6阶幻方由于k-1=0,所以不用再作B、D象限的数据交换),将B象限标出的这

些数,和D象限相对位置上的数进行交换,就形成幻方。

下面是6阶幻方的填法:6=4×1+2,这时k=1

看起来很麻烦,其实掌握了方法就很简单了。

2008.6.27_任意阶幻方的构造方法

任意阶幻方的构造方法 一、幻方分类 n 表示阶数 二、构造方法 以下幻方均指在n n ?(n 行n 列)的方格里,既不重复也不遗漏地填上1——2n 所构成的幻方。 1、奇数阶幻方——连续摆数法(如图一:以五阶幻方为例) ① 把1填在第一行正中; ② 把i a ()i ≤2放在1-i a 的右上一格;如:3、5、7、8、20等。 ③ 如果i a 所要放的格已超出了顶行,那么就把它放在1-i a 的右一列的最下行;如:2、9、18、25。 ④ 如果i a 所要放的格已超出了最右列,那么就把它放在1-i a 的上一行的最左列;如:4、10、17、23。 ⑤ 如果i a 所要放的格已超出了顶行且超出了最右列,那么就把它放在1-i a 的下一行的同一列的格内;如:16。 ⑥ 如果i a 所要放的格已有数填入,那么就把它放在1-i a 的下一行的同一列的格内。如:6、11、21。 图一 2、单偶数阶幻方()122+ =m n ——分区调换法(如图二:以六阶幻方为例) ① 把()122+=m n 阶的幻方均分成4个同样的小幻方A 、B 、C 、D ;如图二(a ); (注意A 、B 、C 、D 的相对位置不能改变,因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方) ② 用连续摆数法在A 中填入21a ——构成幻方,同理,在B 中填入() 2221a a ——+、在

C 中填入()22312a a ——+、在 D 中填入() 22413a a ——+均构成幻方(2n a =);如图二(b ); (因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方,必然可以用连续摆数法构造幻方) ③ 在A 的中间一行上从左侧的第二列起取m 个方格,在其它行上则从左侧第一列起取m 个方格,把这些方格中的数与D 中相应方格中的数字对调;如图二(c 、d ), (不管是几阶幻方,在A 中取数时都要从中间一行的左侧第二列开始;因为当6=n 时,1=m ,所以本例中只取了一个数) ④ 在C 中从最右一列起在各行中取1-m 个方格,把这些方格中的数与B 中相应方格中的数字对调。 (因为01=- m ,所以在C 中没有取数) 图二(d )即为所求幻方。 图二(a ) 图二(b ) 图二(c ) 图二(d ) 3、双偶数阶幻方m n 4=——轴对称法(如图三:以八阶幻方为例) ① 把m n 4=阶的幻方均分成4个同样的小幻方;如图三(a ) ② 在左上角的小幻方每行每列中任取一半的方格加上底色(以便于区分),然后以轴对称的形式在其它三个小幻方中标出方格;如图三(b ) (正确理解“每行每列中任取一半的方格”。本例中因为4=m ,所以在每个小幻方的每行每列上均取2个方格) ③ 从左上角的方格开始,按从左到右、从上到下的次序将1——64从小到大依次填入n 阶幻方,遇到有底色的方格跳过,计数,这样填满了没有底色的方格;如图三(c )

数阶幻方的

数阶幻方的编排方法. 奇数阶幻方的编排方法 简便易学的编排方法。 一、九子排列法 宋朝数学家杨辉在《续古摘奇算法》中,总结“洛书”幻方的编排方法时说:三阶幻方的编排方法是“九子排列,上下对易,左右相更,四维挺出”。 这四个句子是什么意思呢?我们通过下面的一组图来加以理解。

先画出一个3×3的“九宫格”,并在第二列上、下方和第二行左、右边各添加一个虚线格子,把1~9这九个数字按顺序写在如上图所示的三排斜线上,然后上、下对调,左右交换,(因为我们是在格子上进行排列,就不必再进行“四维挺出”了),最后将虚线格子擦掉就可以了。 利用这种方法我们就很容易得到幻方(一)中例1的图A。但是这种方法有一定的局限性,只能编排三阶幻方,如果要编排5×5,7×7,9×9,……等奇数阶幻方又该怎么办呢?我们继续看第二种方法。 二、罗伯法 请大家注意观察幻方(一)中例1的图H,可以总结出下面的编排方法:

1、在第一行正中央的方格子中填上1; 2、按斜上方向在1的右上角填入2,但出上框了,这时要把2改填在2所在这一列的最下边; 3、按斜上方向在2的右上角填入3,又出右框了,把3改填在3所在这一行的最左边;(上图1) 4、按斜上方向在3的右上角填入4,但与先填入的1重合了,这时就把4改填在3的下面,然后把 5、6依次按斜上方向填入方格内; 5、按斜上方向在6的右上角填入7,但出框的右上角,这时就把7改填在6的下面,(与重合相同)。 重复上面的做法,把8、9依次填入方格中,这样就得到了图2,与左边的图H 完全相同。 这种编排奇数阶幻方的方法叫“罗伯法”。使用“罗伯法”时总是向右上的斜行方向进行编排。编排过程中会出现五种情况:“第一行正中央排什么数?”、“排出上框怎么办?”、“排出右框怎么办?”、“排重复了怎么办?”、“排出右上角怎么办?” 为了便于记忆,我们把罗伯法概括成下面的的几句话: 1居上行正中央,依次斜排莫忘记;上出框时往下写,右出框时左边放;重叠就在下格填,右上出框一个样。 罗伯法不仅可以编排三阶幻方,而且可以编排任何奇数阶幻方。下图就是用罗伯法编排的五阶幻方,请大家在方格子中跟着做一、二次,并逐行、逐列及对角线检验幻和是否正确。 三、巴舍法

探寻神奇的幻方

综合与实践 探寻神奇的幻方 太原第二实验中学白志红 学生起点分析 “探寻神奇的幻方” 是学生初中阶段接触的第一个“综合与实践”,学生此前已完成“有理数及其运算”与“整式及其加减”的学习,部分学生对用1~9填成三阶幻方,在方法上有初步的感性认识.学生的认知条件决定了它主要立足于丰富学生的数学活动经验,帮助学生在问题串引导下综合运用知识解决问题,对解决问题的方法和经验进行反思,从中感受对学生而言,一种全新的以自主探究为特色的学习方式. 教学任务分析 本“综合与实践”以探寻三阶幻方的本质特征为载体,帮助学生感受图形的对称;提高字母表示数的技能和探索规律的能力;体验数形结合的思想.教学时要提供学生充足的探索数量关系并符号化的时间,培养学生言之有据的习惯,发展学生正确使用数学语言进行表达和交流的能力,同时要鼓励学生在探索的过程中多角度尝试,不要以教师的讲解代替学生的思考、讨论;可以组建四人活动小组,每组有一份评分标准(见教师用书),促成学生以良好的情感态度主动参与合作交流;引导学生在独立思考的基础上与同伴进行合作交流; 教学目标 1、借助字母表示数、探索规律揭示几种简单的三阶幻方的本质特征;体验有理数混合运算、字母表示数、探索规律与几种简单的三阶幻方本质特征的内在联系;能够快速对含有具体数字的不完整幻方进行补充,掌握幻方的形成和相等关系的一般性描述. 2、在幻方规律的发现、幻方之间关系的探索过程中,形成初步的研究体验,获得一些发现问题、研究问题的经验,提高能力; 3、借助洛书、杨辉幻方等史料,帮助学生感受祖国文化的博大精深,增强民族自豪感,激发他们将民族瑰宝进一步发扬光大的信心和决心,从幻方对称的图形、美妙的结论中,初步感受数学的美. 教学过程设计 本节课设计了六个教学环节:第一环节:课前准备——查阅资料;第二环节:结识幻方;第三环节:研究三阶幻方;第四环节:制作三阶幻方;第五环节:课堂小结;第六环节:布置作业.

魔方阵

问题3.1、n –魔方阵 一、提出问题 所谓“n – 魔方阵”是指由1至n 这n 个不同整数构成的魔方阵,其魔方常数为n ( n + 1 ) / 2。例如,5 – 魔方阵和7 – 魔方阵如图3 – 1所示。易知,这两个魔方阵的魔方常数分别为15和28。 321541543 24321 52154 35432 1 ,4 3217651 76543254321762176543654321732176547654321 图3 – 1 5 – 魔方阵和7 – 魔方阵 n – 魔方阵的数字排列很有规律,若用人工的方法给出并不困难。现在要求给出:能让计算机自动输出n (≥ 3)为奇数时形如图3 – 1所示的n – 魔方阵的算法。 二、简单分析 n – 魔方阵较我们之后将要讨论的奇、偶数阶魔方阵,要简单许多。观察后不难发现: 1.要填入的n 个数字在阵列的每一行和每一列都要出现且仅出现一次,且各行(列)中的数字顺序相同,这里的顺序是指循环顺序,其中数字1接在数字n 的后面。 2.从阵列的行来看,每一行的第一个数字与它上一行正中间的数字相同。 通过对“n – 魔方阵”的分析,下面几个基本问题必须得到解决: ◆ 如何确定阵列第一行各个数字? ◆ 在填入其他行的数字时如何保证数字原有的顺序不改变同时每一行的第一个数字正好是其上一行正中间的数字? 三、设计准备 假设我们要构建的是一个n – 魔方阵,为此定义一个有n 行n 列的二维数组。 1.确定阵列第一行各个数字 这里我们处理的方法很简单,即可以利用循环方法顺序地在二维数组第一行中填写1,2,3,…,n 这n 个自然数即可。 2.填入其他行的数字,并保证数字原有的顺序不改变同时每一行的第一个数字正好是其上一行

幻方填入规律

n是它的阶数,比如上面的幻方是3阶。n/2*(n*n+1)为幻方的变幻常数。数学上已经证明,对于n>2,n阶幻方都存在。目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。这里对于这三类幻方,仅举出一种方便手工填写的方法。 1、奇数阶幻方 n为奇数(n=3,5,7,9,11……) (n=2*k+1,k=1,2,3,4,5……) 奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。填写方法是这样:把1(或最小的数)放在第一行正中;按以下规律排列剩下的n*n-1个数:(1)、每一个数放在前一个数的右上一格;(2)、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)、如果这个数所要放的格已经有数填入,处理方法同(4)。这种写法总是先向“右上”的方向,象是在爬楼梯。 2、双偶阶幻方

方阵 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 (2) 每个小方阵对角线上的数字,换成和它互补的数。 单偶阶幻方 n为偶数,且不能被4整除(n=6,10,14,18,22……) (n=4k+2,k=1,2,3,4,5……) 这是三种里面最复杂的幻方。 以n=10为例。这时,k=2 (1) 把方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用楼梯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。

任意奇数阶幻方的罗伯移步法

任意奇数阶幻方的罗伯移步法 学习心得 范贤荣2016.2.25 在学习幻方构成时,在网上看到了大多数幻友介绍的罗伯(loubere )法。读后,我有心得如下: 1、罗伯(loubere )法的确是最简单的任意奇数阶幻方的构成法。它只要一步一步 地填写就可以了。 2、有人称之为楼梯法。这也非常形象,体现了一步一步斜着向上的填写规律。因 此,我觉得以罗伯楼梯法谓之,倒是一个好办法,既尊敬了罗伯的创造,又形象地体现 了填写规律。但是,楼梯太实用了,就采用了浪漫点的移步二字,编写了本文的题目。 3、罗伯法的填写步骤,非常经典。关于“出格/出框”、“重复/遇阻”的规定,也往往还被其他方法所引用。 4、罗伯法的口诀,对“1 居上行正中央”的这种幻方,是很正确且准确的。但是,不知道这是不是罗伯老师的原话。我现在看到的都是幻友们的介绍。因此,就与幻友们讨 论一下: 这个口诀,只适用于“1 居上行正中央”的这种幻方。或者说“1居上行正中央”的这种幻方,只是罗伯幻方的一种。 罗伯幻方每一阶都有多种。幻方数与阶数相同。 因此,我建议在这口诀下面加一个注:“1 居上行正中央”只是罗伯幻方有代表性的一种。1 还可以在其他点格上。 5、1 还可以在那些点格上呢? 我们把方阵空格用(X,Y)即(行,列)表示。第一行,第三列表示为(1,3)

那么,各阶数方阵有几个幻方, 1 点在何处,可见下表: 我们还可以形象地用方阵的方式,直观地看到 1 的位置。 5 阶幻方的1 点在幻和为65 的格子内。 方法是: 1)与阶数一样,画出阶数方阵。例如, 5 阶 2)将该阶幻方的幻和填在方阵的“上行正中央”。例如5 阶幻和65。 3)在斜着把幻和,逐行向左移一位,填在各行。如下图 4)再利用罗伯法则,将出格的数移回来。就可以直观地看到 1 在那些点格了。5)顺便说说方阵中的其他数据是什么?从何而来?。这些数据都是一个不等于“幻和”的对角线之和。我是计算出来的,计算完5 阶,我就知道7 阶了。因此,就少画了许多方阵。

偶数阶幻方

偶数阶幻方的一种制作方法-双偶阶、单偶阶幻方 1. 双偶阶幻方(对称交换法) n为偶数,且能被4整除(n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……) 先说明一个定义。互补:如果两个数字的和,等于幻方最大数和最小数的和,即 n×n+1,称为互补。 先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写: 这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。 这里,n×n+1 = 4×4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。 对于n=4k阶幻方,我们先把数字按顺序填写。写好后,按4×4把它划分成k×k个方阵。因为n是4的倍数,一定能用4×4的小方阵分割。然后把每个小方阵的对角线,象制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方。

2. 单偶阶幻方(斯特雷奇Ralph Strachey法) n为偶数,且不能被4整除(n=6,10,14,18,22……) (n=4k+2,k=1,2,3,4,5……) 这是三种里面最复杂的幻方。 以n=10为例,10=4×2+2,这时k=2 (1)把方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用楼梯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。

(2)在A象限的中间行、中间格开始,按自左向右的方向,标出k 格。A象限的其它行则标出最左边的k格。将这些格,和C象限相对位置上的数,互换位置。

(3)在B象限任一行的中间格,自右向左,标出k-1列。(注:6阶幻方由于k-1=0,所以不用再作B、D象限的数据交换),将B象限标出的这

探寻神奇的幻方教学设计原稿

《探寻神奇的幻方》(1)教学设计 甘肃省张掖市甘州区新墩镇中心学校闫治春 一、教材分析 《探寻神奇的幻方》是学生初中阶段接触的第一个“综合与实践”,这节内容是以古老的幻方知识为引子,以探寻三阶幻方的本质特征为载体,让学生借助对实际问题中的数量关系符号化抽象的过程,从而达成领会问题、探究方法、提升问题、解决问题的目标。本节共2课时,作为第一课时,重在引导学生获得“从特殊到一般”的研究方法,其过程是落实数学活动经验积累、学会学习的重要载体,其方法是一种全新的以自主探究为特色的学习方式。 二、学情分析 学生已完成了“有理数及其运算”与“整式及其加减”的学习,有过“探索规律”的经历,对图形对称性也有初步了解。本节课主要面临的问题是从哪里入手以及从哪些角度研究三阶幻方的本质特征和构造思路,如何讲清特征背后的道理、提炼幻方构造的普适性方法。 本节课是学生初中阶段第一次接触综合实践活动,其研究意识和研究思路还不成形,教学定位在示范引领学生初步掌握研究性学习的方法,以面向全体学生的数学活动为主线,在层层递进的探究过程中引导学生积累数学活动经验,帮助学生在问题串引导下综合运用知识解决问题,进而从中感受和反思解决问题的方法和经验。 三、任务分析 《探寻神奇的幻方》是北师大版数学七年级上册综合与实践学习课题之一。根据新课标的要求,通过本课题的学习应让学生能够结合实际情境,经历解决具体问题的方案的过程;在参与过程中学会反思,并能进行交流,进一步获得数学活动经验;能够通过对有关知识的探讨,了解所学知识之间的关联,发展应用意识和能力。因此,本节课的设计以探寻三阶幻方的本质特征为载体,帮助学生感受图形的对称;以“有理数及其运算”与“整式及其加减”的知识为基础,提高字母表示数的技能和探索规律的能力;体验数形结合的思想.教学时要提供学生充足的探索数量关系并符号化的时间,培养学生言之有据的习惯,

幻方最优填法

如何填幻方 幻方最早记载于我国公元前500年的春秋时期《大戴礼》中,这说明我国人民早在2500年前就已经知道了幻方的排列规律。而在国外,公元130年,希腊人塞翁才第一次提起幻方。我国不仅拥用幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的数学家杨辉已经编制出3-10阶幻方,记载在他1275年写的《续古摘厅算法》一书中。在欧洲,直到574年,德国著名画家丢功才绘制出了完整的4阶幻方。 数学上已经证明,对于n>2,n阶幻方都存在。目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。 1、奇数阶幻方 n为奇数(n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……) 奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。填写方法是这样: 把1(或最小的数)放在第一行正中;按以下规律排列剩下的n×n-1个数: (1)每一个数放在前一个数的右上一格; (2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列; (3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行; (4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内; (5)如果这个数所要放的格已经有数填入,处理方法同(4)。 这种写法总是先向“右上”的方向,象是在爬楼梯。 2、双偶阶幻方 n为偶数,且能被4整除(n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……) 先说明一个定义。互补:如果两个数字的和,等于幻方最大数和最小数的和,即n*n+1,称为互补。 先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写: 这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。这里,n×n+1 = 4×4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。 也可以保留对角线上的数字不动,而将其它的数换为与它互补的数。 对于n=4k阶幻方,我们先把数字按顺序填写。写好后,按4*4把它划分成k2个方阵。因为n是4的倍数,一定能用4*4的小方阵分割。然后把每个小方阵的对角线,象制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方。 1 63 6 2 4 5 59 58 8 56 10 11 53 52 14 15 49 48 18 19 45 44 22 23 41 25 39 38 28 29 35 34 32 33 31 30 36 37 27 26 40 24 42 43 21 20 46 47 17 16 50 51 13 12 54 55 9 57 7 6 60 61 3 2 64

(完整版)任意奇数阶幻方的杨辉斜排法

任意奇数阶幻方的杨辉斜排法 ——对杨辉口诀的讨论 范贤荣2016.3.8 关于三阶幻方的排法,我国古代数学家杨辉给出了一个巧妙的排法:“九子斜排,上下对易,左右相更,四维挺出”。按照这个口诀,画出“上下对易,左右相更”之后,形成图1d的图面。因此,必定有一个“四维挺出”的步骤。最后得到“戴九履一,左三右七,二四為肩,六八為足”的三阶幻方。见图1。 图1 杨辉口诀的画法 可见,杨辉口诀是在利用5×5的方格,斜排9个数后,按照他的步骤,仍然是画出5×5方格的3阶的幻方,如图1e。 图2 菱中取方的画法 现在,我们很多人用的是“取方框”画法。即在5×5的方阵中,取出3×3方框来,如图2b的红框。红框外的1,是走到框内的绿方块中,红框外的9,是走到框内的蓝方块中。因此1、9没有“对易”。同样,3、7也没有“相更”。因此,就没有“上下对易,左右相更”了。所以,就不需要“四维挺出”了。因此,现在的画法,与原来的口诀不一致了。 所以,我根据作图的次序,将杨辉的口诀,演绎成: 各子斜排为菱形,中间取方当作城, 城外有子城内空,四围都往城中进。 挺进多少方可止,几阶就挺几步深。 注1:“四围”就是上下左右四边。“都往城中进”,因此是相向而行,都到城中。 注2:“几阶就挺几步深”。如3阶进3步,5阶进5步,7阶进7步……后续亦如此类推。见图2。

下面,我将2~13各奇数阶,由菱方阵演变成幻方的情况,列于后。 图3 5阶菱方阵与幻方 图4 7阶菱方阵与幻方

图5 9阶菱方阵与幻方 图6 11阶菱方阵与幻方

图7 11阶幻方 图8 13阶菱方阵

图9 13阶幻方

数阶幻方的编排方法

精心整理 奇数阶幻方的编排方法 简便易学的编排方法。 一、九子排列法 宋朝数学家杨辉在《续古摘奇算法》中,总结“洛书”幻方的编排方法时说:三阶幻方的编排方法是“九子排列,上下对易,左右相更,四维挺出”。 这四个句子是什么意思呢?我们通过下面的一组图来加以理解。 先画出一个3×3的“九宫格”,并在第二列上、下方和第二行左、右边各添加一个虚线格子,把1~9这九个数字按顺序写在如上图所示的三排斜线上,然后上、下对调,左右交换,(因为我 1 2 3 图1) 4 然后把5 5 1 下面以五阶幻方为例,再介绍一种奇数阶幻方的编排方法。步骤如下: ①先画出一个5×5(五行五列)的方格,在方格的四周画出凸阶梯式的虚线方格(如下图1) ②把1~25这二十五个数按斜行方向从左到右依次填入图中(如上图2); ③以3、15、23、11四个数为顶点(实际上就是五阶幻方的四个顶点)画出一个正方形; ④把正方形外面凸出的虚线方格中的数按“上移下,下移上;左移右,右移左”的方法,全部平移5格到对应部分的方格中,擦掉虚线格子,就得到一个五阶幻方(见下图)。 这种编排幻方的方法叫“巴舍法”,也叫平移补空法,它和“罗伯法”一样,也适用于一切的奇数阶幻方的编排。 需要提醒大家注意的是,在步骤②中,填写1~25这二十五个数时,可以从左向右上填写,也可以从右向左上填写,或者从上向右下填写,还可以从上向左下填写,其移动后的结果都是一个五阶幻方,同学们可以自己动手试一试。

另外,编排n 阶幻方时,不一定非要从1开始,只要是这些数能构成等差数列就可以了。 练习(一定要完成的哦) 1、使用“罗伯法”将4~12编排一个三阶幻方。 2、用“罗伯法”将21、31、32、41、4 3、61、121、125、12 7编成一个三阶幻方。 3、使用“巴舍法”将1~49编排一个七阶幻方。 双偶数阶幻方的编排方法 一、中心对称交换法 例1、用1~16这十六个数编排一个四阶幻方(四行四列)。 【分析与解答】用1至16编排一个四阶幻方,就是把1~16这十六个数填入四行四列的方格 34。 是3412+16=40(即2与3,+14+16=58(即8与12例如2又如,9称交换就可以直接得到四阶幻方,把这种编排双偶数阶幻方的办法叫“中心对称交换法”。 由例1可以看到,用“中心对称交换法”编排四阶幻方的主要步骤归纳如下: ①把1~16按顺序排成四阶自然方阵; ②四阶自然方阵中对角线上的八个数不动,作为四阶幻方两条对角线上的数; ③把四阶自然方阵中对角线以外的数作中心对称交换。 运用“中心对称交换法”不仅可以编排四阶幻方,而且可以编排任意的双偶数阶幻方。 例2、用1~64这六十四个数编排一个八阶幻方(八行八列)。 【分析与解答】编排步骤如下: ①把1至64按顺序填入8×8的方格子中,排成八阶自然方阵;(见左下图) ②把八阶自然方阵分成四个四阶自然方阵(左下图粗线条),每个四阶自然方阵分别画出对角

趣味数学061:一些特殊的幻方

一些特殊的幻方 由我国古代数学瑰宝“洛书”所开创的“幻方”,不仅以其特有的奇妙性质,受到世界各国数学爱好者的青睐,也成为数学文化中一个饶有兴味的课题。对此,前面在多篇文章中,已经做过一些介绍,这里再撷取几个比较特殊的幻方,供网友们玩赏。这些幻方的奇妙性质更加扑朔迷离,兴味无穷。 一、间隔幻方 1 35 24 54 43 9 6 2 32 6 40 19 49 48 14 5 7 27 47 13 58 28 5 39 20 50 44 10 61 31 2 36 23 53 22 56 3 33 64 30 41 11 17 51 8 38 59 25 46 16 60 26 45 15 18 52 7 37 63 29 42 12 21 55 4 34 这个八阶幻方的奇特之处在于:不仅每行、每列、每条对角线上8个数的和相等,都是260。如果,把这些数同时按行和列隔一个取一个,竟然可以组成两个四阶幻方: 1 24 43 6 2 35 54 9 32 47 58 5 20 13 28 39 50 22 3 64 41 56 33 30 11 60 45 18 7 26 15 52 37 它们每行、每列、每条对角线上4个数的和相等,都是130。所以,这个幻方叫做“间隔幻方”。

16 41 36 5 27 62 55 18 26 63 54 19 13 44 33 8 1 40 45 1 2 22 51 58 31 23 50 59 30 4 37 48 9 38 3 10 47 49 24 29 60 52 21 32 57 39 2 11 46 43 14 7 34 64 25 20 53 61 28 17 56 42 15 6 35 这个八阶幻方的奇特之处在于:不仅每行、每列、每条对角线上8个数的和相等,都是260,而且每行、每列、每条对角线上8个数的平方和也相等,都是11180,所以,这个幻方叫做“多重幻方”。 三、双料幻方 46 81 117 102 15 76 200 203 19 60 232 175 54 69 153 78 216 161 17 52 171 90 58 75 135 114 50 87 184 189 13 68 150 261 45 38 91 136 92 27 119 104 108 23 174 225 57 30 116 25 133 120 51 26 162 207 39 34 138 243 100 29 105 152 这个八阶幻方的奇特之处在于:不仅每行、每列、每条对角线上8个数的和相等,都是840,而且每行、每列、每条对角线上8个数的积也相等,都是2058068231856000,所以,这个幻方叫做“双料幻方”。

求魔方阵的十种算法

求魔方阵的十种算法 魔方阵,古代又称“纵横图”,是指组成元素为自然数1、2…n的平方的n×n的方阵,其中每个元素值都不相等,且每行、每列以及主、副对角线上各n个元素之和都相等。 如3×3的魔方阵: 8 1 6 3 5 7 4 9 2 魔方阵的排列规律如下: (1)将1放在第一行中间一列; (2)从2开始直到n×n止各数依次按下列规则存放;每一个数存放的行比前一个数的行数减1,列数加1(例如上面的三阶魔方阵,5在4的上一行后一列); (3)如果上一个数的行数为1,则下一个数的行数为n(指最下一行);例如1在第一行,则2应放在最下一行,列数同样加1; (4)当上一个数的列数为n时,下一个数的列数应为1,行数减去1。例如2在第3行最后一列,则3应放在第二行第一列; (5)如果按上面规则确定的位置上已有数,或上一个数是第一行第n列时,则把下一个数放在上一个数的下面。例如按上面的规定,4应该放在第1行第2列,但该位置已经被占据,所以4就放在3的下面; 1居上行正中央 依次右上切莫忘 上出框时往下写 右出框时左边放 右上有数下边写 右上出框也一样 一、魔方阵的简介 1.何谓矩阵?矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既 方便,又直观。 2.何谓n阶方阵?若一个矩阵是由n个横列与n个纵行所构成,共有个小方格,则称这 个方阵是一个n阶方阵。 3.何谓魔方阵?4 9 2 3 5 7 8 1 6定义:由n*n个数字所组成的n阶方阵,具有各对角线, 各横列与纵行的数字和都相等的性质,称为魔方阵。而这个相等的和称为魔术数字。若填入的数字是从1到n*n,称此种魔方阵为n阶正规魔方阵。 4.最早的魔方阵相传古时为了帮助治水专家大禹统治天下,由水中浮出两只庞大动物背

幻方解法整理归纳

在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。我国古代称为“河图”、“洛书”,又叫“纵横图”。 1、奇数阶幻方——罗伯特法(也有人称之为楼梯法)(如图一:以五阶幻方为例) 奇数阶幻方 n为奇数(n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……) 奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。填写方法是这样: 把1(或最小的数)放在第一行正中;按以下规律排列剩下的n×n-1个数: (1)每一个数放在前一个数的右上一格; (2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列; (3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行; (4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内; (5)如果这个数所要放的格已经有数填入,处理方法同(4)。 这种写法总是先向“右上”的方向,象是在爬楼梯。 口诀: 1居首行正中央, 依次右上莫相忘 上出格时往下放, 右出格时往左放. 排重便往自下放, 右上出格一个样 图一 2、单偶数阶幻方 ()1 2 2+ =m n ——分区调换法(如图二:以六阶幻方为例) ①把()1 2 2+ =m n阶的幻方均分成4个同样的小幻方A、B、C、D(如图二) 图二

(注意A 、B 、C 、D 的相对位置不能改变,因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方) ② 用连续摆数法在A 中填入21a ——构成幻方,同理,在B 中填入()2221a a ——+、在C 中填入()22312a a ——+、在D 中填入()22413a a ——+均构成幻方(2n a =)(如图三) 图三 (因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方,必然可以用连续摆数法构造幻方) ③ 在A 的中间一行上从左侧的第二列起取m 个方格,在其它行上则从左侧第一列起取m 个方格,把这些方格中的数与D 中相应方格中的数字对调(如图四): 图四 不管是几阶幻方,在A 中取数时都要从中间一行的左侧第二列开始;因为当6=n 时,1=m ,所以本例中只取了一个数) ④ 在A 中从最右一列起在各行中取1-m 个方格,把这些方格中的数与D 中相应方格中的数字对调。(如图五) 图五 3、双偶数阶幻方m n 4=——轴对称法(如图三:以八阶幻方为例) ① 把m n 4=阶的幻方均分成4个同样的小幻方(如图六) 图六

偶数阶魔方阵构造方法

偶数阶魔方阵构造方法 2009-11-03 10:23:40| 分类:其他|字号大中小订阅 (1)n = 4k(4的整数倍时) (1) 先将整个方阵划分成k*k个4阶方阵,然后在每个4阶方阵的对角线上做记号 (2) 由左而右、由上而下,遇到没有记号的位置才填数字,但不管是否填入数字,每移动一格数字都要加1 (3) 自右下角开始,由右而左、由下而上,遇到没有数字的位置就填入数字,但每移动一格数字都要加1 例:k=1时构造完如下 16 2 3 13 5 11 10 8 9 7 6 12 4 14 1 5 1 (2)n = 4k + 2 本法填制魔方阵时,先将整个方阵划成田字型的四个2 k + 1阶的奇数阶小方阵,并以下法做注记: 1,右半两个小方阵中大于k+2的列。 2,左半两个小方阵中( k + 1 , k + 1 )的格位。 3,左半两个小方阵中除了( 1 , k + 1 )的格位之外,小于k +1的列。 以奇数阶魔方阵的方法连续填制法依左上、右下、右上、左下的顺序分别填制这四个小方阵。 将上半及下半方阵中有注记的数字对调,魔方阵完成。 例:k=1时构造完如下 35 1 6 26 19 24 3 32 7 21 23 25 31 9 2 22 27 20 8 28 33 17 10 15 30 5 34 12 14 16 4 36 29 13 18 11 幻方阵 幻方是什么呢?如右图就是一个幻方,即将n*n(n>=3)个数字放入n*n的方格内,使方格的各行、各列及对角线上各数字之各相等。 我很早就对此非常感兴趣,也有所收获。 8 1 6 3 5 7 4 9 2 本数学模型于1999年9月26日构造。 奇阶幻方 当n为奇数时,我们称幻方为奇阶幻方。可以用Merzirac法与loubere法实现,根据我的研究,发现用国际象棋之马步也可构造出更为神奇的奇幻方,故命名为horse法。 偶阶幻方 当n为偶数时,我们称幻方为偶阶幻方。当n可以被4整除时,我们称该偶阶幻方为双偶幻方;当n不可被4整除时,我们称该偶阶幻方为单偶幻方。可用了Hire法、Strachey以及YinMagic将其实现,Strachey为单偶模型,我对双偶(4m 阶)进行了重新修改,制作了另一个可行的数学模型,称之为Spring。YinMagic 是我于2002年设计的模型,他可以生成任意的偶阶幻方。 在填幻方前我们做如下约定:如填定数字超出幻方格范围,则把幻方看成是可以无限伸展的图形,如下图: Merzirac法生成奇阶幻方 在第一行居中的方格内放1,依次向左上方填入2、3、4…,如果左上方已有数字,则向下移一格继续填写。如下图用Merziral法生成的5阶幻方: 17 24 1 8 15 23 5 7 14 16 4 6 13 20 22 10 12 19 21 3 11 18 25 2 9 loubere法生成奇阶幻方 在居中的方格向上一格内放1,依次向右上方填入2、3、4…,如果右上方已有数字,则向上移二格继续填写。如下图用Louberel法生成的7阶幻方: 30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 1 6 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20 horse法生成奇阶幻方 先在任意一格内放入1。向左走1步,并下走2步放入2(称为马步),向左走1步,并下走2步放入3,依次类推放到n。在n的下方放入n+1(称为跳步),再按上述方法放置到2n,在2n的下边放入2n+1。如下图用Horse法生成的5阶幻方:77 58 39 20 1 72 53 34 15 6 68 49 30 11 73 63 44 25 16 78 59 40 21 2 64 54 35 26 7 69 50 31 12 74 55 45 36 17 79 60 41 22 3 65 46 37 27 8 70 51 32 13 75 56 47 28 18 80 61 42 23 4 66 57 38 19 9 71 52 33 14 76 67 48 29 10 81 62 43 24 5 一般的,令矩阵[1,1]为向右走一步,向上走一步,[-1,0]为向左走一步。则马步可以表示为2X+Y,{X∈{[1,0], [-1,0]},Y∈{[0,1], [0,-1]}}∪{Y∈{[1,0], [-1,0]},X∈{[0,1], [0,-1]}}。对于2X+Y相应的跳步可以为2Y,-Y,X,-Y,X,3X,3X+3Y。上面的的是X型跳步。Horse法生成的幻方为魔鬼幻方。 Hire法生成偶阶幻方 将n阶幻方看作一个矩阵,记为A,其中的第i行j列方格内的数字记为a(i,j)。在A内两对角线上填写1、2、3、……、n,各行再填写1、2、3、……、n,使各行各列数字之和为n*(n+1)/2。填写方法为:第1行从n到1填写,从第2行到第n/2行按从1到进行填写(第2行第1列填n,第2行第n列填1),从第n/2+1到第n 行按n到1进行填写,对角线的方格内数字不变。如下所示为6阶填写方法: 1 5 4 3 2 6 6 2 3 4 5 1 1 2 3 4 5 6

幻方的性质与应用

郑州大学毕业论文题目:幻方的性质与应用 学生姓名:学号: 专业:信息与计算科学专业 院(系): 完成时间 2010年5月20日 目录

幻方的性质与应用 (1) 摘要 (1) 引言 (2) 1幻方及其基本性质 (2) 2幻方的构造 (4) 3幻方的应用 (8) 综述 (9) 结束语及致谢 (10) 参考文献 (10)

幻方的性质与应用 【摘首先,我们简单的介绍一般幻方的定义以及一些特殊的幻方,然后 随着我们对幻方的研究我们又着重介绍了幻方的一些构造,,最后我们浅谈一下有关幻方的应用前景,比方说在美术设计方面的应用,在智力开发方面的应用,在科学技术方面的应用等等。 【abstract】 First, we simply introduce the general definition of magic squares as well as some special magic square,Then as we study magic squares we have highlighted some of the magic square construction,For example, from low-order magic square Magic Squares, Magic Squares of odd order, even order magic square construction and general construction of magic square., Finally, we look at the Magic Square of prospects,For example, in the art design application, the application of intellectual development in science and technology-based applications。 【关键字】幻方的定义幻方的构造幻方的应用 【keyword】 The definition of magic squares Magic Square Application of Magic Squares 1幻方及其基本性质 1.1幻方的定义 1.2几种常见的幻方 2幻方的构造 2.1由低阶幻方构造高阶幻方的方法 2.2奇数阶幻方的构造 2.3偶数阶幻方的构造 2.4一般幻方的构造 3幻方的应用前景 3.1幻方应用于美术设计 3.2幻方应用于智力的开发功能 3.3幻方应用于科学技术之中 引言 所谓幻方也叫纵横图,就是在n′n的方阵中放入从1开始到2n个自然数,在一 定的布局下各行,各列和两条对角线上的数字之和正好相等,这个和数就叫幻方常数或幻和。由于幻方具有这种特殊的性质,几千年来吸引着数学家和数学爱好者的兴趣,并进行了广泛深入的研究,在本论文中我们主要探讨幻方的基本性质及其构造它的一般方法,最后我们在浅谈一下有关它的一些应用前景。 1幻方及其基本性质 1.1幻方的定义 幻方是一系列的数排列成一个方阵,使它的每行和,每列和以及每条

构造幻方

构造幻方 所谓幻方,也教纵横图,就是在n×n的方阵中放入1到n2个自然数:在一定的布局下,其各行、各列和两条对角线上的数字之和正好都相等。这个和数就叫做“幻方常数”或幻和。 幻方分为奇数阶幻方、偶数阶幻方(单偶阶幻方、双偶阶幻方),下面就这三类幻方的构造分别示范。 奇数阶幻方的经典方法-罗伯 奇数阶幻方,也就是3阶、5阶、7阶……幻方,那么如何构造这样的幻方呢? 我们可以采取罗伯法(也叫连续摆数法),其法则如下: 把“1”放在中间一列最上边的方格中,从它开始,按对角线方向(比如说按从左下到右上的方向)顺次把由小到大的各数放入各方格中,如果碰到顶,则折向底,如果到达右侧,则转向左侧,如果进行中轮到的方格中已有数或到达右上角,则退至前一格的下方。 按照这一法则建立5阶幻方的示例如下图: 罗伯法(连续摆数法)的助记口诀: 1居上行正中央,依次斜填切莫忘。 上出框界往下写,右出框时左边放。 重复便在下格填,角上出格一个样。 1居上行正中央——数字1放在首行最中间的格子中 依次斜填切莫忘——向右上角斜行,依次填入数字 上出框界往下写——如果右上方向出了上边界,就以出框后的虚拟方格位置为基准,将数字竖直降落至底行对应的格子中 右出框时左边放——同上,向右出了边界,就以出框后的虚拟方格位置为基准,将数字平移至最左列对应的格子中 重复便在下格填——如果数字{N}右上的格子已被其它数字占领,就将{N +1}填写在{N}下面的格子中 角上出格一个样——如果朝右上角出界,和“重复”的情况做同样处理。

偶数阶幻方的一种制作方法——双偶阶、单偶阶幻方 1.双偶阶幻方(中心对称交换法) n为偶数,且能被4整除(n=4,8,12,16,20……)(n=4k,k=1,2,3,4,5……) 先说明一个定义。互补:如果两个数字的和,等于幻方最大数和最小数的和,即n×n+1,称为互补。 先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写: 这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。 这里,n×n+1=4×4+1=17;把1换成17-1=16;把6换成17-6=11;把11 换成17-11=6……换完后就是一个四阶幻方。 对于n=4k阶幻方,我们先把数字按顺序填写。写好后,按4×4把它划分成k×k个方阵。因为n是4的倍数,一定能用4×4的小方阵分割。然后把每个小方阵的对角线,象制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方。

数据结构课程设计之奇数魔方阵

长沙理工大学 《数据结构》课程设计报告 田晓辉 学 院 计算机与通信工程 专 业 计算机科学与技术 班 级 计08-01 学 号 200850080110 学生姓名 田晓辉 指导教师 陈倩诒 课程成绩 完成日期 2010年7月10日

课程设计成绩评定 学院计算机与通信工程专业计算机科学与技术班级计08-01学号200850080110 学生姓名田晓辉指导教师陈倩诒 完成日期2010年7月10日 指导教师对学生在课程设计中的评价 评分项目优良中及格不及格课程设计中的创造性成果 学生掌握课程内容的程度 课程设计完成情况 课程设计动手能力 文字表达 学习态度 规范要求 课程设计论文的质量 指导教师对课程设计的评定意见 综合成绩指导教师签字 2010年7月10日

课程设计任务书 计算机与通信工程学院计算机科学技术专业 课程名称数据结构课程设计时间2010学年第2学期18~19周学生姓名田晓辉指导老师陈倩诒 题目用C语言解决魔方阵问题 主要内容:建立一个n*n阶的矩阵,在这个矩阵中填入1到n2(n为奇数)个数,使得每行、每列以及每条对角线的和相等。 要求: (1)通过实际项目的分析、设计、编码、测试等工作,掌握用C 语言来开发和维护软件。 (2)按要求编写课程设计报告书,能正确编写分析、设计、编码、测试等技术文档和用户使用手册。 应当提交的文件: (1)课程设计学年论文。 (2)课程设计附件(主要是源程序)。

用C语言解决魔方阵的问题 学生姓名:田晓辉指导老师:陈倩诒 摘要本课程设计主要解决设计一个n×n的矩阵中填入1到n2的数字(n为奇数),使得每一行、每一列、每条对角线的累加和都相等的问题。在课程设计中,系统开发平台为Windows 7,程序设计语言采用Visual C++6.0,程序运行平台为Windows 98/2000/XP/7。在程序设计中,采用了C 语言结构化程序设计思想和过程设计方法,以功能函数为基本结构,对问题中的要求做出了准确的实现。程序通过调试运行,初步实现了设计目标。 关键词程序设计;C++6.0;结构化;过程设计;功能函数

相关主题
文本预览
相关文档 最新文档