当前位置:文档之家› “放缩法”

“放缩法”

“放缩法”
“放缩法”

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

数列综合应用(放缩法)教案资料

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1Λ=+=+n a n a n n n .求证: 112 13-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高得放缩技巧而充满思考性与挑战性,能全面而综合地考查学生得潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题得极好素材。这类问题得求解策略往往就是:通过多角度观察所给数列通项得结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如:; ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:; ⑷二项式放缩:,, (5)利用常用结论: Ⅰ、得放缩 : Ⅱ、得放缩(1) : (程度大) Ⅲ、得放缩(2):(程度小) Ⅳ、得放缩(3):(程度更小) Ⅴ、分式放缩还可利用真(假)分数得性质:与 记忆口诀“小者小,大者大”。解释:瞧b,若b小,则不等号就是小于号,反之亦然、 Ⅵ、构造函数法构造单调函数实现放缩。例:,从而实现利用函数单调性质得放缩:。 一.先求与再放缩 例1、,前n项与为S n ,求证: 例2、 , 前n项与为S n ,求证: 二.先放缩再求与 (一)放缩后裂项相消 例3.数列,,其前项与为 ,求证: (二)放缩后转化为等比数列。 例4、满足: (1)用数学归纳法证明: (2),求证: 三、裂项放缩 例5、(1)求得值; (2)求证:、 例6、(1)求证: (2)求证: (3)求证: 例7、求证: 例8、已知,,求证:、 四、分式放缩 姐妹不等式:与 记忆口诀”小者小,大者大” 解释:瞧b,若b小,则不等号就是小于号,反之亦然、 例9、姐妹不等式:与 也可以表示成为 与 例10、证明: 五、均值不等式放缩 例11、设求证 例12、已知函数,a>0,b>0,若,且在[0,1]上得最大值为, 求证: 六、二项式放缩 ,, 例13、设,求证、 例14、 , 试证明:、

高中数学放缩法技巧全总结材料

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n

常用放缩方法技巧

常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg (5lg 3lg 2=<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 21k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):22111111()1(1)(1)211k k k k k k <==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):221 4112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

高中数学方法讲解之放缩法

高中数学方法讲解之放 缩法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、 )1111(21)1)(1(11 112 2+--=+-=- c b a d d b a d c c a c b a b d c b a a m

2=+++++++< c d d d c c b a b b a a m ∴1 < m < 2 即原式成立 例2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??? ???++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证: 21 3121112222<++++n 【巧证】:n n n n n 1 11)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b 巧练一:【巧证】: y y x x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9?lg11 < 1 巧练二:【巧证】: 122299lg 211lg 9lg 11lg 9lg 2 2 2 =?? ? ??

第一轮复习 放缩法技巧全总结

放缩法在数列不等式中的应用 数列不等式是高考大纲在知识点交汇处命题精神的重要体现,在高考试题中占有重要地位,在近几年的高考试题中,多个省份都有所考查,甚至作为压轴题。而数列不等式的求解常常用到放缩法,笔者在教学过程中发现学生在用放缩法处理此类问题时,普遍感到困难,找不到解题思路。现就放缩法在数列不等式求解过程中常见的几种应用类型总结如下。 1. 直接放缩,消项求解 例1在数列{}{},n n a b 中,112,4a b ==,且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. *N n ∈, (Ⅰ)求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512 n n a b a b a b +++<+++L . 分析:(Ⅰ)数学归纳法。 (Ⅱ)本小题的分母可化为不相同的两因式的乘积,可将其放缩为等差型两项之积,通过裂项求和。 (Ⅰ)略解2(1)(1)n n a n n b n =+=+,. (Ⅱ)11115612 a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. 故112211111111622334(1)n n a b a b a b n n ??+++<++++ ?+++??+?? …… 111111116223341n n ??=+-+-++- ?+?? … 111111562216412n ??= +-<+= ?+??,综上,原不等式成立. 点评: 数列和式不等式中,若数列的通项为分式型,可考虑对其分母进行放缩,构造等差型因式之积。再用裂项的方法求解。 另外,熟悉一些常用的放缩方法, 如: ),,2,1(1 1121n k n k n n Λ=+≤+≤,n n n n n n n n n 111)1(11)1(11112--=-≤<+=+- 例2设数列{}n a 满足*,1,1311N c c ca a a n n ∈-+==+其中c 为实数

高中数学放缩法公式

“放缩法”证明不等式的基本策略 1、添加或舍弃一些正项(或负项) 例1、已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-Q 1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->- *122311...().232 n n a a a n n n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的 值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例2、函数f (x )= x x 414+,求证:f (1)+f (2)+…+f (n )>n + )(2 1 21*1 N n n ∈-+. 证明:由f (n )= n n 414+=1- 11 11422n n >-+? 得f (1)+f (2)+…+f (n )>n 2211221122112 1 ?- ++?- +?-Λ )(21 2 1)2141211(41*11N n n n n n ∈-+=++++-=+-Λ. 此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。 3、逐项放大或缩小

最新高考数学数列放缩法技巧全总结

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = +-?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

高中数学方法讲解之放缩法

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶ 利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、)1 1 11(21)1)(1(11112 2+--=+-=-< k k k k k k ; (程度小)

例1.若a , b , c , d ∈R +,求证: 21<+++++++++++< c a d d b d c c a c b b d b a a 【巧证】:记m =c a d d b d c c a c b b d b a a +++ ++++++++ ∵a , b , c , d ∈R + ∴ 1=+++++++++++++++> c b a d d b a d c c a c b a b d c b a a m 2=+++++++ 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??????++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证:21 3121112222<++++n 【巧证】:n n n n n 111)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

【专题整理】【解答题】【数学归纳法、放缩法】【数列】

数学归纳法和放缩法 放缩法证明不等式 1、添加或舍弃一些正项(或负项) 【例1】已知:* 21().n n a n N =-∈,求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈. 【解析】 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-,1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->-,*122311...().232 n n a a a n n n N a a a +∴-<+++<∈. 【点评】若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 【例2】函数x x x f 4 14)(+=,求证:2121)()2()1(1-+>++++n n n f f f (*∈N n ). 【解析】 由n n n n n f 2 21 14111414)(?->+-=+=得:n n f f f 221122112211)()2()1(21?-++?-+?- >+++ 2 1 21)21211(4111-+=+++-=+-n n n n (*∈N n ). 【点评】此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式.如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可. 3、先放缩,后裂项(或先裂项再放缩) 【例3】已知:n a n =,求证: 31 2 <∑=n k k a k .

高考数学数列放缩法技巧全汇总

高考数学数列放缩法技巧全汇总

————————————————————————————————作者:————————————————————————————————日期:

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = + -?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

公务员考试先学会放缩法

2014国家公务员考试先学会放缩法 华图教育 师 杰 在公务员行测考试中,很多考生由于做前面的试题耽误很多时间,导致做资料分析这部分内容时丢分很多。丢分的原因:一则是很多考生在做题时没有合理分配时间,二则是在做题时,没有掌握相应的速算技巧,导致计算繁琐,无法提高做题速度。放缩法是资料分析中的一种速算技巧,也是考生必须掌握的一类方法,考生在学习这种方法的时候要根据不同的题型来采取不同的放缩技巧。 一、基本原理 当计算精度要求不高时,数字的计算可以采用放缩法。 常见形式 两个数相乘,那么把两个数都变小,积就变小,两数都变大,积就变大; 两个数相除,把分子变大分母变小,分数值就变大,把分子变小分母变大,分数值变小。二、基本题型 【例1】下表为某公司四个部门2009年全年的营销总费用,以及营销总费用占总销售额的比例。请问四个部门当中,哪个部门2009年全年的总销售额最高?( ) A.A 部门 B.B 部门 C.C 部门 D.D 部门 【答案】C 【解析】根据题意,全年的总销售额= 的比例 营销总费用占总销售额营销总费用 ,也就是比较 %3.55.213、%6.79.194、%2.58.234、%1.63.165,根据分子最大而分母最小,可以判定% 2.58 .234最大,符合题意。所以选择C 【例2】2009年,某地农村居民全年人均纯收入为7285元,较上一年增长10.6%。如果增长速度不变,预计2010年该地农村居民全年人均纯收入将达到多少?( ) A.7914 B.7976

C.8012 D.8057 【答案】D 【解析】根据题意,利用放缩法,2010年该地农村居民全年人均纯收入为7285×(1+10.6%)=7285×1.106>7285×1.1=7285+728.5=8013.5,满足题意的有D 项。 【例3】2008年,我国万元国内生产总值用水量231.8立方米,比上年下降7.9%,万元工业增加值用水量130.3立方米,下降7.0%,人均用水量440.9立方米,下降0.1%。2007年全年我国万元国内生产总值用水量约是万元工业增加值用水量的( )。 A.1.5倍 B.1.6倍 C.1.7倍 D.1.8倍 【答案】D 【解析】根据题意,求的是基期比值,因此 %9.71%713.1308.231% 713.130%9.718 .231--?=--=231.893%130.392.1%?>231.8130.3=1.777,本题利用了放缩法求解,简化了计算,提高了做题效率。 三、总结 放缩法作为资料分析当中的一种速算技巧,是考生必须掌握的一种技巧,这对于考生的做题速度和精度起到至关重要的作用。希望广大考生通过大量的练习来体会其中的奥妙,只要坚持下去,相信大家都会有很好的收获,湖北华图提前预祝各位取得好成绩。

高中数学放缩法

高考专题 放缩法 缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。 数列及不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列及不等式知识解决问题的能力.本文介绍一类及数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1 +=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 < n B 解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得: 1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列, 所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以 12-=n a n (2))1 21 121(21)12)(12(111+--=+-== +n n n n a a b n n n ,所以

高考数学专题复习放缩法技巧全总结

高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 1 42 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k 技巧积累:(1)??? ??+--=-< =1211212144 4412 2 2n n n n n (2)) 1(1) 1(1)1()1(212 11+--=-+=+n n n n n n n C C n n (5) n n n n 2 1121)12(21--=- (8) n n n n n n n 2)32(12)12(12 13211221?+-?+=???? ??+-+- (9) ? ? ? ??++-+=+++??? ??+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+- =+n n n n >算数平均数可 证) 122a b +?>≥

(3)2n n ≥=> 易知恒成立,当 2)> ≥恒成立。 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n Λ (2)求证:n n 412141361161412 -<++++Λ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n ΛΛΛ (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n Λ (3)再结合 n n n -+<+22 1进行裂项,最后就可以得到答案 例3.求证: 3 5 191411)12)(1(62<++++≤++n n n n Λ 解析:一方面: 353211211215 1 31211 1 2 = +

相关主题
文本预览
相关文档 最新文档