当前位置:文档之家› 流化床反应器

流化床反应器

流化床反应器
流化床反应器

流化床反应器

fluidized bed reactor(FBR) :

一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。

流态化过程:

当流体向上流过颗粒床层时,其运动状态是变化的。流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过。当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。此时,对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触而维持它的空间位置,相反地,在失去了以前的机械支承后,每个颗粒可在床层中自由运动;就整个床层而言,具有了许多类似流体的性质。这种状态就被称为流态化。颗粒床层从静止状态转变为流态化时的最低速度,称为临界流化速度。

流化床的性质:

(1)在任一高度的静压近似于在此高度以上单位床截面内固体颗粒的重量;

(2)无论床层如何倾斜,床表面总是保持水平,床层的形状也保持容器的形状;

(3)床内固体颗粒可以像流体一样从底部或侧面的孔口中排出;(4)密度高于床层表观密度的物体在床内会下沉,密度小的物体会

浮在床面上;

(5)床内颗粒混合良好,因此,当加热床层时,整个床层的温度基本均匀。

一般的液固流态化,颗粒均匀地分散于床层中,称之为“散式”流态化;一般的气固流态化,气体并不均匀地流过颗粒床层,一部分气体形成气泡经床层短路逸出,颗粒则被分成群体作湍流运动,床层中的空隙率随位置和时间的不同而变化,因此这种流态化称为“聚式”流态化。与固定床反应器相比,流化床反应器的优点是:

①可以实现固体物料的连续输入和输出;

②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应。但另一方面,由于返混严重,可对反应器的效率和反应的选择性带来一定影响。再加上气固流化床中气泡的存在使得气固接触变差,导致气体反应得不完全。因此,通常不宜用于要求单程转化率很高的反应。此外,固体颗粒的磨损和气流中的粉尘夹带,也使流化床的应用受到一定限制。为了限制返混,可采用多层流化床或在床内设置内部构件。这样便可在床内建立起一定的浓度差或温度差。此外,由于气体得到再分布,气固间的接触亦可有所改善。

近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固体颗粒被气体夹带而出,需要

进行分离并再循环返回床层,因此,对气固分离的要求也就很高了。流化床法是美国联合碳化合物公司早年研发的多晶硅制备工艺技术。该方法是以SiCl4、H2、HCl和工业硅为原料,在高温高压流化床内(沸腾床)生成SiHCl3,将SiHCl3再进一步歧化加氢反应生成SiH2Cl2,继而生成硅烷气。制得的硅烷气通入加有小颗粒硅粉的流化床反应炉内进行连续热分解反应,生成粒状多晶硅产品。由于在流化床反应炉内参与反应的硅表面积大,故该方法生产效率高、电耗低、成本低。该方法的缺点是安全性较差,危险性较大,且产品的纯度也不高。不过,它还是基本能满足太阳能电池生产的使用。故该方法比较适合大规模生产太阳能级多晶硅。

技术应用

目前采用该方法生产颗粒状多晶硅的公司主要有:挪威可再生能源公司(REC)、德国瓦克公司(Wacker)、美国HemLock和M E M C 公司等。

挪威R E C 公司是世界上惟一一家业务贯穿整个太阳能行业产业链的公司,是世界上最大的太阳能级多晶硅生产商。该公司利用硅烷气为原料,采用流化床反应炉闭环工艺分解出颗粒状多晶硅,且基本上不产生副产品和废弃物。这一特有专利技术使得R E C 在全球太阳能行业中处于独一无二的地位。REC还积极致力于新型流化床反应器技术(FBR)的开发,该技术使多晶硅在流化床反应器中沉积,而不是在传统的热解沉积炉或西门子反应器中沉积,因而可极大地降

低建厂投资和生产能耗。在过去几年中,REC进行了该技术的试产。2006年计划新建利用该技术生产太阳能级多晶硅的工厂,预计2008年达产,产能6500t。此外,REC正积极开发流化床多晶硅沉积技术(Fluidized bed polysilicon deposition,预计2008年用于试产)和改良的西门子- 反应器技术(Modified Siemens-reactor technology)。

德国瓦克公司开发了一套全新的粒状多晶硅流体化反应器技术生产工艺。该工艺基于流化床技术(以三氯硅烷为给料),已在两台实验反应堆中进行了工业化规模生产试验,瓦克公司最近投资了约2亿欧元,在德国博格豪森建立新的超纯太阳能多晶硅工厂,年生产能力为2500t,加上其它扩建措施,新工厂的投产将使瓦克公司在2008年达到9000t的年生产能力,最终于2010年达到11 500t的产能。

另外,美国Hemlock公司将开设实验性颗粒硅生产线来降低硅的成本,Helmlock公司计划在2010年将产能提高至19 000t。MEMC 公司则计划在2010年底其产能达到7000t左右。

Efficiency Leaders in Crystalline Silicon PV

We profile the firms that stand at the forefront of crystalline silicon efficiency, and put their plans and products under the microscope.

So much attention gets focused on thin film around these here parts that it's easy to forget that crystalline silicon (c-Si) PV still makes up more than three-fourths of the module market (for more details on this, you can find our free research note on 2009 cell and module production here). To some extent, this is understandable: the obvious exception of CdTe-producer-that-shall-not-be-named aside, thin film is still very much a work in progress as regards commercialization, with much scope for future technological and economic improvement; c-Si, on the other hand, is considered a mature and well-understood (read: boring) technology, with only incremental improvements in cost and efficiency expected over the coming years. And of course, Davids are far more interesting than Goliaths.

It is generally true that efficiencies for most c-Si firms have registered only incremental gains over the past few years; however, amongst this large mass of

relatively undifferentiated firms, a small handful of players are attempting to drive step-function improvements in cell efficiency. While some of these firms have been ahead of the rest of the pack for years, the initiatives of others are still in early-stage commercialization. Besides the bragging rights and distinctiveness they confer, efficiency improvements also drive reductions in cost, both on the module manufacturing and the BOS fronts, although the R&D spend required to maintain improvements is not insignificant, and higher efficiency cell configurations can be more expensive to manufacture. Below, we profile the firms that stand at the forefront of crystalline silicon efficiency, both now and looking to the future, and put their efficiency initiatives under the microscope.

1. SunPower

Technology: All-back contact monocrystalline

High-Efficiency Product Status: Volume production (2009: 398 MW)

Commercialized Cell Efficiency: 22%

SunPower has been the heavyweight champion of the world when it comes to commercialized cell and module efficiencies for the last half-decade, and by some measure. The company's back-contact cell design, in commercial production since 2005, moves the metal contacts to the back of the wafer, maximizes the working cell area, and eliminates redundant wires (for details, see this). Impressively, SunPower has been able to achieve consistent improvements in efficiency with each successive generation of commercialized cells, and this has translated to gains in the module arena as well. Its Gen 2 cells, currently in high-volume production, have an efficiency of 22%. Further improvements are on the way: Gen 3 cells, which reportedly have already started shipping, have efficiencies in excess of 23%.

The Verdict: As Gen 3 rolls out and exceeds efficiencies of 24% (something the company has already achieved in low volume), SunPower is likely to be the efficiency leader when it comes to high-volume PV cells and modules for the foreseeable future. The problem, as this article by Michael Kanellos points out, is that 24% is awfully close to the realistic ceiling, meaning there may not be much further to go from there. As the other firms on this list start to narrow the difference, the company's price premium will erode, and its high cost structure will come under increased scrutiny. SunPower has already recognized this, and has aimed at what seems to be a realistic target of $1/W by 2014. Whether this will be enough to survive in a commoditized world of low-cost Chinese manufacturing remains to be seen. Fortunately for the firm, though, its downstream business does afford it some measure of insulation.

2. Sanyo

Technology: Heterojunction with Intrinsic Thin Film (HIT)

High-Efficiency Product Status: Volume production (2009: 255 MW)

Commercialized Cell Efficiency: 19.8%

Ahead of the rest, but a distant second behind SunPower, Sanyo's high-efficiency product has been in volume production for quite some time -- since way back in 1997, to be exact. Its proprietary HIT cell is a hybrid of monocrystalline silicon surrounded by ultra-thin amorphous silicon layers (see here for details). The amorphous silicon layer enables superior temperature characteristics and low light performance compared to standard crystalline silicon technology. Continuous improvements have led to best commercialized cell efficiencies of 19.8% (launched this year), compared to 18.4% six years ago.

The Verdict: Sanyo has the same basic problem as SunPower: HIT costs considerably more to manufacture than standard c-Si. At the same time, its cells are about two percent less efficient than SunPower's, which means the cost pressure is significantly more. Sanyo should continue to hold the number-two spot as regards commercial efficiency over the next three years, but unless it can start driving step-function improvements in either cost or efficiency, this will matter less and less in the commoditized global market. The company will, however, enjoy a competitive advantage in its home country of Japan, where residential systems dominate and space constraints mean that there will always be a preference for higher efficiency products. Additionally, the company is banking on the success of specialty products (e.g., BIPV modules, combined module-battery packs) in less price-sensitive markets going forward to ensure demand.

3. Suniva

Technology: ARTisun monocrystalline

High-Efficiency Product Status: Volume production (2009: 16 MW)

Commercialized Cell Efficiency: 18.3%

The brainchild of PV pioneer Dr. Ajit Rohatgi, a Georgia Tech scientist, Suniva began commercial production of its monocrystalline cells in late 2008. Unlike many struggling PV startups that entered the market around that time, the company has gone from strength to strength over the last 18 months. It has exhibited one of the quickest production ramps of any Western PV company, going from an initial 32 MW to 96 MW to a current 170 MW of cell capacity, and is sold out for 2010. By its own admission, Suniva's technology does not represent a radical innovation; rather, the company has its own paste and texture recipes, is able to customize and optimize every layer of the cell design to its own specifications, and has leveraged its considerable R&D experience to optimize each processing step to a high degree.

The Verdict: While Suniva is clearly not going to overtake SunPower or Sanyo any time soon, reports suggest that the company has a much better cost structure compared to these two players, one that is more in line with low-cost manufacturers. That, combined with its current efficiency advantage over other firms, makes it competitively positioned for right now. A 19% efficiency cell is in the works and should maintain competitiveness in the near future as well. The key question is whether the company can maintain this advantage going forward, given that major Chinese players are hell-bent on playing catch-up (see below). Moreover, the company does not really have a differentiated technology that can guarantee this.

4. Suntech Power

Technology: Pluto monocrystalline

High-efficiency Product Status: Low volume (2010 run rate of 4 MW per month)

Commercialized Cell Efficiency: 19%

The Chinese cell/module behemoth threw its hat into the next-gen c-Si ring in spring 2009, when it announced the development of its proprietary "Pluto" technology, which can be used to retrofit existing cell lines. The Pluto design is based on the PERL (passivated emitter with rear locally diffused) technology developed at Australia's University of New South Wales, where efficiencies of 25 percent have been achieved in the laboratory. Unique texturing technology with lower reflectivity ensures more sunlight can be absorbed throughout the day even without direct solar radiation, and thinner metal lines on the top surface reduce shading loss. Average cell efficiencies in low-volume production were 19%, with plans to hit 20% in two years. The company aimed to reach 450 MW of Pluto capacity by mid-2010, and envisioned that Pluto would eventually become its core product over time.

The Verdict: At 19%, Pluto would place Suntech behind only SunPower and Sanyo in the efficiency stakes. Importantly, Pluto's offers higher efficiency with the potential to simultaneously lower costs: as this GTM article outlined, the cells are made with copper, rather than more expensive silver paste contacts. Pluto thus holds the key to global domination for Suntech. Unfortunately, the company has had trouble ramping production beyond its current levels of 4 MW per month, which it describes as "glitches" with the process flow (see this article for a detailed explanation). Although it is too early to be certain, one is inclined to think that the snags will eventually be resolved; the question is more 'when' than 'if'. Too long, and Suntech runs the risk of lagging behind its Chinese brethren (Yingli and Trina, see below) on both cost (which it already does) as well as efficiency, and facing heated competition from less differentiated Chinese manufacturers (Eging PV, Ningbo, Neo Solar).

5. Trina Solar

Technology: Quad Max square monocrystalline

High-efficiency Product Status: Development (first shipments expected Q3 2010)

Commercialized Cell Efficiency: 18.1% (pilot)

Trina's new cell tries to avoid cutting corners, quite literally -- Quad Max's square shape allows it to harvest more sunlight by avoiding surface area loss typical with traditional monocrystalline cells, which are octagonal-shaped (also known as "pseudo-square"). In a 72-cell module, the additional active surface area translates into a power output advantage of eight percent. The company has developed a new process for the technology, which involves two high-temperature thermal processes, an additional printing and cleaning step, and usage of special paste for the cell surface. Initial shipments are expected in the third quarter of 2010, but don't expect meaningful megawatts until 2011.

The Verdict: "True" square mono has been a talking point in the industry for a number of years without anything to show for it. Trina's move is therefore a much-needed step in the right direction. At 18.1% efficiency, though, it places Trina at the bottom of the pack as far as high-efficiency initiatives are concerned. This will matter less as long as Quad Max does not represent a meaningful increase in manufacturing costs, since Trina is currently the second cheapest manufacturer of c-Si PV in the world, and Quad would drive a 0.6% increase in module efficiency, which would boost product margins. It is still early days for the technology, though: as Suntech's example shows, there is potential for problems galore when going from low- to high-volume production.

6. Yingli Solar

Technology: PANDA N-type monocrystalline

High-efficiency Product Status: Pilot (commercial launch in Q3 2010)

Best Commercialized Cell Efficiency: 18.5% (pilot)

Yingli's foray into the world of high-efficiency cell technology has come courtesy of a three-way research collaboration with the Energy Research Center of the Netherlands (ECN) and process tool maker Amtech Systems, announced in June 2009. PANDA uses ECN's design, the solar diffusion technology and dry phosphosilicate glass (PSG) removal expertise of Amtech's Tempress Systems subsidiary, and Yingli's process technology. The PANDA cell is N-type (for more on that, see here), which

means it has greater impurity tolerance and does not suffer from the light-induced degradation that conventional P-type cells do. Yingli claims the corresponding module will also have better performance under high-temperature and low-light conditions. Plans for PANDA are aggressive: in March 2010, the company announced it would construct 300 MW of ingots, wafers, cells and module capacity by the end of the year, and first shipments are expected by the end of October.

The Verdict: As with Trina, Yingli has a ways to go as far as commercial ramp-up of PANDA is concerned, but average cell efficiencies of 18.5% in pilot production are comfortably above Quad Max's 18.1%, although comfortably behind Pluto's 19%. Given N-type's higher impurity tolerance, PANDA also gives Yingli the option of using lower quality (and thus cheaper) polysilicon for its cells, which confers a direct cost advantage. This would further cement the firm's position as the lowest-cost c-Si manufacturer in the world and make life very difficult for its competitors indeed. And with a $5.3 billion loan in hand, the company has some cash to burn before it gets the recipe right.

7. JA Solar

Technology: SECIUM nanoparticle ink

High-efficiency Product Status: Pilot (production began May 2010; commercial production expected H2 2010)

Best Commercialized Cell Efficiency: 18.9% (pilot)

The secret sauce in JA Solar's high-efficiency cell comes by way of California startup Innovalight, which manufactures a proprietary nanotechnology-based silicon ink and licenses a process which allows a simple upgrade to cell lines to boost efficiency - currently by a full percentage point. Importantly, the modification to the production line is relatively simple, requiring only one additional step: the ink is applied using the screen-printing technology typically used by semiconductor lines during back-end metallization. Pilot production is already underway and first commercial shipments are expected any time soon.

The Verdict: Unlike the other firms discussed here, most of which only sell modules, the bulk of JA Solar's business comes from cell sales, which means it is not a direct competitor to them. Success with SECIUM would place JA head and shoulders above other pure-play cell firms in terms of efficiency; only Suniva would come close. And there is potential for further upside -- as discussed in this GTM article, the ink-aided efficiency bump could double to two percent in 2011. Since JA is already the cost leader in cell manufacturing, SECIUM (if ramped up to volume successfully) could provide it pole position on both cost and efficiency fronts. There are two caveats: one, the incremental cost better not outweigh the efficiency gains, and two, nothing

really stops other firms from jumping onto the silicon ink bandwagon at a later point -- indeed, as of January 2010, Innovalight claimed it had lined up five other customers*.

That each of these seven firms is employing a different approach to commercializing high-efficiency products should dispel notions that we have reached the end of the road as concerns technological progress in crystalline silicon manufacturing. As with the larger question of PV absorber materials, there is a long way to go before the dust will truly settle on which variant(s) of c-Si will emerge as the dominant leader in the space, if any. There is still much room -- and reward -- for innovation.

单质硅的一种形态,为棕黑色或灰黑色的微晶体。这种固体硅不具有完整的金刚石型晶胞,纯度不高,熔点、密度和硬度等数值也明显低于晶态硅;化学性质比晶态硅活泼。

无定形硅可由活泼金属(如钠、钾等)在加热下还原四卤化硅(SiF4或SiCl4),或在高温下用碳或镁等还原剂与二氧化硅作用制得

看看烧结机理吧。。。

再结合残余应力公式q=K*E*R*(T2-T1)*(a2-a1)

K常数,E弹性模量,R泊松比,T温度,a膨胀系数

当残余应力大于硅片的抗张应力时,,,就隐裂了。。。。

se

所谓冥王星技术就是选择发射性电池(SE-cell),在栅线下重掺杂,提高开路电压

HF 并不和金属离子反应

HF 会让硅表面是Si-H结构,这样不容易在空气中被氧化,否则硅片就很容易生成一层氧化层

单扩产量高,双扩吸杂效果好,效率高,产量低。

背节印完铝背一烧结就没了。

背面铝浆烧结后就形成了P+/P层,双面扩散多了一面的吸杂作用,效率会高点,这个也要看各公司的工艺怎样。当然单面扩散的产能高。

PN结深在0.5um左右,而铝被烧结深度在10um左右,一烧,背面PN结就没了

三洋的HIT(使用本征薄层的异质结)太阳能电池将单晶硅衬底和非晶硅(a-Si)薄膜结合在一起。在他们最新的薄层电池研究中,通过提高硅晶圆的光捕获效应来解决效率损耗的问题。研究人员通过优化硅的表面织构,可以降低透明导电氧化层(TCO)和a-Si层的光学吸收损耗。这使得98 μm 厚HIT电池的短路电流(ISC)可以由37.3 mA/cm2(电池厚度为85 μm 时的值)提高到38.8 mA/cm2。

HIT结构的一个优点是提高了pin结的光学能带间隙宽度,从而提高了开路电压(VOC)。P型a-Si的带隙比n型c-Si的能量带隙要宽,从而使得VOC更高。使用三洋的新技术,研究人员已经将这一电压值由0.729 V进一步提高到了0.743 V,根据三洋研发中心太阳能研究分部主任Eiji Maruyama的说法,这一改进主要是通过减少a-Si与c-Si层间界面处的缺陷获得的。他说,如果界面位置存在较高密度的缺陷,由于带隙钉扎效应能量带隙将被压缩。a-Si 层界面位置处悬挂键密度的降低可以提高VOC值。

硅表面织构主要是金字塔型织构,优化的一个关键步骤是控制金字塔结构的倾角大小。太阳光在硅中移动的距离越长,吸收的光就越多,也就对应着更高的效率。该公司抑制了p型、i型a-Si的光吸收率,而增强n型c-Si的光吸收率。结果是,在约400-450 nm的短波范围里,转换效率得到了提升。

流化床反应器的设计定稿版

流化床反应器的设计 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

丙烯腈流化床反应器的设计 学院:化工与药学院 班级: 2012化学工程与工艺1、2班 学生姓名:翟鹏飞肖畅裴一歌 徐嘉星廖鹏飞田仪长 指导教师: 张丽丽 完成日期: 2015年12月10日 指导教师评语: _______________________________________________ ________________________________________________ ________________________________________________ 成绩: 教师签名:

目录 1 设计生产能力及操作条件 (1) 2 操作气速的选择 (1) 3 流化床床径的确定 (1) 3.1 密相段直径的确定 (1) 3.2 稀相段直径的确定 (2) 3.3 扩大段直径的确定 (2) 4 流化床床高 (2) 4.1 流化床的基本结构 (2) 4.2 催化剂用量及床高 (3) 5 床层的压降 (4) 6 选材及筒体的设计 (4) 7 封头的设计 (5) 8 裙座的选取 (5) 9 水压试验及其强度校核 (5) 10 旋风分离器的计算 (5)

11 主反应器设计结果 (6)

丙烯腈流化床反应器的设计 1 设计生产能力及操作条件 反应温度为:440℃ 反应压力为:1atm 丙烯腈氨氧化法催化剂选用:sac-2000 催化剂粒径范围为:44~88μm 催化剂平均粒径为:50μm 催化剂平均密度为:1200kg/m3 催化剂装填密度为:640kg/m3 催化性能:丙烯腈单收>78.0%;乙腈单收<4.0%;氢氰酸单收<7.0% 耐磨强度<4.0wt% 接触时间:10s 流化床反应器设计处理能力:420.5kmol/h 2 操作气速的选择 流化床的操作气速U =0.6m/s,为防止副反应的进行,本流化床反应器设计 密相和稀相两段,现在分别对其直径进行核算。

流化床反应器的简介及其工业应用

流化床反应器的简介及其工业应用 1 流化床反应器概述 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉;但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 按照床层的外形分类,可分为圆筒形和圆锥形流化床。圆筒形流化床反应器结构简单,制造容易,设备容积利用率高。圆锥形流化床反应器的结构比较复杂,制造比较困难,设备的利用率较低,但因其截面自下而上逐渐扩大,故也具有很多优点:1、适用于催化剂粒度分布较宽的体系由于床层底部速度大,较大颗粒也能流化,防止了分布板上的阻塞现象,上部速度低,减少了气流对细粒的带出,提高了小颗粒催化剂的利用率,也减轻了气固分离设备的负荷。这对于在低速下操作的工艺过程可获得较好的流化质量。2、由于底部速度大,增强了分布板的作用床层底部的速度大,孔隙率也增加,使反应不致过分集中在底部,并且加强了底部的传热过程,故可减少底部过热和烧结现象。 3、适用于气体体积增大的反应过程气泡在床层的上升过程中,随着静压的减少,体积相应增大。采用锥形床,选择一定的锥角,可适应这种气体体积增大的要求,使流化更趋平稳。 按照床层中是否设置有内部构件分类,可分为自由床和限制床。床层中设置内部构件的称为限制床,未设置内部构件的称为自由床。设置内部构件的目的在于增进气固接触,减少气体返混,改善气体停留时间分布,提高床层的稳定性,从而使高床层和高流速操作成为可能。许多流化床反应器都采用挡网、挡板等作为内部构件。对于反应速度快、延长接触时间不至于产生严重副反应或对于产品要求不严的催化反应过程,则可采用自由床,如石油炼制工业的催化裂化反应器便是典型的一例。 流化床反应器的优点 流化床内的固体粒子像流体一样运动,由于流态化的特殊运动形式,使这种反应器具有如下优点: 1、由于可采用细粉颗粒,并在悬浮状态下与流体接触,流固相界面积大(可高达3280~16400m2/m3),有利于非均相反应的进行,提高了催化剂的利用率。 2、由于颗粒在床内混合激烈,使颗粒在全床内的温度和浓度均匀一致,床层与内浸换热表面间的传热系数很高[200~400W/(m2?K)],全床热容量大,热稳定性高,这些都有利于强放热反应的等温操作。这是许多工艺过程的反应装置选择流化床的重要原因之一。 流化床反应器的缺点 1、气体流动状态与活塞流偏离较大,气流与床层颗粒发生返混,以致在床层轴向没有温度差及浓度差。加之气体可能成大气泡状态通过床层,使气固接触不良,使反应的转化率降低。因此流化床一般达不到固定床的转化率。

流化床反应器

流化床反应器 流化床反应器 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床 反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克 勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 1产品分类 按流化床反应器的应用可分为两类:一类的加工对象主要是固体,如矿石的焙烧,称为 固相加工过程;另一类的加工对象主要是流体,如石油催化裂化、酶反应过程等催化反应 过程,称为流体相加工过程。 2结构形式 流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工 过程或催化剂迅速失活的流体相加工过程。例如催化裂化过程,催化剂在几分钟内即显著 失活,须用上述装置不断予以分离后进行再生。②无固体物料连续进料和出料装置,用于 固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。 3产品优缺点 与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率 高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。然而, 由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又 存在很明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论 气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的 收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶 部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;④床层内的 复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱 离经验放大、经验操作。近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工 业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气 固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固 体颗粒被气体夹带而出,需要进行分离并再循环返回床层,因此,对气固分离的要求也就 很高了。(见流态化、流态化设备)

流化床反应器

流化床反应器 fluidized bed reactor(FBR) : 一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。 流态化过程: 当流体向上流过颗粒床层时,其运动状态是变化的。流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过。当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。此时,对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触而维持它的空间位置,相反地,在失去了以前的机械支承后,每个颗粒可在床层中自由运动;就整个床层而言,具有了许多类似流体的性质。这种状态就被称为流态化。颗粒床层从静止状态转变为流态化时的最低速度,称为临界流化速度。 流化床的性质: (1)在任一高度的静压近似于在此高度以上单位床截面内固体颗粒的重量; (2)无论床层如何倾斜,床表面总是保持水平,床层的形状也保持容器的形状; (3)床内固体颗粒可以像流体一样从底部或侧面的孔口中排出;(4)密度高于床层表观密度的物体在床内会下沉,密度小的物体会

浮在床面上; (5)床内颗粒混合良好,因此,当加热床层时,整个床层的温度基本均匀。 一般的液固流态化,颗粒均匀地分散于床层中,称之为“散式”流态化;一般的气固流态化,气体并不均匀地流过颗粒床层,一部分气体形成气泡经床层短路逸出,颗粒则被分成群体作湍流运动,床层中的空隙率随位置和时间的不同而变化,因此这种流态化称为“聚式”流态化。与固定床反应器相比,流化床反应器的优点是: ①可以实现固体物料的连续输入和输出; ②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应。但另一方面,由于返混严重,可对反应器的效率和反应的选择性带来一定影响。再加上气固流化床中气泡的存在使得气固接触变差,导致气体反应得不完全。因此,通常不宜用于要求单程转化率很高的反应。此外,固体颗粒的磨损和气流中的粉尘夹带,也使流化床的应用受到一定限制。为了限制返混,可采用多层流化床或在床内设置内部构件。这样便可在床内建立起一定的浓度差或温度差。此外,由于气体得到再分布,气固间的接触亦可有所改善。 近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固体颗粒被气体夹带而出,需要

流化床反应器概述

流化床简介 按照床层的外形分类可分为圆筒形和圆锥形流化床。圆筒形流化床反应器结构简单,制造容易,设备容积利用率高。圆锥形流化床反应器的结构比较复杂,制造比较困难,设备的利用率较低,但因其截面自下而上逐渐扩大,故也具有很多优点: 1、适用于催化剂粒度分布较宽的体系由于床层底部速度大,较大颗粒也能流化,防止了分布板上的阻塞现象,上部速度低,减少了气流对细粒的带出,提高了小颗粒催化剂的利用率,也减轻了气固分离设备的负荷。这对于在低速下操作的工艺过程可获得较好的流化质量。2、由于底部速度大,增强了分布板的作用床层底部的速度大,孔隙率也增加,使反应不致过分集中在底部,并且加强了底部的传热过程,故可减少底部过热和烧结现象。 3、适用于气体体积增大的反应过程气泡在床层的上升过程中,随着静压的减少,体积相应增大。采用锥形床,选择一定的锥角,可适应这种气体体积增大的要求,使流化更趋平稳。 按照床层中是否设置有内部构件分类可分为自由床和限制床。床层中设置内部构件的称为限制床,未设置内部构件的称为自由床。设置内部构件的目的在于增进气固接触,减少气体返混,改善气体停留时间分布,提高床层的稳定性,从而使高床层和高流速操作成为可能。许多流化床反应器都采用挡网、挡板等作为内部构件。对于反应速度快、延长接触时间不至于产生严重副反应或对于产品要求不严的催化反应过程,则可采用自由床,如石油炼制工业的催化裂化反应器便是典型的一例。 按照反应器内层数的多少分类可分为单层和多层流化床。对气固相催化反应主要采用单层流化床。多层式流化床中,气流由下往上通过各段床层,流态化的固体颗粒则沿溢流管从上往下依次流过各层分布板,如用于石灰石焙烧的多层式流化床的结构。 按是否催化反应分类分为气固相流化床催化反应器和气固相流化床非催化反应器两种。以一定的流动速度使固体催化剂颗粒呈悬浮湍动,并在催化剂作用下进行化学反应的设备是气固相流化床催化反应器,它是气固相催化反应常用的一种反应器。而在气固相流化床非催化反应器中,是原料直接与悬浮湍动的固体原料发生化学反应。

第七章 流化床反应器

第七章 流化床反应器 1.所谓流态化就是固体粒子像_______一样进行流动的现象。(流体) 2.对于流化床反应器,当流速达到某一限值,床层刚刚能被托动时,床内粒子就开始流化起来了,这时的流体空线速称为_______。(起始流化速度) 3.对于液—固系统的流化床,流体与粒子的密度相差不大,故起始流化速度一般很小,流速进一步提高时,床层膨胀均匀且波动很小,粒子在床内的分布也比较均匀,故称作_______。(散式流化床) 4.对于气—固系统的流化床反应器,只有细颗粒床,才有明显的膨胀,待气速达到_______后才出现气泡;而对粗颗粒系统,则一旦气速超过起始流化速度后,就出现气泡,这些通称为_______。(起始鼓泡速度、鼓泡床) 5.对于气—固系统的流化床反应器的粗颗粒系统,气速超过起始流化速度后,就出现气泡,气速愈高,气泡的聚并及造成的扰动亦愈剧烈,使床层波动频繁,这种流化床称为_______。(聚式流化床) 6.对于气—固系统的流化床反应器,气泡在上升过程中聚并并增大占据整个床层,将固体粒子一节节向上推动,直到某一位置崩落为止,这种情况叫_______。(节涌) 7.对于流化床反应器,当气速增大到某一定值时,流体对粒子的曳力与粒子的重力相等,则粒子会被气流带出,这一速度称为_______。(带出速度或终端速度) 8.对于流化床反应器,当气速增大到某一定值时,流体对粒子的_______与粒子的_______相等,则粒子会被气流带出,这一速度称为带出速度。(曳力、重力) 9.流化床反应器的mf t u u /的范围大致在10~90之间,粒子愈细,比值_______,即表示从能够流化起来到被带出为止的这一范围就愈广。(愈大) 10.流化床反应器中的操作气速0U 是根据具体情况定的,一般取流化数mf U U 0在_______范围内。(1.5~10) 11.对于气—固相流化床,部分气体是以起始流化速度流经粒子之间的空隙外,多余的气体都以气泡状态通过床层,因此人们把气泡与气泡以外的密相床部分分别称为_______与_______。(泡相、乳相) 12.气—固相反应系统的流化床中的气泡,在其尾部区域,由于压力比近傍稍低,颗粒被卷了进来,形成了局部涡流,这一区域称为_______。(尾涡) 13.气—固相反应系统的流化床中的气泡在上升过程中,当气泡大到其上升速度超过乳相气速时,就有部分气体穿过气泡形成环流,在泡外形成一层所谓的_______。(气泡云) 14.气—固相反应系统的流化床反应器中的气泡,_______和_______总称为气泡晕。(尾涡、气泡云) 15.气—固相反应系统的流化床中,气泡尾涡的体积W V 约为气泡体积b V 的_______。(1/3) 16.气—固相反应系统的流化床,全部气泡所占床层的体积分率b δ可根据流化床高f L 和起 始流化床高mf L 来进行计算,计算式为=b δ_______。(f mf f L L L -) 17.在气—固相反应系统的流化床中设置分布板,其宗旨是使气体_______、_______、_______和_______为宜。(分布均匀、防止积料、结构简单、材料节省) 18.在流化床中设计筛孔分布板时,可根据空床气速0u 定出分布板单位截面的开孔数 or N =_______。(or or u d u 20 4) 19.在流化床中设计筛孔分布板时,通常分布板开孔率应取约_______,以保证一定的压降。(1%) 20.在流化床中为了传热或控制气—固相间的接触,常在床内设置内部构件,以垂直管最为常用,它同时具有_______,_______并甚至_______的作用。(传热、控制气泡聚、减少颗粒

反应器类型

反应器类型 管式反应器、固定床,流化床 1、管式反应器 一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流(见流动模型)(见彩图)。管式反应器返混小,因而容积效率(单位容积生产能力)高,对要求转化率较高或有串联副反应的场合尤为适用。此外,管式反应器可实现分段温度控制。其主要缺点是,反应速率很低时所需管道过长,工业上不易实现。 管式反应器与釜式反应器还是有差异的,至于是否可以换回还要看你的反应的工艺要求和反应过程如何,一般的说,管式反应器属于平推流反应器,釜式反应器属于全混流反应器,你的反应过程对平推流和全混流的反应有无具体的要求?管式反应器的停留时间一般要短一些,而釜式反应器的停留时间一般要长一些,从移走反应热来说,管式反应器要难一些,而釜式反应器容易一些,可以在釜外设夹套或釜内设盘管解决,你的这种情况,能否可以考虑管式加釜的混合反应进行,即釜式反应器底部出口物料通过外循环进入管式反应器再返回到釜式反应器,可以在管式反应器后设置外循环冷却器来控制温度,反应原料从管式反应器的进口或外循环泵的进口进入,反应完成后的物料从釜式反应器的上部溢流出来,这样两种反应器都用了进去。 2、固定床反应器 又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。床层静止不动,流体通过床层进行反应。它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。用于气固相或液固相非催化反应时,床层则填装固体反应物。涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。 固定床反应器有三种基本形式:①轴向绝热式固定床反应器(图1)。

流化床反应器的设计

流化床反应器的设计 The final edition was revised on December 14th, 2020.

年产万吨烯烃流化床反应器设计 1 操作工艺参数 反应温度为:450℃ 反应压力为:(绝压) 操作空速为:1~5h-1 MTO成型催化剂选用Sr-SAPO-34 催化剂粒径范围为:30~80μm 催化剂平均粒径为60μm 催化剂颗粒密度为1500kg/m3 催化剂装填密度为 750kg/m3 催化性能:乙烯收率,%;丙烯收率,%;总收率,%。 水醇质量比为 甲醇在450℃下的粘度根据常压下气体粘度共线图查得为μ 甲醇450℃下的密度根据理想气体状态方程估算为m3 甲醇处理量:根据催化剂的催化性能总受率为%,甲醇的用量=烯烃质量×(32/14)/烯烃的生产要求是35000t/a,甲醇的量为89385/a。 2 操作气速 最小流化速度计算

mf U R = 1000 p d ep ρ μ >mf U R = 20 p d ep ρ μ <当流体流过颗粒床层的阻力等于床层颗粒重量时,床层 中的颗粒开始流动起来,此时流体的流速称为起始流化速度,记作U mf 起始流化速度仅与 流体和颗粒的物性有关,其计算公式如下式所示: 对于 的小颗粒 ()2U 1650p p mf d g ρρμ -= (1) 对于的大颗粒 ()1/2 d U 24.5p p mf g ρρρ??-=?? ???? (2) 式中:d p 为颗粒的平均粒径;ρp ,ρ分别为颗粒和气体的密度;μ为气体的粘度假设颗粒的雷诺数R ep <20,将已知数据代入公式(1), 校核雷诺数: 将U mf 带入弗鲁德准数公式作为判断流化形式的依据散式流化, F rmf <;聚式流化,F rmf >。 代入已知数据求得 根据判别式可知流化形式为散式流化。 颗粒的带出速度Ut 床内流体的速度等于颗粒在流体中的自由沉降速度(即颗粒的重力等于流体对颗粒的曳力)时,颗粒开始从床内带出,此时流体的速度成为颗粒的带出速度U t 其最大气速不能超过床层最小颗粒的带出速度U t ,其计算公式如下式所示: 当U R = 0.4 d p t ep ρ μ <时, 2U 18d g p p t ρρμ??- ???= (3)

化学反应器分类及其特点

化学反应器的分类及特点 秦财德 (中南大学、化学化工学院、化工1002班) 摘要: 反应器的应用始于古代,制造陶器的窑炉就是一种原始的反应器。近代工业中的反应器形式多样。化学反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。本文主要介绍化学反应器的分类和特点 关键词:化学反应器特点典型反应 现在的化工反应器在向高精端方向发展,在化工反应中处于主要地位,化学反应器是化学反应的载体,是化工研究、生产的基础,是决定化学反应好坏的重要因素之一,因此反应器的设计、选型是十分重要的。反应器的种类很多,设计和选型很重要,座椅应该按照实际情况来设计制造。 一.釜式反应器 (一)反应器的简介 一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 (二)反应器的特点 反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。反应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。 优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 (三)典型反应: 在等温间歇反应器中进行乙酸乙酯皂化反应: CH3COOC2H5+NaOH CH3COONa+ C2H5OH 二.管式反应器 (一)反应器的简介 管式反应器一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),

流化床反应器的设计

mf U R = 1000 p d ep ρ μ > 年产3.5 万吨烯烃流化床反应器设计 1 操 作工艺参数 反应温度为:450℃ 反应压力为:0.12MPa(绝压) 操作空速为:1~5h -1 MTO 成型催化剂选用Sr-SAPO-34 催化剂粒径范围为:30~80μm 催化剂平均粒径为60μm 催化剂颗粒密度为1500kg/m 3 催化剂装填密度为 750kg/m 3 催化性能:乙烯收率,67.1wt%;丙烯收率,22.4wt%;总收率,89.5wt%。 水醇质量比为0.2 甲醇在450℃下的粘度根据常压下气体粘度共线图查得为24.3μPa.s 甲醇450℃下的密度根据理想气体状态方程估算为0.54kg/m 3 甲醇处理量:根据催化剂的催化性能总受率为89.5wt%,甲醇的用量=烯烃质量×(32/14)/0.895 烯烃的生产要求是35000t/a ,甲醇的量为89385/a 。 2 操作气速 2.1 最小流化速度计算 当流体流过颗粒床层的阻力等于床层颗粒重量时,床层中的颗粒开始流动起来,

mf U R = 20 p d ep ρ μ <此时 流体的流速称为起始流化速度,记作U mf 起始流化速度仅与流 体和颗粒的物性有关,其计算公式如下式所示: 对于的小颗粒 ()2U 1650p p mf d g ρρμ -= (1) 对于的大颗粒 ()1/2 d U 24.5p p mf g ρρρ??-=?? ???? (2) 式中:d p 为颗粒的平均粒径;ρp ,ρ分别为颗粒和气体的密度;μ为气体的粘度假设颗粒的雷诺数R ep <20,将已知数据代入公式(1), 校核雷诺数: 将U mf 带入弗鲁德准数公式作为判断流化形式的依据散式流化, F rmf <0.13;聚式流化,F rmf >0.13。 代入已知数据求得 根据判别式可知流化形式为散式流化。 2.2 颗粒的带出速度Ut 床内流体的速度等于颗粒在流体中的自由沉降速度(即颗粒的重力等于流体对颗粒的曳力)时,颗粒开始从床内带出,此时流体的速度成为颗粒的带出速度U t 其最大气速不能超过床层最小颗粒的带出速度U t ,其计算公式如下式所示: 当U R = 0.4 d p t ep ρ μ <时, 2U 18d g p p t ρρμ??- ???= (3)

流化床反应器

流化床反应器 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 1产品分类 按流化床反应器的应用可分为两类:一类的加工对象主要是固体,如矿石的焙烧,称为固相加工过程;另一类的加工对象主要是流体,如石油催化裂化、酶反应过程等催化反应过程,称为流体相加工过程。 2结构形式 流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工过程或催化剂迅速失活的流体相加工过程。例如催化裂化过程,催化剂在几分钟内即显著失活,须用上述装置不断予以分离后进行再生。②无固体物料连续进料和出料装置,用于固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。 3产品优缺点 与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出; ②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。然而,由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又存在很明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;④床层内的复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱离经验放大、经验操作。近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工业应用。在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气固两相间的接触,特别有利于相际传质阻力居重要地位的情况。但另一方面由于大量的固体颗粒被气体夹带而出,需要进行分离并再循环返回床层,因此,对气固分离的要求也就很高了。(见流态化、流态化设备) 相关文献 流化床反应器应用于高温煤气脱硫的研究进展-科技情报开发与经济-2011年第4期(21) PE流化床反应器床高和床重的测量及控制-合成树脂及塑料-2011年第2期(28) 曝气生物流化床反应器COD降解动力学分析-铁路节能环保与安全卫生-2011年第4期(1)

流化床简介

循环流化床 流化床反应器的优点 流化床内的固体粒子像流体一样运动,由于流态化的特殊运动形式,使这种反应器具有如下优点: 1、由于可采用细粉颗粒,并在悬浮状态下与流体接触,流固相界面积大(可高达3280~16400m2/m3),有利于非均相反应的进行,提高了催化剂的利用率。 2、由于颗粒在床内混合激烈,使颗粒在全床内的温度和浓度均匀一致,床层与内浸换热表面间的传热系数很高[200~400W/(m2?K)],全床热容量大,热稳定性高,这些都有利于强放热反应的等温操作。这是许多工艺过程的反应装置选择流化床的重要原因之一。 3、流化床内的颗粒群有类似流体的性质,可以大量地从装置中移出、引入,并可以在两个流化床之间大量循环。这使得一些反应—再生、吸热—放热、正反应—逆反应等反应耦合过程和反应—分离耦合过程得以实现。使得易失活催化剂能在工程中使用。 4、流体与颗粒之间传热、传质速率也较其它接触方式为高。 5、由于流—固体系中孔隙率的变化可以引起颗粒曳力系数的大幅度变化,以致在很宽的范围内均能形成较浓密的床层。所以流态化技术的操作弹性范围宽,单位设备生产能力大,设备结构简单、造价低,符合现代化大生产的需要。流化床反应器的缺点 1、气体流动状态与活塞流偏离较大,气流与床层颗粒发生返混,以致在床层轴向没有温度差及浓度差。加之气体可能成大气泡状态通过床层,使气固接触不良,使反应的转化率降低。因此流化床一般达不到固定床的转化率。 2、催化剂颗粒间相互剧烈碰撞,造成催化剂的损失和除尘的困难。 3、由于固体颗粒的磨蚀作用,管子和容器的磨损严重。 虽然流化床反应器存在着上述缺点,但优点是主要的。流态化操作总的经济效果是有利的,特别是传热和传质速率快、床层温度均匀、操作稳定的突出优点,对于热效应很大的大规模生产过程特别有利。 综上所述,流化床反应器比较适用于下述过程:热效应很大的放热或吸热过程;要求有均一的催化剂温度和需要精确控制温度的反应;催化剂寿命比较短,

流化床反应器的结构

流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。 Fluidized bed reactor is a kind of reactors that make use of gas or liquid through granular solid layer to make the solid particles in a state of suspension movement, and conduct reaction process of gas-solid or liquid-solid reactor process.When fluidized bed reactor is used in gas-solid system, it also called ebullient bed reactor. 流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工过程或催化剂迅速失活的流体相加工过程。②无固体物料连续进料和出料装置,用于固体颗粒性状在相当长时间内,不发生明显变化的反应过程。 The structure of the fluidized bed reactor has two forms: (1)It contains a continuous feeding and discharging device with solid materials which is used in solid phase processing procedure or fluid phase processing procedure where catalyst deactivates quickly. (2)It doesn't contain a continuous feeding and discharging device with solid materials which is used in the reaction process that the properties of solid particles have no obvious changes in a long time. 流化床反应器的结构型式很多,但一般均由床层壳体、内部装置、换热装置、气固分离装置等组成。 There are a lot of the structural types of fluidized bed reactor.However, it generally consist of bed shell, internal device, the heat exchange device, gas-solid separation device, etc. (一)床层壳体。 床层壳体的作用是装载固体颗粒和保证流态化在所规定的范围内进行,这是最基本的作用。 (1) bed shell:The function of bed shell is to load solid particles and guarantee fluidization conduct within the prescribed scope,which is the most basic role. (二)内部装置。 内部装置包括气体分布器和内部构件,它们的作用主要是改善流化床的流化态。 (2) the internal device:Internal devices including gas distributor and internals, whose role is mainly to improve the fluidization states of fluidized bed. 1、气体分布器 气体分布器是流化床的主要构件之一。它具有支承催化剂、均布气体、气体整流、稳定操作,强化传热传质等作用。一般流化床气体分布器设计的要求是结构简单,阻力小,不漏料、不堵塞、制造方便等。 1, the gas distributor The gas distributor is one of the most primary components of fluidized bed. It has function of supported catalyst, uniform gas, gas rectifier, stable operation, strengthen the heat and mass transfer, and so on. General fluidized bed gas distributor design’s requirement is simple structure, small resistance, no leakage, no jam, easy fabrication, etc. 2、内部构件 内部构件的作用在于破碎并限制气泡长大,减少气固体返混,改变气体固体颗粒在床中的停留时间分布。流化床反应器的内部构件主要形式有管束(垂直管

流化床反应器的简介及其工业应用.

流化床反应器的简介及其工业应用 摘要:流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时,又称沸腾床反应器。流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉;但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 关键词:流化床;工业应用;设计参数 1.流化床反应器概述 按照床层的外形分类,可分为圆筒形和圆锥形流化床。圆筒形流化床反应器结构简单,制造容易,设备容积利用率高。圆锥形流化床反应器的结构比较复杂,制造比较困难,设备的利用率较低,但因其截面自下而上逐渐扩大,故也具有很多优点:1、适用于催化剂粒度分布较宽的体系,由于床层底部速度大,较大颗粒也能流化,防止了分布板上的阻塞现象,上部速度低,减少了气流对细粒的带出,提高了小颗粒催化剂的利用率,也减轻了气固分离设备的负荷。这对于在低速下操作的工艺过程可获得较好的流化质量;2、由于底部速度大,增强了分布板的作用,床层底部的速度大,孔隙率也增加,使反应不致过分集中在底部,并且加强了底部的传热过程,故可减少底部过热和烧结现象;3、适用于气体体积增大的反应过程,气泡在床层的上升过程中,随着静压的减少,体积相应增大。采用锥形床,选择一定的锥角,可适应这种气体体积增大的要求,使流化更趋平稳。 按照床层中是否设置有内部构件分类,可分为自由床和限制床。床层中设置内部构件的称为限制床,未设置内部构件的称为自由床。设置内部构件的目的在于增进气固接触,减少气体返混,改善气体停留时间分布,提高床层的稳定性,从而使高床层和高流速操作成为可能。许多流化床反应器都采用挡网、挡板等作为内部构件。对于反应速度快、延长接触时间不至于产生严重副反应或对于产品要求不严的催化反应过程,则可采用自由床,如石油炼制工业的催化裂化反应器便是典型的一例。

化学反应器分类及其特点

化学反应器分类及其特点 This model paper was revised by the Standardization Office on December 10, 2020

化学反应器的分类及特点 秦财德 (中南大学、化学化工学院、化工1002班) 摘要: 反应器的应用始于古代,制造陶器的窑炉就是一种原始的反应器。近代工业中的反应器形式多样。化学反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。本文主要介绍化学反应器的分类和特点 关键词:化学反应器特点典型反应 现在的化工反应器在向高精端方向发展,在化工反应中处于主要地位,化学反应器是化学反应的载体,是化工研究、生产的基础,是决定化学反应好坏的重要因素之一,因此反应器的设计、选型是十分重要的。反应器的种类很多,设计和选型很重要,座椅应该按照实际情况来设计制造。 一.釜式反应器 (一)反应器的简介 一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 (二)反应器的特点

反应器中物料浓度和温度处处相等,并且等于反应器出口物料的浓度和温度。物料质点在反应器内停留时间有长有短,存在不同停留时间物料的混合,即返混程度最大。反应器内物料所有参数,如浓度、温度等都不随时间变化,从而不存在时间这个自变量。 优点:适用范围广泛,投资少,投产容易,可以方便地改变反应内容。 缺点:换热面积小,反应温度不易控制,停留时间不一致。绝大多数用于有液相参与的反应,如:液液、液固、气液、气液固反应等。 (三)典型反应: 在等温间歇反应器中进行乙酸乙酯皂化反应: CH 3COOC 2 H 5 +NaOH CH 3 COONa+ C 2 H 5 OH 二.管式反应器 (一)反应器的简介 管式反应器一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流.(二)反应器的特点 (1)由于反应物的分子在反应器内停留时间相等,所以在反应器内任何一点上的反应物浓度和化学反应速度都不随时间而变化,只随管长变化。

反应器类型

反应器类型 管式反应器、固定床,流化床 1、管式反应器 一种呈管状、长径比很大的连续操作反应器。这种反应器可以很长,如丙烯二聚的反应器管长以公里计。反应器的结构可以就是单管,也可以就是多管并联;可以就是空管,如管式裂解炉,也可以就是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流(见流动模型)(见彩图)。管式反应器返混小,因而容积效率(单位容积生产能力)高,对要求转化率较高或有串联副反应的场合尤为适用。此外,管式反应器可实现分段温度控制。其主要缺点就是,反应速率很低时所需管道过长,工业上不易实现。 管式反应器与釜式反应器还就是有差异的,至于就是否可以换回还要瞧您的反应的工艺要求与反应过程如何,一般的说,管式反应器属于平推流反应器,釜式反应器属于全混流反应器,您的反应过程对平推流与全混流的反应有无具体的要求?管式反应器的停留时间一般要短一些,而釜式反应器的停留时间一般要长一些,从移走反应热来说,管式反应器要难一些,而釜式反应器容易一些,可以在釜外设夹套或釜内设盘管解决,您的这种情况,能否可以考虑管式加釜的混合反应进行,即釜式反应器底部出口物料通过外循环进入管式反应器再返回到釜式反应器,可以在管式反应器后设置外循环冷却器来控制温度,反应原料从管式反应器的进口或外循环泵的进口进入,反应完成后的物料从釜式反应器的上部溢流出来,这样两种反应器都用了进去。 2、固定床反应器 又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。床层静止不动,流体通过床层进行反应。它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。用于气固相或液固相非催化反应时,床层则填装固体反应物。涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。 固定床反应器有三种基本形式:①轴向绝热式固定床反应器(图1)。

流化床反应器简介

流化床反应器简介 一、概述 流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状态 ,并进行气固相反应过程或液固相反应过程的反应器。在用于气固系统时 ,又称沸腾床反应器。流化床反应器在现代工业中的早期应用为2O世纪2O年代出现的粉煤气化的温克勒炉,但现代流化反应技术的开拓,是以4O年代石油催化裂化为代表的。目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。 二、基本流态化现象 固定式和临界流化态 将一批固体颗粒对方在多孔的分布板上形成床层(图1),使流体自下而上通过床层。由于流体的流动及其与颗粒表面的摩擦,造成流体通过床层的压力降。当流体通过床层的表观流速(按床层截面计

算的流速)不大时,颗粒之间仍保持静止和互相接触,这种床层称为固定床。 当表观流速增大至起始流化速度时,床层压力降等于单位分布板面积上的颗粒浮重(颗粒的重力减去同体积流体的重力),这时颗粒不再相互支撑,并开始悬浮在流体之中。进一步提高表观流速,床层随之膨胀,床层压力降近乎不变,但床层中颗粒的运动加剧。而当流速达到某一限值,床层刚刚能被流体拖动时,床内颗粒就开始流化起来了,这时的流体空床线速称为临界流化速度。 散式流态化和聚式流态化 这两种流态化现象,是根据流化床内颗粒和流体的运动状况来区分的。在散式流态化时,颗粒均匀分布在流体中,并在各方向上作随机运动,床层表面平稳且清晰,床层随流体表观流速的增加而均匀膨胀。在聚式流态化时,床层内出现组成不同的两个相,即含颗粒甚少的不连续气泡相,以及含颗粒较多的连续乳化相。乳化相的气固运动状况和空隙率,与起始流化状态相近。通过床层的流体,部分从乳化相的颗粒间通过,其余以气泡形式通过床层。增加流体流量时,通过乳化相的气量基本不变,而气泡量相应增加。气泡在分布板上生成,在上升过程中长大;小气泡会合并成大气泡;大气泡也会破裂成小气泡。气泡上升至床面时破裂,使床面频繁地波动起伏,同时将一部分固体颗粒抛撒到界面以上,形成一个含固体颗粒较少的稀相区;与此相对应,床面以下的床层称为浓相区。气泡的运动既使床层中的颗粒剧烈运动,也影响到气固间的均匀接触。美国学者R.H.威海姆和中

相关主题
文本预览
相关文档 最新文档