当前位置:文档之家› 内存篇-三个影响内存性能的重要参数

内存篇-三个影响内存性能的重要参数

内存篇-三个影响内存性能的重要参数
内存篇-三个影响内存性能的重要参数

内存篇-三个影响内存性能的重要参数

组装电脑选购内存时,还有一些影响其性能的重要参数需要注意,比如容量、电压和CL 值等。

◎容量:容量是选购内存时优先考虑的性能指标,因为它代表了内存可以存储数据的多少,通常以GB 为单位。单根内存容量越大则越好。目前市面上主流的内存容量分为单条(容量为2GB、4GB、8GB、16GB)和套装(容量为2×2GB、2×4GB、2×8GB、8×4GB、4×4GB、16×2GB)两种。

◎工作电压:内存的工作电压是指内存正常工作所需要的电压值,不同类型的内存电压不同,DDR2 内存的工作电压一般在1.8V 左右;DDR3 内存的工作电压一般在1.5V 左右;DDR4 内存的工作电压一般在1.2V 左右。电压越低,对电能的消耗越少,也就更符合目前节能减排的要求。

◎CL 值:CL(CAS Latency,列地址控制器延迟)是指从读命令有效(在时钟上升沿发出)开始,到输出端可提供数据为止的这一段时间。对于普通用户来说,没必要太过在意CL 值,只需要了解在同等工作频率下,CL 值低的内存更具有速度优势。

小知识:

什么是内存超频?内存超频就是让内存外频运行在比它被设定的更高的速度下。一般情况下,CPU外频与内存外频是一致的,所以在提升CPU外频进行超频时,也必须相应提升内存外频,使之与CPU同频工作。内存超频技术目前在很多DDR4内存中应用,比如金士顿内存的PnP和XMP就是目前使用较多的内存自动超频技术。

CL值的含义

内存CL值通常采用4个数字表示,中间用“-”隔开,以“5-4-4-12”为例,第一个数代表CAS(Column Address Strobe)延迟时间,也就是内存存取数据所需的延迟时间,即通常说的CL值;第二个数代表RAS(Row Address Strobe)-to-CAS延迟,表示内存行地址传输到列地址的延迟时间;第三个数表示RAS Prechiarge延迟(内存行地址脉冲预充电时间);最后一个数则是Act-to-Prechiarge延迟(内存行地址选择延迟)。其中最重要的指标是第一个参数CAS,它代表内存接收到一条指令后要等待多少个时间周期才能执行任务。

1

第十一讲存储器管理之连续分配方式

第十一讲存储器管理之连续分配方式 所谓连续分配方式:是指为一个用户程序分配一个连续的内存空间。 又可把连续分配方式分为:单一连续分配,固定分区分配,动态分区分配,动态重定位分区分配,四种方式。 1 单一连续分配(单独分区分配) 最简单的一种存储管理方式,但只能用于单用户、单任务的OS中。 概念:单一连续分配就是整个主存区域的用户空间均归一个用户作业使用。 存储管理方法:将内存分为系统区(内存低端,分配给OS用)和用户区(内存高端,分配给用户用)。其中用户区是指除了系统区外的内存空间,提供给用户程序使用。采用静态分配方式,即作业一旦进入内存,就要等待它运行结束后才能释放内存。 主要特点:管理简单,只需小量的软件和硬件支持,便于用户了解和使用。但因内存中只装入一道作业运行,内存空间浪费大,各类资源的利用率也不高。 例子:一个容量为256KB的内存,操作系统占用32KB,剩下224KB全部分配给用户作业,如果一个作业仅需64KB,那么就有160KB的存储空间被浪费。 2 固定分区分配 分区分配方式是满足多道程序设计需要的一种最简单的存储管理方法。 2.1 思想:将内存分成若干个分区(大小相等/不相等),除OS占一区外,其余的每一个分区容纳一个用户程序。这样来实现多道并发。 2.2 分区划分方法:分区大小相等,分区大小不等。但事先必须确定,在运行时不能改变。即分区大小及边界在运行时不能改变。 2.3 内存分配: 首先:要先建立一张分区说明表或使用表,以记录分区号、分区大小、分区的起始地址及状态(已分配或未分配)。 其次:当某个用户程序要装入内存时,由内存分配程序检索分区说明表,从表中找出一个满足要求的尚未分配的分区分配该程序,同时修改说明表中相应分区的状态;若找不到大小足够的分区,则拒绝为该程序分配内存。 第三:当程序执行完毕,释放占用的分区,管理程序将修改说明表中相应分区的状态为未分配,实现内存资源的回收。 2.4 特点 主要特点:管理简单,但因作业的大小并不一定与某个分区大小相等,从而使一部分存储空间被浪费。所以主存的利用率不高 3 动态分区分配 3.1 基本思想:根据进程的实际需要,动态的为其分配内存空间。因此分区大小是动态可变的,分区的个数也是可变的。 3.2 主要特点 管理简单,只需小量的软件和硬件支持,便于用户了解和使用。进程的大小与某个分区大小相等,从而主存的利用率有所提高。 3.3 分区分配的数据结构 为描述空闲分区合已分配的分区,引入如下数据结构。 3.3.1空闲分区表 用于记录每个空闲分区的情况。每个空闲分区占一个表目,表目重含有分区序号,分区起始地址,分区大小等数据项。如下图

教你如何调整DDR内存参数

教你如何调整DDR内存参数 日期:2006-07-08 上传者:赵磊来源:https://www.doczj.com/doc/192512595.html, 同样的CPU,同样的频率设置,为什么别人的运行效率就比我的高呢?为什么高手能以较低CPU频率跑出更好的测试成绩呢?问题的关键就是内存参数的调校。在一般的超频中,只会调整一些基本参数,比如某超频报告中会说到内存运行状态为“520MHz、3-4-4-8 1T”,那么除频率外后5个数字就是基本参数。还有一系列参数被称之为“小参”,能起到辅助调节作用,当调节基参后仍无法提高频率,或者性能提升不明显后,调整“小参”往往会得到令人意外的惊喜。以下我们根据基本参数与小参分别介绍调校方法。 基本参数介绍 目前的内存还是使用类电容原理来存储数据,需要有充放电的过程,这个过程所带来的延迟是不可避免的。在BIOS中,所有关于内存调节的参数其实都是在调整这个充放电的时序。受颗粒品质影响,每种内存的参数几乎都不完全一样。面对这些参数,我们必须先了解其原理才能在以后的调节中做到信手拈来。以下我们讲解一些重点参数的含义。 CL CL全称CAS Latency,是数据从存储设备中输出内存颗粒的接口之间所使用的时间。一般而言是越短越好,但受于制造技术和内存控制器所限,目前的最佳值是2。

从图中,我们能够直观的看到CL值变化,对数据处理的影响。虽说在单周期内的等待的时间并不长;但在实际使用时,内存每秒要400M次以上的周期循环,此时的性能影响就相当明显了。 RAS与CAS 内存内部的存储单元是按照行(RAS)和列(CAS)排成矩阵模式,一个地址访问指令会被解码成行和列两个信号,先是行地址信号,然后是列地址信号,只有行和列地址都准备好之后才可以确定要访问的内存单元。因此内存读写第一个延迟是RAS到CAS的延迟,从行地址访问允许到读、写数据还有一个准备时间,被称为RAS转换准备时间。这也就是为什么RAS to CAS参数对性能影响要大于RAS Precharge的原因。 Tras

操作系统课程设计--连续动态分区内存管理模拟实现

(操作系统课程设计) 连续动态分区内存 管理模拟实现

目录 《操作系统》课程设计 (1) 引言 (3) 课程设计目的和内容 (3) 需求分析 (3) 概要设计 (3) 开发环境 (4) 系统分析设计 (4) 有关了解内存管理的相关理论 (4) 内存管理概念 (4) 内存管理的必要性 (4) 内存的物理组织 (4) 什么是虚拟内存 (5) 连续动态分区内存管理方式 (5) 单一连续分配(单个分区) (5) 固定分区存储管理 (5) 可变分区存储管理(动态分区) (5) 可重定位分区存储管理 (5) 问题描述和分析 (6) 程序流程图 (6) 数据结构体分析 (8) 主要程序代码分析 (9) 分析并实现四种内存分配算法 (11) 最先适应算 (11) 下次适应分配算法 (13) 最优适应算法 (16)

最坏适应算法......................................................... (18) 回收内存算法 (20) 调试与操作说明 (22) 初始界面 (22) 模拟内存分配 (23) 已分配分区说明表面 (24) 空闲区说明表界面 (24) 回收内存界面 (25) 重新申请内存界面..........................................................26. 总结与体会 (28) 参考文献 (28) 引言 操作系统是最重要的系统软件,同时也是最活跃的学科之一。我们通过操作系统可以理解计算机系统的资源如何组织,操作系统如何有效地管理这些系统资源,用户如何通过操作系统与计算机系统打交道。 存储器是计算机系统的重要组成部分,近年来,存储器容量虽然一直在不断扩大,但仍不能满足现代软件发展的需要,因此,存储器仍然是一种宝贵而又紧俏的资源。如何对它加以有效的管理,不仅直接影响到存储器的利用率,而且还对系统性能有重大影响。而动态分区分配属于连续分配的一种方式,它至今仍在内存分配方式中占有一席之地。 课程设计目的和内容: 理解内存管理的相关理论,掌握连续动态分区内存管理的理论;通过对实际问题的编程实现,获得实际应用和编程能力。

全面教你认识内存参数

全面教你认识内存参数 内存热点 Jany 2010-4-28

内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是 Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM 的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存 第二代DDR内存

DDR2 是 DDR SDRAM 内存的第二代产品。它在 DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存 DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit 预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。 三种类型DDR内存之间,从内存控制器到内存插槽都互不兼容。即使是一些在同时支持两种类型内存的Combo主板上,两种规格的内存也不能同时工作,只能使用其中一种内存。 内存SPD芯片 内存SPD芯片

计算机内存发展史

计算机内存发展史 内存是电脑必不可少的组成部分,CPU 可通过数据总线对内存寻址。历史上的电脑 主板上有主内存,内存条是主内存的扩展。 以后的电脑主板上没有主内存,CPU完全依 赖内存条。所有外存上的内容必须通过内存 才能发挥作用。 在计算机诞生初期并不存在内存条的概 念,最早的内存是以磁芯的形式排列在线路 上,每个磁芯与晶体管组成的一个双稳态电路作为一比特(BIT)的存储器,每一比特都要有玉米粒大小,可以想象一间的机房只能装下不超过百k字节左右的容量。后来才出线现了焊接在主板上集成内存芯片,以内存芯片的形式为计算机的运算提供直接支持。那时的内存芯片容量都特别小,最常见的莫过于 256K×1bit、1M×4bit,虽然如此,但这相对于那时的运算任务来说却已经绰绰有余了。一、内存条的诞生 内存芯片的状态一直沿用到286初期,鉴于它存 在着无法拆卸更换的弊病,这对于计算机的发展造成 了现实的阻碍。有鉴于此,内存条便应运而生了。将 内存芯片焊接到事先设计好的印刷线路板上,而电脑 主板上也改用内存插槽。这样就把内存难以安装和更 换的问题彻底解决了。 在80286主板发布之前,内存并没有被世人所重 视,这个时候的内存是直接固化在主板上,而且容量 只有64 ~256KB,对于当时PC所运行的工作程序 来说,这种内存的性能以及容量足以满足当时软件程 序的处理需要。不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了“内存条”概念。 在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。 随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出现了,72pin SIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。72pin SIMM内存单条容量一般为 512KB ~2MB,而且仅要求两条同时使用,由于其与30pin SIMM 内存无法兼容,因此这个时候PC业界毅然将30pin SIMM 内存淘汰出局了。

内存芯片参数介绍

内存芯片参数介绍 具体含义解释: 例:SAMSUNG K4H280838B-TCB0 主要含义: 第1位——芯片功能K,代表是内存芯片。 第2位——芯片类型4,代表DRAM。 第3位——芯片的更进一步的类型说明,S代表SDRAM、H代表DDR、G代表SGRAM。 第4、5位——容量和刷新速率,容量相同的内存采用不同的刷新速率,也会使用不同的编号。64、62、63、65、66、67、6A代表64Mbit的容量;28、27、2A代表128Mbit 的容量;56、55、57、5A代表256MBit的容量;51代表512Mbit的容量。 第6、7位——数据线引脚个数,08代表8位数据;16代表16位数据;32代表32位数据;64代表64位数据。 第11位——连线“-”。 第14、15位——芯片的速率,如60为6ns;70为7ns;7B为7.5ns (CL=3);7C 为7.5ns (CL=2) ;80为8ns;10 为10ns (66MHz)。 知道了内存颗粒编码主要数位的含义,拿到一个内存条后就非常容易计算出它的容量。例如一条三星DDR内存,使用18片SAMSUNG K4H280838B-TCB0颗粒封装。颗粒编号第4、5位“28”代表该颗粒是128Mbits,第6、7位“08”代表该颗粒是8位数据带宽,这样我们可以计算出该内存条的容量是128Mbits(兆数位)× 16片/8bits=256MB(兆字节)。 注:“bit”为“数位”,“B”即字节“byte”,一个字节为8位则计算时除以8。关于内存容量的计算,文中所举的例子中有两种情况:一种是非ECC内存,每8片8位数据宽度的颗粒就可以组成一条内存;另一种ECC内存,在每64位数据之后,还增加了8位的ECC 校验码。通过校验码,可以检测出内存数据中的两位错误,纠正一位错误。所以在实际计算容量的过程中,不计算校验位,具有ECC功能的18片颗粒的内存条实际容量按16乘。在购买时也可以据此判定18片或者9片内存颗粒贴片的内存条是ECC内存。 Hynix(Hyundai)现代 现代内存的含义: HY5DV641622AT-36 HY XX X XX XX XX X X X X X XX 1 2 3 4 5 6 7 8 9 10 11 12 1、HY代表是现代的产品 2、内存芯片类型:(57=SDRAM,5D=DDR SDRAM); 3、工作电压:空白=5V,V=3.3V,U=2.5V 4、芯片容量和刷新速率:16=16Mbits、4K Ref;64=64Mbits、8K Ref;65=64Mbits、4K Ref;128=128Mbits、8K Ref;129=128Mbits、4K Ref;256=256Mbits、16K Ref; 257=256Mbits、8K Ref 5、代表芯片输出的数据位宽:40、80、16、32分别代表4位、

内存的发展历程

内存的发展历程 作为PC不可缺少的重要核心部件——内存,它伴随着DIY硬件走过了多年历程。从286时代的30pin SIMM内存、486时代的72pin SIMM 内存,到Pentium时代的EDO DRAM内存、PII 时代的SDRAM内存,到P4时代的DDR内存和目前9X5平台的DDR2内存。内存从规格、技术、总线带宽等不断更新换代。不过我们有理由相信,内存的更新换代可谓万变不离其宗,其目的在于提高内存的带宽,以满足CPU不断攀升的带宽要求、避免成为高速CPU运算的瓶颈。那么,内存在PC领域有着怎样的精彩人生呢?下面让我们一起来了解内存发展的历史吧。 一、历史起源——内存条概念 如果你细心的观察,显存(或缓存)在目前的DIY硬件上都很容易看到,显卡显存、硬盘或光驱的缓存大小直接影响到设备的性能,而寄存器也许是最能代表PC硬件设备离不开RAM 的,的确如此,如果没有内存,那么PC将无法运转,所以内存自然成为DIY用户讨论的重点话题。 在刚刚开始的时候,PC上所使用的内存是一块块的IC,要让它能为PC服务,就必须将其焊接到主板上,但这也给后期维护带来的问题,因为一旦某一块内存IC坏了,就必须焊下来才能更换,由于焊接上去的IC不容易取下来,同时加上用户也不具备焊接知识(焊接需要掌握焊接技术,同时风险性也大),这似乎维修起来太麻烦。 因此,PC设计人员推出了模块化的条装内存,每一条上集成了多块内存IC,同时在主板上也设计相应的内存插槽,这样内存条就方便随意安装与拆卸了(如图1),内存的维修、升级都变得非常简单,这就是内存“条”的来源。 图1,内存条与内存槽的出现 小帖士:内存(Random Access Memory,RAM)的主要功能是暂存数据及指令。我们可以同时写数据到RAM 内存,也可以从RAM 读取数据。由于内存历来都是系统中最大的性能瓶颈之一,因此从某种角度而言,内存技术的改进甚至比CPU 以及其它技术更为令人激动。 二、开山鼻祖——SIMM 内存 在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了前面我们所提到的“内存条”概念。

内存型号说明

Samsung 具体含义解释 主要含义: 第1位——芯片功能K,代表是内存芯片。 第2位——芯片类型4,代表DRAM。 第3位——芯片的更进一步的类型说明,S代表SDRAM、H代表DDR、G代表SGRAM 、T代表DDR2 DRAM、D表示GDDR1(显存颗粒)。 第4、5位——容量和刷新速率,容量相同的内存采用不同的刷新速率,也会使用不同的编号。64、62、63、65、66、67、6A代表64Mbit的容量;28、27、2A 代表128Mbit的容量;56、55、57、5A代表256Mbit的容量;51代表512Mbit 的容量。 第6、7位——数据线引脚个数,08代表8位数据;16代表16位数据;32代表32位数据;64代表64位数据。 第8位——为一个数字,表示内存的物理Bank,即颗粒的数据位宽,有3和4两个数字,分别表示4Banks和8Banks。对于内存而言,数据宽度×芯片数量=数据位宽。这个值可以是64或128,对应着这条内存就是1个或2个bank。例如256M内存32×4格式16颗芯片:4×16=64,双面内存单bank;256M内存 16M×16格式 8颗芯片:16×8=128,单面内存双bank。所以说单或双bank和内存条的单双面没有关系。另外,要强调的是主板所能支持的内存仅由主板芯片组决定。内存芯片常见的数据宽度有4、8、16这三种,芯片组对于不同的数据宽度支持的最大数据深度不同。所以当数据深度超过以上最大值时,多出的部分主板就会认不出了,比如把256M认成128M就是这个原因,但是一般还是可以正常使用。 第9位——由一个字符表示采用的电压标准,Q:SSTL-1.8V (1.8V,1.8V)。与DDR的2.5V电压相比,DDR2的1.8V是内存功耗更低,同时为超频留下更大的空间。 第10位——由一个字符代表校订版本,表示所采用的颗粒所属第几代产品,M 表示1st,A-F表示2nd-7th。目前,长方形的内存颗粒多为A、B、C三代颗粒,而现在主流的FBGA颗粒就采用E、F居多。靠前的编号并不完全代表采用的颗粒比较老,有些是由于容量、封装技术要求而不得不这样做的。 第11位——连线“-”。 第12位——由一个字符表示颗粒的封装类型,有G,S:FBGA(Leaded)、Z,Y:FBGA(Leaded-Free)。目前看到最多的是TSOP和FBGA两种封装,而FBGA是主流(之前称为mBGA)。其实进入DDR2时代,颗粒的封装基本采用FBGA了,因为TSOP封装的颗粒最高频率只支持到550MHz,DDR最高频率就只到400MHz,像DDR2 667、800根本就无法实现了。 第13位——由一个字符表示温控和电压标准,“C”表示Commercial Temp.( 0°C ~ 85°C) & Normal Power,就是常规的1.8V电压标准;“L”表示Commercial Temp.( 0°C ~ 85°C) & Low Power,是低电压版,适合超频,

内存中的各区域的分配

程序中用来存放数据的内存分为四块,其实另有一块用于存放代码,这里我们不讨论,这四块分别是: 1、全局区(静态区)(static):全局变量和静态变量都存储在这块区域,与其他变量的明显区别就是生命周期不同,在程序结束时,系统会释放这块资源 2、文字常量区:常量字符串就是放在这块区域,即是我们常说起的常量池。这块也是在程序结束时由系统释放。 3、栈区(stack):存放函数的参数值,局部变量的值等。这块的数据大家就很熟悉了,在进入作用域时分配占用内存,离开作用域时释放占用内存 4、堆区(heap):一般由程序员分配释放,若程序员不释放,程序结束时可能由系统回收。由于这个原因,在C和C++中就有能产生大量程序员分配但忘记释放的堆区内存,造成可使用内存越来越少,这个被称之为内存泄露。而在java中,因为有了垃圾收集机制,这样的内存会被自动处理掉,所以在java中,反倒不需要程序员去释放内存了。 那么栈和堆的区别到底在哪里呢? 1、内存分配方面: 堆:一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。 栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。 2、申请方式方面: 堆:需要程序员自己申请,并指明大小。在c中malloc函数如p1 = (char *)malloc(10);在C++,java中用new运算符,但是注意p1、p2本身是在栈中的。因为他们还是可以认为是局部变量。 栈:由系统自动分配。例如,声明在函数中一个局部变量int b;系统自动在栈中为b 开辟空间。 3、系统响应方面: 堆:操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样代码中的delete语句才能正确的释放本内存空间。另外由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。 栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。 4、大小限制方面: 堆:是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。 栈:在Windows下, 栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是固定的(是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。 5、效率方面: 堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方

内存篇-三个影响内存性能的重要参数

内存篇-三个影响内存性能的重要参数 组装电脑选购内存时,还有一些影响其性能的重要参数需要注意,比如容量、电压和CL 值等。 ◎容量:容量是选购内存时优先考虑的性能指标,因为它代表了内存可以存储数据的多少,通常以GB 为单位。单根内存容量越大则越好。目前市面上主流的内存容量分为单条(容量为2GB、4GB、8GB、16GB)和套装(容量为2×2GB、2×4GB、2×8GB、8×4GB、4×4GB、16×2GB)两种。 ◎工作电压:内存的工作电压是指内存正常工作所需要的电压值,不同类型的内存电压不同,DDR2 内存的工作电压一般在1.8V 左右;DDR3 内存的工作电压一般在1.5V 左右;DDR4 内存的工作电压一般在1.2V 左右。电压越低,对电能的消耗越少,也就更符合目前节能减排的要求。 ◎CL 值:CL(CAS Latency,列地址控制器延迟)是指从读命令有效(在时钟上升沿发出)开始,到输出端可提供数据为止的这一段时间。对于普通用户来说,没必要太过在意CL 值,只需要了解在同等工作频率下,CL 值低的内存更具有速度优势。 小知识: 什么是内存超频?内存超频就是让内存外频运行在比它被设定的更高的速度下。一般情况下,CPU外频与内存外频是一致的,所以在提升CPU外频进行超频时,也必须相应提升内存外频,使之与CPU同频工作。内存超频技术目前在很多DDR4内存中应用,比如金士顿内存的PnP和XMP就是目前使用较多的内存自动超频技术。 CL值的含义 内存CL值通常采用4个数字表示,中间用“-”隔开,以“5-4-4-12”为例,第一个数代表CAS(Column Address Strobe)延迟时间,也就是内存存取数据所需的延迟时间,即通常说的CL值;第二个数代表RAS(Row Address Strobe)-to-CAS延迟,表示内存行地址传输到列地址的延迟时间;第三个数表示RAS Prechiarge延迟(内存行地址脉冲预充电时间);最后一个数则是Act-to-Prechiarge延迟(内存行地址选择延迟)。其中最重要的指标是第一个参数CAS,它代表内存接收到一条指令后要等待多少个时间周期才能执行任务。 1

计算机发展史简介

一、计算机发展史简介 人类所使用的计算工具是随着生产的发展和社会的进步,从简单到复杂、从低级到高级的发展过程,计算工具相继出现了如算盘、计算尺、手摇机械计算机、电动机械计算机等。 1946年,世界上第一台电子数字计算机(ENIAC)在美国诞生。这台计算机共用了18000多个电于管组成,占地170m2,总重量为30t,耗电140kw,运算速度达到每秒能进行5000次加法、 300次乘法。从计算机的发展趁势看,大约2010年前美国就可以研制出千万亿次计算机。 电子计算机在短短的50多年里经过了电子管、晶体管、集成电路(IC)和超大规模集成电路(VLSI)四个阶段的发展,使计算机的体积越来越小,功能越来越强,价格越来越低,应用越来越广泛,目前正朝智能化(第五代)计算机方向发展。1.第一代电子计算机 第一代电于计算机是从1946年至1958年。它们体积较大,运算速度较低,存储容量不大,而且价格昂贵。使用也不方便,为了解决一个问题,所编制的程序的复杂程度难以表述。这一代计算机主要用于科学计算,只在重要部门或科学研究部门使用。 2.第二代电子计算机 第二代计算机是从1958年到1965年,它们全部采用晶体管作为电子器件,其运算速度比第一代计算机的速度提高了近百倍,体积为原来的几十分之一。在软件方面开始使用计算机算法语言。这一代计算机不仅用于科学计算,还用于数据处理和事务处理及工业控制。 3.第三代电子计算机 第三代计算机是从1965年到1970年。这一时期的主要特征是以中、小规模集成电路为电子器件,并且出现操作系统,使计算机的功能越来越强,应用范围越来越广。它们不仅用于科学计算,还用于文字处理、企业管理、自动控制等领域,出现了计算机技术与通信技术相结合的信息管理系统,可用于生产管理、交通管理、情报检索等领域。 4.第四代电子计算机 第四代计算机是指从1970年以后采用大规模集成电路(LSI)和超大规模集成电路(VLSI)为主要电子器件制成的计算机。例如80386微处理器,在面积约为10mm X l0mm的单个芯片上,可以集成大约32万个晶体管。 第四代计算机的另一个重要分支是以大规模、超大规模集成电路为基础发展起来的微处理器和微型计算机。 微型计算机大致经历了四个阶段: 第一阶段是1971~1973年,微处理器有4004、4040、8008。 1971年Intel公司研制出MCS4微型计算机(CPU为4040,四位机)。后来又推出以8008为核心的MCS-8型。 第二阶段是1973~1977年,微型计算机的发展和改进阶段。微处理器有8080、8085、M6800、Z80。初期产品有Intel公司的MCS一80型(CPU为8080,八位机)。后期有TRS-80型(CPU为Z80)和APPLE-II型(CPU为6502),在八十年代初期曾一度风靡世界。 第三阶段是1978~1983年,十六位微型计算机的发展阶段,微处理器有8086、6、80286、M68000、Z8000。微型计算机代表产品是IBM-PC(CPU为8086)。本阶段

DDR 内存参数

一、CAS、RCD、RP是内存芯片的重要参数,它们表示内存工作的延迟时间,当延迟时间越短,其内存的工作效率就越高,其性能也就越好。 CAS:CAS Latency,列地址脉冲选通潜伏期(又可简称为CL) RCD:RAS-to-CAS Delay,行寻址至列寻址延迟时间 RP:RAS Precharge Time,“行预充电时间” 二、 DDR400是JEDEC(Joint Electron Device Engineering Council:联合电子设备工程协会)承认最高的DDR内存标准,而针对它以其工作时序参数划分了三个等级: DDR400A级的CAS-RCD-RP工作参数规定为:2.5-3-3 DDR400B级的CAS-RCD-RP工作参数规定为:3-3-3 DDR400C级的CAS-RCD-RP工作参数规定为:3-4-4 三、 SPD(Serial Presence Detect)其实是一片EEPROM电可擦写可编程只读存储器,它一般处在内存条正面的右侧,里面记录了诸如内存的速度、容量、电压、行/列地址带宽等十分重要的参数信息。当计算机开机工作时的BIOS就会自动读取内存SPD中的记录信息,以获让内存运行在规定的工作频率上 内存负责向CPU提供运算所需的原始数据,而目前CPU运行速度超过内存数据传输速度很多,因此很多情况下CPU都需要等待内存提供数据,这就是常说的“CPU等待时间”。内存传输速度越慢,CPU等待时间就会越长,系统整体性能受到的影响就越大。因此,快速的内存是有效提升CPU效率和整机性能的关键之一。 在实际工作时,无论什么类型的内存,在数据被传输之前,传送方必须花费一定时间去等待传输请求的响应,通俗点说就是传输前传输双方必须要进行必要的通信,而这种就会造成传输的一定延迟时间。CL设置一定程度上反映出了该内存在CPU接到读取内存数据的指令后,到正式开始读取数据所需的等待时间。不难看出同频率的内存,CL设置低的更具有速度优势。 上面只是给大家建立一个基本的CL概念,而实际上内存延迟的基本因素绝对不止这些。内存延迟时间有个专门的术语叫“Latency”。要形象的了解延迟,我们不妨把内存当成一个存储着数据的数组,或者一个EXCEL表格,要确定每个数据的位置,每个数据都是以行和列编排序号来标示,在确定了行、列序号之后该数据就唯一了。内存工作时,在要读取或写入某数据,内存控制芯片会先把数据的列地址传送过去,这个RAS信号(Row Address Strobe,行地址信号)就被激活,而在转化到行数据前,需要经过几个执行周期,然后接下来CAS信号(Column Address Strobe,列地址信号)被激活。在RAS信号和CAS信号之间的几个执行周期就是RAS-to-CAS延迟时间。在CAS信号被执行之后同样也需要几个执行周期。此执行周期在使用标准PC133的SDRAM大约是2到3个周期;而DDR RAM则是4到5个周期。在DDR中,真正的CAS延迟时间则是2到2.5个执

内存参数

内存 内存的主流品牌 目前市场上的主流品牌有金士顿(Kingston)、金邦(GEIL)、宇瞻(Apacer)、微刚(ADATA)、刚胜(Kingmax)、现代(Nynex)、三星(Samsung)、海盗船(Corsair)、芝奇(G.skill)、OCE、金泰克等。这些内存采用的工艺略有不同,性能上也多少有些差异。 内存的分类 现在市场上内存可以分为两种。 ①SDRAM: SDRAM又称为同步动态存储器,可以与CPU外频同步运作,有PC100、PC133、PC150等规格,目前的SDRAM都是以168Pin DIMM的内存模块出现。 ②DDR SDRAM: DDR是指Double Data Rate,它的传输速率是SDRAM的两倍,DDR标准包括DDR I、DDRII和DDRIII。DDR插槽与SDRAM插槽两侧的线数不同,DDR应用184pins(针脚)。因此,DDR内存和SDRAM的内存不能换插。 DDR I的主要型号有DDR266,工作频率为133MHz;DDR333,工作频率从为166MHz;DDR400,工作频率为200MHz。 现在DDRII正在逐渐占领主流市场,其频率在533MHz以上。从长远来说,DDRII最终会取代DDR 1,但就目前来说,DDRII的优势还不是特别明显,虽然在频率上有很大提高,但是在时间延迟上却长于DDR400,所以目前的DDR400和DDRII(533)性能差不多,除非选择高端的DDR II(800)。 预计DDRIII将在不久的将来正是面世,工作电压将下降,并且将会使用更

新的信号技术,实现更高的宽带,初始频率预计将达到800MHz,甚至更高。 内存的主要性能参数 ①容量 每个时期的内存条的容量都多种规格、例如,早期的30线内存条有256KB、1MB、4MB等容量,后来72线的EDD内存有4MB、8MB、16MB等容量,目前流行的168线SDRAM内存常见的内存容量有32MB、64MB、128MB、256MB、512MB、1GB等。 数据带宽 数据带宽指内存的数据传输速度,是衡量内存性能的重要指标。PCI00 SDRAM在额定频率(100MHz)下工作时,其峰值数据传输速度可以达到800MB/s。而PCI33SDRAM其峰值数据传输速度可达1.06GB/s,比PCI00内存提高了200MB/s。对于DDR DRAM,由于在同一个时钟周期的上升和下降沿都能传输数据,所以工作在133MHz时,实际传输速度可达2.1GB/s。 ②时钟周期 时钟周期代表了SDRAM所能运行的最大频率。显然,这个数字越小,说明SDRAM芯片所能运行的频率越高。对于一普通的PC 100 SDRAM来说,它芯片上的标识“-10”代表了它运行的时钟周期为10ns,即可以在100MHz的外频下正常工作。为什么说SDRAM 的时钟周期代表可它能运行的最大频率呢?SDRAM时钟周期的单位是ns(纳秒),而其最大工作频率则为MHz(兆赫兹),这两者有何关联呢?两者的关系其实很简单,遵循了“频率=1/周期”的原理。由于ns时10-9秒,而MHz是106Hz,因为以ns为单位的周期数值与以MHz为单位的频率数值的乘积应为1 000。所以说时钟周期为10ns的SDRAM可以在100MHz的外频下工作。根据同样的道理,我们可以算出各个时钟周期下的

计算机内存发展史

计算机内存发展史内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

计算机内存发展史 在计算机诞生初期并不存在内存条的概念,最早的内存是以磁芯的形式排列在线路上,每个磁芯与晶体管组成的一个双稳态电路作为一比特(BIT)的存储器,每一比特都要有玉米粒大小,可以想象一间的机房只能装下不超过百k字节左右的容量。后来才出线现了焊接在主板上集成内存芯片,以内存芯片的形式为计算机的运算提供直接支持。那时的内存芯片容量都特别小,最常见的莫过于256K×1bit、1M×4bit,虽然如此,但这相对于那时的运算任务来说却已经绰绰有余了。 内存条的诞生 内存芯片的状态一直沿用到286初期,鉴于它存在着无法拆卸更换的弊病,这对于计算机的发展造成了现实的阻碍。有鉴于此,内存条便应运而生了。将内存芯片焊接到事先设计好的印刷线路板上,而电脑主板上也改用内存插槽。这样就把内存难以安装和更换的问题彻底解决了。 在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 ~256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。不过随着软件程序和新一代80286硬件平台的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了“内存条”概念。 在80286主板刚推出的时候,内存条采用了SIMM(Single In-lineMemory Modules,单边接触内存模组)接口,容量为30pin、256kb,必须是由8 片数据位和1 片校验位组成1 个bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。自1982年PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。 随后,在1988 ~1990 年当中,PC 技术迎来另一个发展高峰,也就是386和486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pin SIMM 内存出

Java内存区域划分、内存分配原理

本文由我司收集整编,推荐下载,如有疑问,请与我司联系 Java 内存区域划分、内存分配原理 2014/11/16 2448 运行时数据区域 Java 虚拟机在执行Java 的过程中会把管理的内存划分为若干个不同的数据区域。这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程 的启动而存在,而有的区域则依赖线程的启动和结束而创建和销毁。 Java 虚拟机包括下面几个运行时数据区域: 程序计数器 程序计数器是一块较小的区域,它的作用可以看做是当前线程所执行的字节码的行号指示器。在虚拟机的模型里,字节码指示器就是通过改变程序计数器的值 来指定下一条需要执行的指令。分支,循环等基础功能就是依赖程序计数器来完成的。 由于java 虚拟机的多线程是通过轮流切换并分配处理器执行时间来完成,一个处理器同一时间只会执行一条线程中的指令。为了线程恢复后能够恢复正确的 执行位置,每条线程都需要一个独立的程序计数器,以确保线程之间互不影响。因 此程序计数器是“线程私有”的内存。 如果虚拟机正在执行的是一个Java 方法,则计数器指定的是字节码指令对应的地址,如果正在执行的是一个本地方法,则计数器指定问空undefined。程序计数器区域是Java 虚拟机中唯一没有定义OutOfMemory 异常的区域。 Java 虚拟机栈 和程序计数器一样也是线程私有的,生命周期与线程相同。虚拟机栈描述的是Java 方法执行的内存模型:每个方法被执行的时候都会创建一个栈帧用于存储局部变量表,操作栈,动态链接,方法出口等信息。每一个方法被调用的过程就对应 一个栈帧在虚拟机栈中从入栈到出栈的过程。

内存规格参数

内存规格参数 内存这样小小的一个硬件,却是PC系统中最必不可少的重要部件之一。而对于入门用户来说,可能从内存的类型、工作频率、接口类型这些简单的参数的印象都可能很模糊的,而对更深入的各项内存时序小参数就更摸不着头脑了。而对于进阶玩家来说,内存的一些具体的细小参数设置则足以影响到整套系统的超频效果和最终性能表现。如果不想当菜鸟的话,虽然不一定要把各种参数规格一一背熟,但起码有一个基本的认识,等真正需要用到的时候,查起来也不会毫无概念。 内存种类 目前,桌面平台所采用的内存主要为DDR 1、DDR 2和DDR 3三种,其中DDR1内存已经基本上被淘汰,而DDR2和DDR3是目前的主流。 DDR1内存 第一代DDR内存 DDR SDRAM 是 Double Data Rate SDRAM的缩写,是双倍速率同步动态随机存储器的意思。DDR内存是在SDRAM内存基础上发展而来的,仍然沿用SDRAM生产体系,因此对于内存厂商而言,只需对制造普通SDRAM 的设备稍加改进,即可实现DDR内存的生产,可有效的降低成本。 DDR2内存

第二代DDR内存 DDR2 是 DDR SDRAM 内存的第二代产品。它在 DDR 内存技术的基础上加以改进,从而其传输速度更快(可达800MHZ ),耗电量更低,散热性能更优良。 DDR3内存 第三代DDR内存 DDR3相比起DDR2有更低的工作电压,从DDR2的1.8V降落到1.5V,性能更好更为省电;DDR2的4bit 预读升级为8bit预读。DDR3目前最高能够1600Mhz的速度,由于目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,因而首批DDR3内存模组将会从1333Mhz的起跳。

详解内存工作原理及发展历程

详解内存工作原理及发展历程 RAM(Random Access Memory)随机存取存储器对于系统性能的影响是每个PC 用户都非常清楚的,所以很多朋友趁着现在的内存价格很低纷纷扩容了内存,希望借此来得到更高的性能。不过现在市场是多种内存类型并存的,SDRAM、DDR SDRAM、RDRAM等等,如果你使用的还是非常古老的系统,可能还需要EDO DRAM、FP DRAM(块页)等现在不是很常见的内存。 虽然RAM的类型非常的多,但是这些内存在实现的机理方面还是具有很多相同的地方,所以本文的将会分为几个部分进行介绍,第一部分主要介绍SRAM 和异步DRAM(asynchronous DRAM),在以后的章节中会对于实现机理更加复杂的FP、EDO和SDRAM进行介绍,当然还会包括RDRAM和SGRAM等等。对于其中同你的观点相悖的地方,欢迎大家一起进行技术方面的探讨。 存储原理: 为了便于不同层次的读者都能基本的理解本文,所以我先来介绍一下很多用户都知道的东西。RAM主要的作用就是存储代码和数据供CPU在需要的时候调用。但是这些数据并不是像用袋子盛米那么简单,更像是图书馆中用有格子的书架存放书籍一样,不但要放进去还要能够在需要的时候准确的调用出来,虽然都是书但是每本书是不同的。对于RAM等存储器来说也是一样的,虽然存储的都是代表0和1的代码,但是不同的组合就是不同的数据。 让我们重新回到书和书架上来,如果有一个书架上有10行和10列格子(每行和每列都有0-9的编号),有100本书要存放在里面,那么我们使用一个行的编号+一个列的编号就能确定某一本书的位置。如果已知这本书的编号87,

DDR系列内存详解及硬件设计规范-Michael

D D R 系列系列内存内存内存详解及硬件详解及硬件 设计规范 By: Michael Oct 12, 2010 haolei@https://www.doczj.com/doc/192512595.html,

目录 1.概述 (3) 2.DDR的基本原理 (3) 3.DDR SDRAM与SDRAM的不同 (5) 3.1差分时钟 (6) 3.2数据选取脉冲(DQS) (7) 3.3写入延迟 (9) 3.4突发长度与写入掩码 (10) 3.5延迟锁定回路(DLL) (10) 4.DDR-Ⅱ (12) 4.1DDR-Ⅱ内存结构 (13) 4.2DDR-Ⅱ的操作与时序设计 (15) 4.3DDR-Ⅱ封装技术 (19) 5.DDR-Ⅲ (21) 5.1DDR-Ⅲ技术概论 (21) 5.2DDR-Ⅲ内存的技术改进 (23) 6.内存模组 (26) 6.1内存模组的分类 (26) 6.2内存模组的技术分析 (28) 7.DDR 硬件设计规范 (34) 7.1电源设计 (34) 7.2时钟 (37) 7.3数据和DQS (38) 7.4地址和控制 (39) 7.5PCB布局注意事项 (40) 7.6PCB布线注意事项 (41) 7.7EMI问题 (42) 7.8测试方法 (42)

摘要: 本文介绍了DDR 系列SDRAM 的一些概念和难点,并分别对DDR-I/Ⅱ/Ⅲ的技术特点进行了论述,最后结合硬件设计提出一些参考设计规范。 关键字关键字::DDR, DDR, SDRAM SDRAM SDRAM, , , 内存模组内存模组内存模组, , , DQS DQS DQS, DLL, MRS, ODT , DLL, MRS, ODT , DLL, MRS, ODT Notes : Aug 30, 2010 – Added DDR III and the PCB layout specification - by Michael.Hao

相关主题
文本预览
相关文档 最新文档