当前位置:文档之家› 工业机器人的特点

工业机器人的特点

工业机器人的特点
工业机器人的特点

1.1工业机器人的特点

工业机器人是一种通过重复编程和自动控制,能够完成制造过程中某些操作任务的多功能、多自由度的机电一体化自动机械装备和系统,它结合制造主机或生产线,可以组成单机或多机自动化系统,在无人参与下,实现搬运、焊接、装配和喷涂等多种生产作业。

当前,工业机器人技术和产业迅速发展,在生产中应用日益广泛,已成为现代制造生产中重要的高度自动化装备。自20世纪60年代初第一代机器人在美国问世以来,工业机器人的研制和应用有了飞速的发展,工业机器人最显著的特点归纳有以下几个。

1.可编程

生产自动化的进一步发展是柔性自动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量、多品种具有均衡高效率的柔性制造过程中,能发挥很好的功用,是柔性制造系统(FMS)中的一个重要组成部分。

2.拟人化

工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。

3.通用性

除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。

4.机电一体化

工业机器人技术涉及的学科相当广泛,但是归纳起来是机械学和微电子学的结合——机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都和微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展和水平。

当今工业机器人技术正逐渐向着具有行走能力、具有多种感知能力、具有较强的对作业环境的自适应能力的方向发展。当前,对全球机器人技术的发展最有影响的国家是美国和日本。美国在工业机器人技术的综合研究水平上仍处于领先地位,而日本生产的工业机器人在

数量、种类方面则居世界首位。

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。 (2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。

自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。 (4)运动精度(Accurucy) 机器人机械系统的精度主要涉及位姿精度、重复位姿精度、轨迹精度、重复轨迹精度等。 位姿精度是指指令位姿和从同一方向接近该指令位姿时各实到位置中心之间的偏差。重复位姿精度是指对同指令位姿从同一方向重复响应n次后实到位姿的不一致程度。 轨迹精度是指机器人机械接口从同一方向n次跟随指令轨迹的接近程度。轨迹重复精度是指对一给定轨迹在同方向跟随n次后实到轨迹之间的不一致程度。

工业机器人静力及动力学分析

注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析 3.1 引言 在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。 在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。 工业机器人作业时,在工业机器人与环境之间存在着相互作用力。外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。 关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。 工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。 研究工业机器人动力学的目的是多方面的。动力学正问题对工业机器人运动仿真是非常有用的。动力学逆问题对实现工业机器人实时控制是相当有用的。利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。 工业机器人动力学模型主要用于工业机器人的设计和离线编程。在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。在离线编程时,为了估计工业机器人高速运动引起的动载荷和路径偏差,要进行路径控制仿真和动态模型的仿真。这些都必须以工业机器人动力学模型为基础。 工业机器人是一个非线性的复杂的动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间。因此,简化求解过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 在这一章里,我们将首先讨论与工业机器人速度和静力学有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。

工业机器人的基本参数和性能指标知识讲解

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。

(2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。 自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。

工业机器人研究现状及发展趋势_曹文祥

2011/2 机械制造49卷第558期 纵观历史研究文献,国内外对工业机器人的研究热点问题主要分为3个方面:仿生机器人与新型机构、机器人的定位与地图创建、机器人-环境交互。本文将分别就以上3方面对研究现状进行简要分析,并对工业机器人的发展趋势作了预测。 1工业机器人的发展历程 自1954年美国戴沃尔最早提出了工业机器人的 概念以来,工业机器人就得以不断地发展。概括起来,工业机器人的发展历程为3代: 第1代:示教再现型机器人,但不具备反馈能力。如郭勇等人[1]研制的挖掘机手柄自动操作机构,该机构结构简单,能够实现动作示教再现。 第2代:有感觉的机器人,不仅具有内部传感器,而且具有外部传感器,能获得外部环境信息。如P.l Liljeb.ck 等人研制的蛇形机器人就装有内部测转速的 传感器,以及外部测力的传感器,该机器人能够在不规则环境中具有一定的运动能力。 第3代:智能机器人。定义为“可自动控制的装置,能理解指示命令,感知环境,识别对象,规划自身操作程序来完成任务”。如John Vannoy 等人采用实时可适应性的运动规划(RAMP )算法的PUMA560机械臂,它能在复杂动态环境中自动识别来自不同方向的移动或静止的障碍物,主动规划路径,进而完成预定任务。 2 国外工业机器人的研究现状 2.1 仿生机器人与新型机构 对人的研究,国外侧重于对人行走时的步态分析, 通过对人脚形状的分析,得出具有圆形截面的脚趾和脚后跟以及具有扁平截面的连接脚趾和脚后跟的中间 部分具有最佳的动力学性能。对人形机器人步态规划问题,Xia Zeyang 等人提出了一种基于样品的决定性的脚步规划方法,该方法综合考虑了自身独特的运动能力和稳定性。对于在不同类型障碍的复杂环境中脚步规划,Yasar Ayaz 采用与人走近障碍物时绕过的方法,通过脚步实时的生成成功避开障碍物。此外,对于双足步行机器人的复杂地面运动的研究也有新的进展,研究出一种新型的双足机构,能实现不平区域稳定地行走,该足由4个分别带光学传感器的鞋钉组成,总重1.5kg 。对动物的研究则表现为对诸如蛇、鱼的结构以及运动性能的研究。仿蛇机器人不仅可以作为管道检测装置,也可以作为地震或矿难探索装置,更可以当作极地探测器来进行科研活动。Shigeo 和Hiroya Yamada 就将仿蛇机器人的机械结构分为5种类型:活 动的弯曲关节式;活动的弯曲和拉伸关节式;活动的弯曲关节和活动的车轮式;被动弯曲关节和活动车轮式;活动的弯曲关节和履带式。Aksel Andreas Transeth 等采用摩擦力模型方法建立了一蛇形机器人模型,该机器人能与包括地面的障碍物以外的物体接触,对地震或矿区救援很有帮助。Kristin Y.Pettersen 等人对蛇形机器人在存在障碍物环境中运动进行了复合建模,仿真结构证明该模型能实现不规则环境中的一般运动。但蛇形机器人目前要真正达到在复杂环境中畅通无阻地运动,还有待进一步研究。对海洋的开发,相对于其它的水下自动化装置,仿生鱼具有更好的推进力和流体适应性。其研究主要体现在结构和运动特性上。Jun Gao 和K.H.Low 等人对胸鳍驱动和尾鳍驱动鱼形机器 人进行了分析,讨论了鱼结构和运动各参数的关系。 Yu Zhong 等人对由阀体与尾鳍构成的机器人鱼的运 动性能进行了研究,采用量纲分析方法,建立了一种能预测运动的机器鱼模型。Giuseppe Tortora 等人设计了 工业机器人研究现状及发展趋势 □ 曹文祥 □ 冯雪梅 武汉理工大学机电工程学院 武汉 430070 摘 要:作为最典型的机电一体化的高科技装备,工业机器人得到了非常广泛的应用。综述了国内外工业机器人的 研究热点现状,并预测了其发展趋势。 关键词:工业机器人现状 发展趋势 中图分类号:TP242.2 文献标识码:A 文章编号:1000-4998(2011)02-0041-03 Abstract:As the typical high-tech equipment of mechanoelectronic integration,industrial robots have been widely used.The current situation of research hot points of IR is presented and the developing trend forecasted. Key Words:Industrial Robot (IR)Current Situation Developing Trend 收稿日期:2010年9月 41

第3章 工业机器人静力计算及动力学分析

第3章 工业机器人静力计算及动力学分析 章节题目:第3章 工业机器人静力计算及动力学分析 [教学内容] 3.1 工业机器人速度雅可比与速度分析 3.2 工业机器人力雅可比与静力计算 3.3 工业机器人动力学分析 [教学安排] 第3章安排6学时,其中介绍工业机器人速度雅可比45分钟,工业机器人速度分析45分钟,操作臂中的静力30分钟,机器人力雅可比30分钟,机器人静力计算的两类问题10分钟,拉格朗日方程20分钟,二自由度平面关节机器人动力学方程60分钟,关节空间和操作空间动力学30分钟。 通过多媒体课件结合板书的方式,采用课堂讲授和课堂讨论相结合的方法,首先讨论与机器人速度和静力有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。 [知识点及其基本要求] 1、工业机器人速度雅可比(掌握) 2、速度分析(掌握) 3、操作臂中的静力(掌握) 4、机器人力雅可比(掌握) 5、机器人静力计算的两类问题(了解) 6、拉格朗日方程(熟悉) 7、二自由度平面关节机器人动力学方程(理解) 8、关节空间和操作空间动力学(了解) [重点和难点] 重点:1、速度雅可比及速度分析 2、力雅可比 3、拉格朗日方程 4、二自由度平面关节机器人动力学方程 难点:1、关节空间和操作空间动力学 [教学法设计] 引入新课: 至今我们对工业机器人运动学方程还只局限于静态位置问题的讨论,还没有涉及力、速度、加速度等。机器人是一个多刚体系统,像刚体静力学平衡一样,整个机器人系统在外载荷和关节驱动力矩(驱动力)作用下将取得静力平衡;也像刚体在外力作用下发生运动变化一样,整个机器人系统在关节驱动力矩(驱动力)作用下将发生运动变化。 新课讲解: 第一次课 第三章 工业机器人静力计算及动力学分析 3-1 工业机器人速度雅可比与速度分析 一、工业机器人速度雅可比 假设有六个函数,每个函数有六个变量,即: ??? ???? ===),,,,,(),,,,,(),,,,,(654321666543212265432111x x x x x x f y x x x x x x f y x x x x x x f y ,可写成Y=F(X),

工业机器人的特点

1.1工业机器人的特点 工业机器人是一种通过重复编程和自动控制,能够完成制造过程中某些操作任务的多功能、多自由度的机电一体化自动机械装备和系统,它结合制造主机或生产线,可以组成单机或多机自动化系统,在无人参与下,实现搬运、焊接、装配和喷涂等多种生产作业。 当前,工业机器人技术和产业迅速发展,在生产中应用日益广泛,已成为现代制造生产中重要的高度自动化装备。自20世纪60年代初第一代机器人在美国问世以来,工业机器人的研制和应用有了飞速的发展,工业机器人最显著的特点归纳有以下几个。 1.可编程 生产自动化的进一步发展是柔性自动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量、多品种具有均衡高效率的柔性制造过程中,能发挥很好的功用,是柔性制造系统(FMS)中的一个重要组成部分。 2.拟人化 工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。 3.通用性 除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。 4.机电一体化 工业机器人技术涉及的学科相当广泛,但是归纳起来是机械学和微电子学的结合——机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都和微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展和水平。 当今工业机器人技术正逐渐向着具有行走能力、具有多种感知能力、具有较强的对作业环境的自适应能力的方向发展。当前,对全球机器人技术的发展最有影响的国家是美国和日本。美国在工业机器人技术的综合研究水平上仍处于领先地位,而日本生产的工业机器人在

工业机器人在汽车制造业中的应用

工业机器人在汽车制造业中的应用

工业机器人在汽车制造业中的应用 Application of industrial robo t in automobile manufacturing industry 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的重要的现代制造业自动化装备。 目前,国际上的工业机器人公司主要分为日系和欧系。日系中主要有安川、OTC、松下、FANUC、不二越、川崎等公司的产品。欧系中主要有德国的KUKA、CLOOS、瑞典的ABB、意大利的COMAU及奥地利的IGM公司。工业机器人已成为柔性制造系统(FMS)、工厂自动化(FA)、计算机集成制造系统(CIMS)的自动工具。 我国工业机器人是从20世纪80年代开始起步,经过二十年余年的努力,已经形成了一些具有竞争力的工业机器人研究机构和企业。先后研发出弧焊、点焊、装配、搬运、注塑、冲压、喷漆等工业机器人。近几年,我国工业机器人及含工业机器人的自动化生产线相关产品的年产销额已突破十亿元。目前国内市场年需求量在3000台左右,年销售额在20亿元以上。统计数据显示,中国市场上工业机器人总共拥有量近万台,占全球总量的0.56%,其中完全国产工业机器人(行业内规模比较大的前三家工业机器人企业)行业集中度占30%左右,其余都是从日本、美国、瑞典、德国、意大利等20多个国家引进的。国产工业机器人目前主要以国内市场应用为主,年出口量为100台左右,年出口额为0.2亿以上。 工业机器人50%以上用在汽车领域,当前,工业机器人的应用领域主要有弧焊、点焊、装配、搬运、喷漆、检测、码垛、研磨抛光和激光加工等复杂作业。目前,国际上工业机器人技术在制造业应用范围越来越广阔,现已从传统制造业推广到其他制造业,进而推广到诸如采矿、建筑、农业、灾难救援等各种非制造行业。但汽车工业仍是工业机器人的主要应用领域。据了解,美国60%的工业机器人用于汽车生产;全世界用于汽车工业的工业机器人已经达到总用量的37%,用于汽车零部件的工业机器人约占24%。 在我国,工业机器人的最初应用是在汽车和工程机械行业,主要用于汽车及工程机械的喷涂及焊接。目前,由于机器人技术以及研发的落后,工业机器人还主要应用在制造业,非制造业使用的较少。据统计,近几年国内厂家所生产的工业机器人有超过一半是提供给汽车行业。可见,汽车工业的发展是近几年我国工业机器人增长的原动力之一。 焊接机器人在汽车制造业中发挥着不可替代的作用,焊接机器人是在工业机器人基础上发展起来的先进焊接设备,是从事焊接(包括切割与喷涂)的工业机器人,主要用于工业自动化领域,其广泛应用于汽车及其零部件制造、摩托车、工程机械等行业,在汽车生产的冲压、焊装、涂装、总装四大生产工艺过程都有广泛应用,其中应用最多的以弧焊、点焊为主。 目前,焊接工业机器人在一汽、上汽、沈阳中顺、金杯通用、重庆长安、湖南长丰等整车制造企业广泛应用,据统计每辆汽车车身上,大约有3000~4000个电阻点焊焊点,电阻点焊技术的应用实现了汽车车身制造的量产化与自动化。 多年来,我国汽车零部件生产一直是手工焊、专机焊占据焊接生产的主导地位,劳动强度大,作业环境恶劣,焊接质量不易保证,而且生产的柔性也很差,无法适应现代汽车生产的需要。近年来由于焊接机器人的大量应用,提高了零部件生产的自动化水平及生产效率,同时使生产更具有柔性,焊接质量也

工业机器人发展现状与趋势

工业机器人发展现状与趋势 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统(FMS)、自动化工厂(FA)、计算机集成制造系统(CIMS)的自动化工具。 广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 一、工业机器人的发展现状 工业机器人是最典型的机电一体化数字化装备,技术附加值很高,应用范围很广,作为先进制造业的支撑技术和信息化社会的新兴产业,将对未来生产和社会发展起着越来越重要的作用。国外专家预测,机器人产业是继汽车、计算机之后出现的一种新的大型高技术产业。据联合国欧洲经济委员会(UNECE)和国际机器人联合会(IFR)的统计,世界机器人市场前景看好,从20世纪下半叶起,世界机器人产业一直保持着稳步增长的良好势头。进入20世纪90年代,机器人产品发展速度加快,年增长率平均在10%左右。2004年增长率达到创记录的20%。其中,亚洲机器人增长幅度最为突出,高达43%,如图1所示。 图1:各区域用户工业机器人定购指数(以1996年作为100) 二、工业机器人的应用领域日渐广泛 经过四十多年的发展,工业机器人已在越来越多的领域得到了应用。在制造业中,尤其是在汽车产业中,工业机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都

工业机器人技术课后题答案

第一章课后习题: 3、说明工业机器人的基本组成及各部分之间的关系。 答:工业机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人-环境交互系统、人机交互系统和控制系统。各部分之间的关系可由下图表明: 4、简述工业机器人各参数的定义:自由度、重复定位精度、工作范围、工作速度、承载能力。 答:自由度是指机器人所具有的独立坐标轴运动的数目,不应包括手爪(末端操作器)的开合自由度。 重复定位精度是指机器人重复定位其手部于同一目标位置的能力, 可以用标准偏差这个统计量来表示, 它是衡量一列误差值的密集度(即重复度)。 工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合, 也叫工作区域。 工作速度一般指工作时的最大稳定速度。 承载能力是指机器人在工作范围内的任何位姿上所能承受的最

大质量。承载能力不仅指负载, 而且还包括了机器人末端操作器的质量。 第二章课后习题: 1、 答:工业上的机器人的手一般称之为末端操作器, 它是机器人直接用于抓取和握紧(吸附)专用工具(如喷枪、扳手、焊具、喷头等)进行操作的部件。具有模仿人手动作的功能, 并安装于机器人手臂的前端。大致可分为以下几类: (1) 夹钳式取料手;(2) 吸附式取料手;(3) 专用操作器及转换器;(4) 仿生多指灵巧手。 4、 答:R关节是一种翻转(Roll)关节。B关节是一种折曲(Bend)关节。Y关节是一种偏转(Yaw)关节。具有俯仰、偏转和翻转运动, 即RPY运动。 5、 答:行走机构分为固定轨迹式和无固定轨迹式。无固定轨迹式又分为与地面连续接触(包括轮式和履带式)和与地面间断接触(步行式)。轮式在平地上行驶比较方便,履带式可以在泥泞道路上和沙漠中行驶。步行式有很大的适应性, 尤其在有障碍物的通道(如管道、台阶或楼梯)上或很难接近的工作场地更有优越性。 第三章课后习题:

试论工业机器人国内外发展现状与趋势

试论工业机器人国内外发展现状与趋势 发表时间:2016-05-24T14:01:30.360Z 来源:《电力设备》2016年第2期作者:孔玲爽陈颖超 [导读] (湖南工业大学电气与信息工程学院湖南株洲 412007)机器人是人类发展高级阶段的高科技产物,工业机器人的诞生和机器人学的建立无疑是21 世纪人类科学技术的重大成就。 (湖南工业大学电气与信息工程学院湖南株洲 412007) 摘要:机器人是人类发展高级阶段的高科技产物,工业机器人的诞生和机器人学的建立无疑是21 世纪人类科学技术的重大成就。在国内,工业机器人市场竞争越来越激烈,中国制造业面临着与国际接轨、参与国际分工的巨大挑战,加快工业机器人技术的研究开发与生产是我们抓住这个历史机遇的主要途径。本文结合国内外机器人发展的经验及近几年的动态,指出了我国工业机器人产业化发展的影响因素和实施策略,探讨了我国机器人发展的方向及策略。 关键词:工业机器人;自动化产业化;发展趋势 工业机器人是综合了计算机科学技术、机械工程技术、电子工程技术、信息传感器技术、控制理论、机构学、人工智能学、仿生学等多学科而形成的高新技术。在国外工业机器人技术日趋成熟,其己经成为一种标准设备而在工业自动化行业广泛应用,从而也形成了一批在国际上较有影响力的工业机器人公司,工业机器人技术的发展水平也成为一个国家工业自动化水平的重要标志。 工业机器人原理及分类20 世纪中期,随着计算机技术、自动化技术和原子能技术的发展,工业机器人开始在美国得到研究和发展,使其在工业生产中得以广泛使用。工业机器人的最初出现是传统的机构学与近代电子技术相结合的产物,如今工业机器人是综合了多学科而形成的高新技术产物,是当代十分活跃的研究开发领域。为了跟上社会进步、经济发展的步伐,工业机器人以不同的种类正逐步应用在到各行各业,对国民经济发展有着举足轻重的作用。 1. 1 工业机器人工作原理 现代工业自动化领域中应用的各种操作机器人是目前工业机器人技术中最成熟的一类,这种工业机器人实质上是一类能根据预先将程序编制在存储装置中,然后操作程序自动重复执行,进行完全代替人工作业的自动化机器。其系统构成如图1 所示。 由图1 可知,工业机器人构成是个闭环系统,通过运动控制器、伺服驱动器、机器人本体、传感器等部件可以完成人们需要的功能。 工厂中高性能通用型工业机器人一般采用关节型的机械结构,每个关节由独立的驱动电机控制,通过计算机对驱动单元的功率放大电路进行控制,实现机器人的运动控制操作。其控制系统原理流程图如图2所示。 由图2 可知,关节型工业机器人的组成由人机界面(示教器)、伺服驱动器、运动控制器(下位机)、机器人本体等组成,通过机器人末端带不同的夹具来实现不同的功能。示教器是对机器人状态的监控及发出运动指令部分,是人跟机器人信息交互的唯一窗口; 伺服驱动器是对伺服电机的控制,是机械手臂运动的动力源; 运动控制器是各个关节的位姿运算单元,正解和逆解程序的执行、运行都在其中计算; 机器人本体是执行机构,是实现要求功能的最直接部件。 1. 2 工业机器人分类 随着科学技术的不断进步,我国工业机器人已经走上了自主研发阶段,这样标志着我国工业自动化走向了新的里程碑。按照工业机器人的关键技术发展过程其可分为三代: 第一代是示教再现机器人,主要由机器人本体、运动控制器和示教盒组成,操作过程比较简单。第一代机器人使用示教盒在线示教编程,并保存示教信息。当机器人自动运行时,由运动控制器解析并执行存储的示教程序,使机器人实现预定动作。这类机器人通常采用点

《工业机器人》复习资料题

《工业机器人》 一、填空题 1、按坐标形式分类,机器人可分为直角坐标型、圆柱坐标 型、球坐标型 和关节坐标型四种基本类型。 2、作为一个机器人,一般由三个部分组成,分别是控制系统、传感系统和机械系统。 3、机器人主要技术参数一般有自由度、定位精度、工作范围、重复定位精度、分辨率、承载能力及最大速度等。 4、自由度是指机器人所具有的独立坐标轴运动的的数 目,不包括末端操作器的开合自由度。 5、机器人分辨率分为编程分辨率和控制分辨率,统称为系统分辨率。 6、重复定位精度是关于精度的统计数据。 7、根据真空产生的原理真空式吸盘可分为真空吸盘、气流负压吸盘和 挤气负压吸盘等三种基本类型。 8、机器人运动轨迹的生成方式有示教再现运动、关节空间运动、空间直线运动和空间曲线运动。 9、机器人传感器的主要性能指标有灵敏度、线性度、测量范围、重复性、精度、分辨率、响应时间和抗干扰能力等。 10、自由度是指机器人所具有的独立坐标轴运动的数目。 11、机器人的重复定位精度是指在同一环境、同一条件、同一目标动作、同一命令下,机器人连续重复运动若干次时,其位置分散情况。12、机器人的驱动方式主要有液压驱动、气压驱动和电气驱动三种。 13、机器人上常用的可以测量转速的传感器有测速发电机和增量式码盘。

14、机器人控制系统按其控制方式可以分为力控制方式、轨迹 控制方式和示教控制方式。 15、按几何结构分划分机器人分为:串联机器人、并联机器人。 二、单项选择题(请在每小题的四个备选答案中,选出一个最佳答案。) 1、工作范围是指机器人 B 或手腕中心所能到达的点的集合。 A 机械手 B 手臂末端 C 手臂 D 行走部分。 2、机器人的精度主要依存于 C 、控制算法误差与分辨率系统误差。 A传动误差 B 关节间隙 C机械误差 D 连杆机构的挠性 3、滚转能实现360°无障碍旋转的关节运动,通常用 A 来标记。 A R B W C B D L 4、RRR型手腕是 C 自由度手腕。 A 1 B 2 C 3 D 4 5、真空吸盘要求工件表面 D 、干燥清洁,同时气密性好。 A 粗糙 B 凸凹不平 C 平缓突起 D平整光滑 6、同步带传动属于 B 传动,适合于在电动机和高速比减速器之间使用。 A 高惯性 B 低惯性 C 高速比 D 大转矩 7、机器人外部传感器不包括 D 传感器。 A 力或力矩 B 接近觉 C 触觉 D 位置 8、手爪的主要功能是抓住工件、握持工件和 C 工件。 A 固定 B 定位 C 释放 D 触摸。 9、机器人的精度主要依存于 C 、控制算法误差与分辨率系统误差。 A传动误差 B 关节间隙 C机械误差 D 连杆机构的挠性 10、机器人的控制方式分为点位控制和 C 。 A 点对点控制 B点到点控制 C 连续轨迹控制 D 任意位置控制 11、焊接机器人的焊接作业主要包括 A 。 A 点焊和弧焊 B 间断焊和连续焊 C 平焊和竖焊 D气体保护焊和氩弧焊 12、作业路径通常用 D 坐标系相对于工件坐标系的运动来描述。 A 手爪 B 固定 C 运动 D工具 13、谐波传动的缺点是 A 。

工业机器人常见五大应用领域及关键技术【最新整理】

工业机器人常见五大应用领域及关键技术 去年全球工业机器人销量达到24万台,同比增长8%。其中,我国工业机器人市场销量超过6.6万台,继续保持全球第一大工业机器人市场的地位。但是,按机器人密度来看,即每万名员工对应的机器人保有量,我国不足30台,远低于全球约为50多台的平均水平。 前瞻产业研究院《2016-2021年中国工业机器人行业产销需求预测与转型升级分析报告》数据显示:2015年我国工业机器人产量为32996台,同比增长21.7%。2016年机器人产业将继续保持快速增长,今年一季度我国工业机器人产量为11497台,同比增长19.9%。此外,数据显示,2015年我国自主品牌工业机器人生产销售达22257台,同比增长31.3%。国产自主品牌得到了一定程度的发展,但与发达国家相比,仍有一定差距。 2016年未来全球工业机器人市场趋势包括:大国政策主导,促使工业与服务机器人市场增长;汽车工业仍为工业机器人主要用户;双臂协力型机器人为工业机器人市场新亮点。 一、什么是工业机器人 工业机器人是一种通过重复编程和自动控制,能够完成制造过程中某些操作任务的多功能、多自由度的机电一体化自动机械装备和系统,它结合制造主机或生产线,可以组成单机或多机自动化系统,在无人参与下,实现搬运、焊接、装配和喷涂等多种生产作业。 当前,工业机器人技术和产业迅速发展,在生产中应用日益广泛,已成为现代制造生产中重要的高度自动化装备。

二、工业机器人的特点 自20世纪60年代初第一代机器人在美国问世以来,工业机器人的研制和应用有了飞速的发展,但工业机器人最显著的特点归纳有以下几个。 1.可编程。生产自动化的进一步发展是柔性自动化。工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统(FMS)中的一个重要组成部分。 2.拟人化。工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。此外,智能化工业机器人还有许多类似人类的“生物传感器”,如皮肤型接触传感器、力传感器、负载传感器、视觉传感器、声觉传感器、语言功能等。传感器提高了工业机器人对周围环境的自适应能力。 3.通用性。除了专门设计的专用的工业机器人外,一般工业机器人在执行不同的作业任务时具有较好的通用性。比如,更换工业机器人手部末端操作器(手爪、工具等)便可执行不同的作业任务。 4.机电一体化。工业机器人技术涉及的学科相当广泛,但是归纳起来是机械学和微电子学的结合——机电一体化技术。第三代智能机器人不仅具有获取外部环境信息的各种传感器,而且还具有记忆能力、语言理解能力、图像识别能力、推理判断能力等人工智能,这些都和微电子技术的应用,特别是计算机技术的应用密切相关。因此,机器人技术的发展必将带动其他技术的发展,机器人技术的发展和应用水平也可以验证一个国家科学技术和工业技术的发展和水平。 三、工业机器人常见的五大应用领域 1.机械加工应用(2%) 机械加工行业机器人应用量并不高,只占了2%,原因大概也是因为市面上有许多

国内机器人技术分析研究现状

国内机器人技术研究现状分析 王守龙 摘要:随着经济全球化对工农业生产提出越来越高的要求,计算机技术向着智能化发展,机器人越来越普遍的被工农业应用,其在提高工农业产品质量,增加经济效益方面发挥着重大作用。本文又介绍分析了移动机器人和小口径管内机器人及其在我国的技术研究现状。中国的机器人事业面临着新的机遇和挑战。 关键词:机器人;技术研究;移动机器人;小口径管内机器人

前言 有人认为, 应用机器人只是为了节省劳动力, 而我国劳动力资源丰富, 发展机器人不一定符合我国国情。这是一种误解。在我国, 会主义制度的优越性决定了机器人能够充分发挥其长处。它不仅能为我国的经济建设带来高度的生产力和巨大的经济效益, 而且将为我国的宇宙开发、海洋开发、核能利用等新兴领域的发展做出卓越的贡献。 1 工农业机器人 1.1 工业机器人研究现状分析 机器人产业是近30年发展起来的新型产业。我国政府早在“七·五”期间就开始组织了对工业机器人的攻关,到了1987年,国家高技术研究开发计划就把智能机器人作为七大重点领域之一进行集中研究。经过十几年的艰苦奋斗,我国在水下、空间、核领域等特殊机器人方面取得了令人欣慰的成果,一批机器人产品和机器人应用工程应运而生。到20世纪90年代末,我国共完成了l00多项工业机器人应用工程,建成了20个机器人产业化基地,从事机器人研究、开发和应用工程单位200多家,专业从事机器人产业开发的50家左右,全国工业机器人用户近800家,拥有工业机器人约4000台。2006年发布的《国家中长期科学和技术发展规划纲要》前沿技术中,我国将智能服务机器人列为重点方向,提出加大科技投入与科技基础条件平台建设。 然而,由于主要依靠科技部门研究开发计划的支持,从资金到产业的支持力度不够,在机器人关键技术方面,我国与国外的差距并没有明显缩小,在关键部件、产品产业化以及基础研究方面的差距还在拉大。到1998年,863计划推动的几个机器人产业化基地产值仅仅1亿元。然而,国外各大机器人公司认识到高速发展中的中国机器人市场的巨大潜力,凭借其技术和资金的优势纷纷进入了中国市场。可以说,目前的中国机器人市场仍然是外国企业一统天下,我国机器人发展尚未进入规模开发利用和产业化的阶段。 我国经过几十年来的研究与引进, 在机器人运动学仿真、动力学仿真和某些典型工业机器人机构分析软件方面取得了一些成果,但总的看来, 我国机器人机械技术的研究状况与国外相比还有较大的差距, 目前既没有建立一种多功能的机器人系统, 也缺乏利用技术对机器人机械学的很多专门问题进行深人研究。我国目前研制的几种工业机器人机型结构主要是直接仿制日本90年代初的样机, 一些主要关键元器件依赖国外进口。虽然国家“七五”期间安排了一些单项研究课题, 但这些课题一时还难于直接用于国产工业机器人, 还远不能从理论及实际技术上建立起我国机器人的完整设计体系, 这与国外相比差距较大。国内利用国产机器人开展应用工程的研究工作刚刚起步。我国对移动机器人研究, 近年来在步行机基础理论方面的成果较多, 而步行机实物模型或样机较少,与国外先进水平相比也存在较大的差距。

工业机器人基础复习题知识讲解

1、机器人安应用类型可以分为工业机器人、极限作业机器人和娱乐机器人。2﹑机器人按照控制方式可分为点位控制方式、连续轨迹控制方式、力(力矩)控制方式和智能控制方式。 3、工业机器人的坐标形式主要有直角坐标型、圆柱坐标型、球坐标型、关节坐标型和平面关节型。 4、直角坐标机器人的工作范围是长方形形状;圆柱坐标机器人的工作范围是圆柱体形状;球坐标机器人的工作范围是球面一部分状。 5、工业机器人的参考坐标系主要有关节坐标系、工具参考坐标系、全局参考系坐标系。 6、工业机器人的传动机构是向手指传递运动和动力,该机构根据手指的开合动作特点可以分为回转型和移动型。 7、吸附式取料手靠吸附力取料,根据吸附力的不同分为磁吸附和气吸附两种。 8、气吸附式取料手是利用吸盘内的压力和大气压之间的压力差而工作。按形成压力差的方法,可分为真空吸盘吸附、气流负压气吸附、挤压排气负压气吸附几种。 9、手臂是机器人执行机构的重要部件,它的作用是支待手腕并将被抓取的工件运送到指定位置上,一般机器人的手臂有3个自由度,即手臂的伸缩升降及横向移动、回转运动和复合运动。 10、机器人的底座可分为固定式和移动式两种。 11、谐波齿轮传动机构主要有柔轮、刚轮和波发生器三个主要零件构成。 12、谐波齿轮通常将刚轮装在输入轴上,把柔轮装在输出轴上,以获得较大的齿轮减速比。 13、机器人的触觉可以分为接触觉、接近觉、压觉、滑觉和力觉五种。 14、机器人接触觉传感器一般由微动开关组成,根据用途和配置不同,一般用于探测物体位置,路径和安全保护。 二、选择题 1、世界上第一台工业机器人是(B ) A、Versatran B、Unimate C、Roomba D、AIBO 2、通常用来定义机器人相对于其它物体的运动、与机器人通信的其它部件以及运动部件的参考坐标系是( C ) A、全局参考坐标系 B、关节参考坐标系 C、工具参考坐标系 D、工件参考坐标系 3、用来描述机器人每一个独立关节运动参考坐标系是( B ) A、全局参考坐标系 B、关节参考坐标系 C、工具参考坐标系 D、工件参考坐标系 4、夹钳式取料手用来加持方形工件,一般选择(A )指端。 A、平面 B、V型 C、一字型 D、球型 5、夹钳式取料手用来加持圆柱形工件,一般选择( B )指端。 A、平面 B、V型 C、一字型 D、球型 6、夹钳式手部中使用较多的是( D ) A、弹簧式手部 B、齿轮型手部 C、平移型手部 D、回转型手部 7、平移型传动机构主要用于加持( C )工件。

工业机器人发展现状及趋势

工业机器人发展现状及趋势 1国内工业机器人得发展现状 1、1发展概述 我国得工业机器人研究开始于20世纪80年代中期.在国家得支持下,通过“七五”、“八五”科技攻关.已经基本实现了实验、引进到自主开发得转变。促进了我国制造业、勘探等行业得发展。但随着我国门户得逐渐开放.国内得工业机器人产业面临着越来越大得竞争与冲击。虽然我国机器人得需求量逐年增加,但目前生产得机器人还很难达到所要求得质量.很多机器人得关键部件还需要进口。所以目前来说。我国还处在一个机器人消费型得同家。 现在,我国从事机器人研发得单位有200多家,专业从事机器人产业开发得企业有50家以上。在众多专家得建议与规划下,“七五”期间由机电部主持,中央各部委、中科院及地方科研院所与大学参加,国家投入相当资金,进行了工业机器人基础技术、基础元器件、工业机器人整机及应用工程得开发研究。“九五”期间,在国家“863”高技术计划项目得支持下,沈阳新松机器人自动化股份有限公司、哈尔滨博实自动化设备有限责任公司、上海机电一体化工程公司、北京机械工业自动化所、四川绵阳思维焊接自动化设备有限公司等确立为智能机器人主题产业基地。此外,还有上海富安工厂自动化公司、哈尔滨焊接研究所、国家机械局机械研究院及北京机电研究所、首钢莫托曼公司、安川北科公司、奇瑞汽车股份有限公司等都以其研发生产得特色机器人或应用工程项目而活跃在当今我国工业机器人市场上。 1、2机器人分类 随着科学技术得不断进步,我国工业机器人已经走上了自主研发阶段,这样标志着我国工业自动化走向了新得里程碑按照工业机器人得关键技术发展过程其可分为三代:第一代就是示教再现机器人,主要由机器人本体、运动控制器与示教盒组成,操作过程比较简单。第一代机器人使用示教盒在线示教编程,并保存示教信息。当机器人自动运行时,由运动控制器解析并执行存储得示教程序,使机器人实现预定动作。这类机器人通常采用点到点运动,连续轨迹再现得控制方法,可以完成直线与圆弧得连续轨迹运动,然而复杂曲线得运动则由多段圆弧与直线组合而成。由于操作得容易性、可视性强,所以在当前工业中应用最多。

【盘点】工业机器人技术性能特点

【盘点】工业机器人技术性能特点 目前,中国工业机器人的使用主要集中在汽车工业和电子电气工业,弧焊机器人、点焊机器人、搬运机器人等在生产中被大量采用。下面我们将从技术角度,谈谈工业机器人当前的优劣势。这里就涉及到今天我们要谈到的话题工业机器人技术性能特点! 1.工业机器人技术性能特点智能性 之所以将智能型放在最后一点,因为相对现在市场对机器人的主流需求(即强,快,准),它暂时还不是最迫切的。这也体现了传统工业机器人的优势(任劳任怨,保质保量,是个干活的好手)和不足(但很笨,老得让人教)。 但不代表智能型不重要,相反企业已经开始做技术投资了。比如怎么让机器人更好的理解人的指挥意图,相对自主的去理解并规划任务,而不需一个点一个点得让人告诉它怎么走;如何让机器人在外围环境发生变化下(光线变暗影响图像识别,传送带上物品有损坏需要特殊处理)自动适应;如何通过触觉视觉听觉等感知判断零部件的装配质量,等等。 2.工业机器人技术性能特点机电性能 工业机器人普遍能达到低于0.1毫米的运动精度(指重复运动到点精度),抓取重达一吨的物体,伸展也可达三四米。这样的性能虽不一定能轻易完成苹果手机上一些疯狂的加工要求,但对绝大部分的工业应用来说,是足以圆满完成任务。随着机器人的性能逐渐提升,以前一些不可能的任务也变得可行起来(如激光焊接或切割,曾需要专门的高精度设备来指导激光的走向,但随着机器人精度的提升,现在也变得可依赖机器人本身的准确运动来代替了)。 但相比传统高端设备,如高精度数控机床,激光校准设备,或特殊环境(高温或特低温)设备等,工业机器人尚力不能及。 3.工业机器人技术性能特点人机合作 传统的工业机器人是关在笼子里工作的,因为它实在危险(想象一个抓着几十或几百公斤的家伙以四米每秒的速度甩着,谁也不想靠近吧)。主要原因是一般机器人,基于成本与

相关主题
文本预览
相关文档 最新文档