当前位置:文档之家› 分析高速铁路精密工程测量技术体系的建立及特点

分析高速铁路精密工程测量技术体系的建立及特点

分析高速铁路精密工程测量技术体系的建立及特点
分析高速铁路精密工程测量技术体系的建立及特点

分析高速铁路精密工程测量技术体系的建立及特点

摘要:随着社会的发展,人们对交通出行的需求越来越大,由于我国有着人口众多,地域广大等特点,所以铁路交通被选为第一出行工具,但是随着人们对交通质量的要求不断提高,传统的铁路交通已经不能达到人们的要求。高速铁路的诞生满足了人们的出行需要,所以建设高速铁路成了我国铁路发展的主要方向。测量学作为铁道工程中的主要控制技术,在高速铁路的建设中倍受重视,本人曾经参加过沪杭高速铁路测控点埋设、及测控工作,在本文以实际工作经验对高速铁路精密工程测量技术体系的建立及特点进行分析,望广大同行给予指导。

关键词:控制网设置等级

中图分类号:u238 文献标识码:a 文章编号:

引言:

高速铁路的设计时速为300~350km/h,精密测量技术可以有效保证列车在运行状态下的安全性和舒适性。高速铁路的测量误差控制在0.01毫米的范围内,所以传统的铁路测量技术已经不能适用于高速铁路的建设要求,所以为了实现高速铁路的平稳性,就必须应用新的测量技术。

一.工程概况

沪杭高速铁路的的设计时速为300km/h,全长158.8公里,线路由无砟轨道和无缝钢管组成,轨道正线距离为5m。最大坡度为2%。沪杭高铁工程广泛采用了新技术、新结构、新工艺。全线软土分布

(新)高速铁路线下工程施工测量考试题(含答案)

宝兰客专BLTJ-10标段 铁路工程施工测量考试试题 一.单项选择(每题1分) 1、由于各项测量工作中都存在误差,导致相向开挖中具有相同贯通里程的中线点在空间不相重合,此两点在空间的连线误差在水平面垂直于中线方向的分量称为( B )。 A.贯通误差 B.横向贯通误差 C.水平贯通误差 D.高程贯通误差 2.对工程项目的关键测量科目必须实行(B)。 A.同级换手测量 B.彻底换手测量 C.施工复D.更换全部测量人员3.施工单位对质量实行过程检查,工作一般由(D)检查人员承担。 A.测量队 B.监理单位C.分包单位D.施工单位 4.线路施工测量的主要内容包括:线路复测、路基边坡放样和(B)。 A.地形测量B.横断面测量C.纵断面测量D.线路竣工测量5.桥梁施工测量的主要内容不包括:(C)。 A.桥梁控制测量B.墩台定位及轴线测量C.变形观测D.地形测量 6.下列水准仪使用程序正确的是( D ) A.粗平;安置;照准;调焦;精平;读数 B.消除视差;安置;粗平;照准;精平;调焦;读数 C.安置;粗平;调焦;照准;精平;读数 D.安置;粗平;照准;消除视差;调焦;精平;读数。 7. CPⅡ控制网复测时,相邻点间坐标差之差的相对精度限差为:( C ) A、1/55000 B、1/80000 C、1/100000 8. 下列各种比例尺的地形图中,比例尺最小的是( C )。 A. 1∶2000 B. 1/500 C. 1∶10000 D. 1/5000 9 .导线测量中横向误差主要是由( C ) 引起的。 A 大气折光 B 测距误差 C 测角误差 D 地球曲率 10.水准仪i 角误差是指水平视线与水准轴之间的( A ) A 在垂直面上技影的交角 B 在水平面上投影的交角 C 在空间的交角 11.有一台标准精度为2mm+2ppm 的测距仪,测量了一条lkm 的边长, 边长误差为( B ) A、土2mm B、土4mm C、土6mm D、土8mm 12.在三角高程测量中,采用对向观测可以消除( C ) 的影响。 A.视差 B.视准轴误差 C.地球曲率差和大气折光差 D.水平度盘分划误差 13. 测量工作要按照( B )的程序和原则进行。 A.从局部到整体先控制后碎部 B. 从整体到局部先控制碎部 C. 从整体到局部先碎部后控制 D. 从局部到整体先碎部后控制 14.设AB 距离为200.23m ,方位角为121 0 23' 36" ,则AB 的x 坐标增 量为( D )m. 。

工程测量规范

工程测量规范 工程测量规范GB50026-93 第1章总则 第2章平面控制测量 一般规定 设计、选点、造标与埋石 水平角观测 距离测量 内业计算 第3章高程控制测量 一般规定 水准测量 电磁波测距三角高程 第4章地形测量

一般规定 图根控制测量 一般地区地形测图 城镇居住区地形测图第四节城镇居住区地形测图工矿区现状图测量 水域地形测量 地形图的修测 第5章线路测量 一般规定 铁路、公路测量 架空索道测量 自流和压力管线测量 架空送电线路测量 第6章绘图与复制 一般规定

绘图 编绘 晒蓝图、静电复印与复照 翻版、晒印刷版与修版 打样与胶印 第7章施工测量 一般规定 施工控制测量 工业与民用建筑施工放样 灌注桩、界桩与红线测量 水工建筑物施工测量 第8章竣工总图的编绘与实测一般规定 竣工总图的编绘 竣工总图的实测

第9章变形测量 一般规定 水平位移监测网 垂直位移监测网 水平位移测量 垂直位移测量 内业计算及成果整理 附录一本规范名词解释 附录二平面控制点标志及标石的埋设规格 附录三方向观测法度盘和测微器 附录四高程控制点标志及标石的埋设规格 附录五建筑物、构筑物主体倾斜率和按差异沉降推算主体倾斜值的计算公式 附录六基础相对倾斜值和基础挠度计算公式 附录七本规范用词说明 工程测量规范-总则

工程测量规范 第1章总则 第1.0.1 条为了统一工程测量的技术要求,及时、准确地为工程建设提供正确的测绘资料,保证其成果、成图的质量符合各个测绘阶段的要求,适应工程建设发展的需要,制订本规范。 第条本规范适用于城镇、工矿企业、交通运输和能源等工程建设的勘察、设计、施工以及生产(运营)阶段的通用性测绘工作。其内容包括控制测量,采用非摄影测量方法的1∶500~1∶5000比例尺测图、线路测量、绘图与复制、施工测量、竣工总图编绘与实测和变形测量。 对于测图面积大于50K㎡的1∶5000比例尺地形图,在满足工程建设对测图精度要求的条件下,宜按国家测绘局颁发的现行有关规范执行。 第条工程测量作业前,应了解委托方对测绘工作的技术要求,进行现场踏勘,并应搜集、分析和利用已有合格资料,制定经济合理的技术方案,编写技术设计书或勘察纲要。工程进行中,应加强内、外业的质量检查。工程收尾,应进行检查验收,做好资料整理、工程技术报告书或说明书的编写工作。 第条对测绘仪器、工具,必须做到及时检查校正,加强维护保养、定期检修。

高速铁路-施工测量考试题(含答案)

高速铁路施工测量考试试题 姓名职务单位得分 一.单项选择(每题1分) 1、由于各项测量工作中都存在误差,导致相向开挖中具有相同贯通里程的中线点在空间不相重合,此两点在空间的连线误差在水平面垂直于中线方向的分量称为( B )。 A.贯通误差 B.横向贯通误差 C.水平贯通误差 D.高程贯通误差 2.对工程项目的关键测量科目必须实行(B)。 A.同级换手测量 B.彻底换手测量 C.施工复D.更换全部测量人员3.施工单位对质量实行过程检查,工作一般由(D)检查人员承担。 A.测量队 B.监理单位C.分包单位D.施工单位 4.线路施工测量的主要内容包括:线路复测、路基边坡放样和(B)。 A.地形测量B.横断面测量C.纵断面测量D.线路竣工测量5.桥梁施工测量的主要内容不包括:(C)。 A.桥梁控制测量B.墩台定位及轴线测量C.变形观测D.地形测量 6.下列水准仪使用程序正确的是( D ) A.粗平;安置;照准;调焦;精平;读数 B.消除视差;安置;粗平;照准;精平;调焦;读数 C.安置;粗平;调焦;照准;精平;读数 D.安置;粗平;照准;消除视差;调焦;精平;读数。 7. CPⅡ控制网复测时,相邻点间坐标差之差的相对精度限差为:( C ) A、1/55000 B、1/80000 C、1/100000 8. 下列各种比例尺的地形图中,比例尺最小的是( C )。 A. 1∶2000 B. 1/500 C. 1∶10000 D. 1/5000 9 .导线测量中横向误差主要是由( C ) 引起的。 A 大气折光 B 测距误差 C 测角误差 D 地球曲率 10.水准仪i 角误差是指水平视线与水准轴之间的( A ) A 在垂直面上技影的交角 B 在水平面上投影的交角 C 在空间的交角 11.有一台标准精度为2mm+2ppm 的测距仪,测量了一条lkm 的边长, 边长误差为( B ) A、土2mm B、土4mm C、土6mm D、土8mm 12.在三角高程测量中,采用对向观测可以消除( C ) 的影响。 A.视差 B.视准轴误差 C.地球曲率差和大气折光差 D.水平度盘分划误差 13. 测量工作要按照( B )的程序和原则进行。 A.从局部到整体先控制后碎部 B. 从整体到局部先控制碎部 C. 从整体到局部先碎部后控制 D. 从局部到整体先碎部后控制 14.设AB 距离为200.23m ,方位角为121 0 23' 36" ,则AB 的x 坐标增 量为( D )m. 。 A.-170.919 B.170.919 C.104.302 D.-104.302

精密测量技术 (2)

精密测量技术 一、背景研究 随着社会的发展,普通机械加工的加工误差从过去的mm级向“m级发展,精密加工则从10 p,m级向炉级发展,超精密加工正在向nm级工艺发展。由此,制造业对精密测量仪器的需求越来越广泛,同时误差要求也越来越高。精密测量是精密加工中的重要组成部分,精密加工的误差要依靠测量准确度来保证。目前,对于测量误差已经由“m级向nm级提升,而且这种趋势一年比一年迅猛[1]。 二、概述 现代精密测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,它和精密超精密加工技术相辅相成,为精密超精密加工提供了评价和检测手段;精密超精密加工水平的提高又为精密测量提供了有力的仪器保障。现代测量技术涉及广泛的学科领域,它的发展需要众多相关学科的支持,在现代工业制造技术和科学研究中,测量仪器具有精密化、集成化、智能化的发展趋势,作为下世纪的重点发展目标,各国在微/ 纳米测量技术领域开展了广泛的应用研究[1]。 三、测量技术及应用特点 3.1扫描探针显微镜 1981年美国IBM公司研制成功的扫描隧道显微镜(STM),将人们带到了微观世界。STM具有极高的空间分辨率(平行和垂直于表面的分辨率分别达到0.1nm 和0.01nm,即可分辨出单个原子),广泛应用于表面科学、材料科学和生命科学等研究领域,在一定程度上推动了纳米技术的产生和发展。与此同时,基于STM相似

原理与结构,相继产生了一系列利用探针与样品的不同相互作用来探测表面或界 面纳米尺度上表现出来性质的扫描探针显微镜(SPM),用来获取通过STM无法获取的有关表面结构和性质的各种信息,成为人类认识微观世界的有力工具。下面 介绍几种具有代表性的扫描探针显微镜。 (1)原子力显微镜(AFM):AFM利用微探针在样品表面划过时带动高敏感性的微悬臂梁随表面起伏而上下运动,通过光学方法或隧道电流检测出微悬臂梁的 位移,实现探针尖端原子与表面原子间排斥力检测,从而得到表面形貌信息。利用类似AFM的工作原理,检测被测表面特性对受迫振动力敏元件产生的影响,在探 针与表面10~100nm距离范围,可探测到样品表面存在的静电力、磁力、范德华力等作用力,相继开发磁力显微镜、静电力显微镜、摩擦力显微镜等,统称为扫描力显微镜。 (2)光子扫描隧道显微镜(PSTM): PSTM的原理和工作方式与STM相似,后者 利用电子隧道效应,而前者利用光子隧道效应探测样品表面附近被全内反射所激 起的瞬衰场,其强度随距界面的距离成函数关系,获得表面结构信息。 (3)其它显微镜:如扫描隧道电位仪(STP)可用来探测纳米尺度的电位变化;扫 描离子电导显微镜(SICM)适用于进行生物学和电生理学研究;扫描热显微镜(STM)已经获得血红细胞的表面结构;弹道电子发射显微镜(BEEM)则是目前唯一 能够在纳米尺度上无损检测表面和界面结构的先进分析仪器,国内也已研制成功。 3.2纳米测量的扫描X射线干涉技术 以SPM为基础的观测技术只能给出纳米级分辨率,不能给出表面结构准确的 纳米尺寸,是因为到目前为止缺少一种简便的纳米精度(0.10~0.01nm)尺寸测量 的定标手段。美国NIST和德国PTB分别测得硅(220)晶体的晶面间距为 192015.560±0.012fm和192015.902±0.019fm(飞米fm也叫费米,是长度单位,1fm相 当于10~15m)。日本NRLM在恒温下对220晶间距进行稳定性测试,发现其18 天的变化不超过0.1fm。实验充分说明单晶硅的晶面间距有较好的稳定性。扫描 X射线干涉测量技术是微/纳米测量中一项新技术,它正是利用单晶硅的晶面间

精密工程测量技术在高铁方面的应用探究

精密工程测量技术在高铁方面的应用探究 摘要精密工程测量技术是指使用精度非常高的方式对工程进行测量,在整个工程中都需要使用到误差理论来进行分析,可以应用的范围比较广,帮助工程能够顺利完成。交通是经济发展的重要前提,交通业的不断发展引起了人们对铁路的关注,高铁业的发展需要较高的测量技术进行支持,相比较传统的测量技术已经不能促进高铁业的发展了。科技的进步推动了精密工程测量技术的出现,这种技术能够带动高铁业的发展,弥补了传统测量技术的缺点。本文通过对高铁行业发展分析,探索高铁中精密工程测量技术的应用。 关键词精密工程;测量技术;高铁 在一个工程项目中,工程测量是保障项目顺利进行达到效果的重要举措,它能够对地形进行绘制,如果工程中出现变形的现象可以及时发现,保证工程完成的质量。精密工程测量的单位是毫米,使用先进的技术对施工环境进行全面的精度测量。精密工程测量的种类是非常多的,通常情况下精密工程测量分为普通和特种的两种测量。精密工程测量具有的最明显的优点是测量的精度非常高,测量的精度通常又被分为相对和绝对两种精度。随着使用的范围和技术方法的增加,精密工程测量沒有一个十分准确的含义。精密工程测量虽然是应用在工程项目中,但不是所有的测量都属于精密测量。随着我国工程环境的难度不断增加,对工程测量的精度和相关设备的要求都变得更高,总的来讲精密工程测量需要技术和资金的支持,还需要专业的测量人才,才能保证测量数据的精准。尤其是在高铁的应用中,精密工程测量技术需要更多的支持,才能保证高铁工程的质量[1]。 1 高铁工程测量的主要内容 精密工程测量在高铁工程中,精密工程测量贯穿于整个敖铁项目中,尤其是在高铁线路的设计规划中,精密工程测量在路线规划中能够发挥着重要作用,如果测量的数据不够准确,容易导致高铁建设工作进入瘫痪。精密工程测量还会使用在轨道施工和维护的项目中,使用精密测量才能有效保障施工人员的安全,是整个高铁建设项目最重要的前提。在高铁建设中使用精密测量主要是为了能够提高建设工程的质量,让高铁的建设能够完全按照设计进行,保障高铁建设所要达到的行驶效果,那么这就需要对高铁几何线性进行精准的测量,获取科学的测量参数,由于高铁轨道需要有非常高的平滑性,这就需要精准测量才能把数据控制在毫米范围内,才能有效保证高铁轨道铺设工作的顺利进行。精密工程测量技术在高铁建设中的使用是非常多的,只有将高铁施工测量的数据控制在毫米内,才能保证高铁行驶中安全性和可靠性,提高高铁建设的质量[2]。 2 高铁建设中对精密工程测量技术的特点 在高铁的轨道的修建过程中,轨道的平滑性受轨道测量的精度影响,如果轨道的测量达不到要求,会严重影响轨道行驶的平滑性。轨道的修建在整个高铁建设中占了大部分的工作量,所以轨道的精密测量是非常重要的。每个精密测量都

精密工程控制测量在高速铁路建设中的应用

精密工程控制测量在高速铁路建设中的应用 【摘要】在高速铁路建设过程中,使用精密工程控制测量能够更好的对工程精度以及其他方面进行较好的把控。高精度仪器以及科学的工作方法在布设控制网中的应用能够在很大程度上降低一些工程误差,进而让高速铁路工程以及相关的施工控制网符合工程预期制定的精度,这同时也为高速铁路施工精度打下了坚实的基础。以精密工程测量概述为基础,着重分析了高速铁路精密工程测量的主要内容以及特点,以实际为出发点对进行了探讨高速铁路精密工程测量精度指标。 【关键词】高速铁路;精密工程;控制测量 【Abstract】 In the process of high-speed railway construction, the use of precision engineering control survey can better accuracy in engineering and other aspects of good control. High precision instruments and scientific working methods in the application of the construction control network can largely reduce some engineering error, thus let the high speed railway construction and related construction control network in line with the project set by the expected accuracy, it also laid a solid foundation for high speed railway construction

铁路工程精密控制网测量数据处理系统

铁路工程精密控制网测量数据处理系统Railway engineering precise control survey data processing system 中铁第四勘察设计院集团有限公司

主要内容?高速铁路精测网概述?系统研发背景 ?系统总体框架 ?系统功能 ?系统技术特性 ?系统运行环境 ?软件推广及应用前景

?目前,日、法、德、意、西班牙、比利时等国家建成投入运营的高速铁路已逾5000km,正在建设及已立项准备修建 高速铁路的国家和地区有十几个,长度在5000km以上。国 内开展高速铁路的研究始于上世纪90年代,在高速铁路基 础理论、技术标准、结构设计等方面取得了重大进展。 “十一五”期间,我国将大规模建设高速铁路客运专线, 并大量采用无砟轨道。与一般铁路相比,无砟轨道工程在 结构上具有良好的连续性、平顺性和稳定性的特点,但需 要高精度、高难度的测量工作作保证,高精度的测量已经 成为制约高速铁路建设的重要保证和成败的关键因素之一。

?高速铁路精密测量控制技术作为高速铁路建设成套技术的一个重要组成部分,在高速铁路建设过 程中也越来越显示出其重要性。在高速铁路建设 中,德国、日本等高速铁路大国都有自己的一套 适合高速铁路建设的铁路工程测量成套技术体系。?以德国高速铁路建设的经验,“要成功地建设无砟轨道,就必须有一套完整、高效且非常精确的 测量系统,否则必定失败”。

?高速铁路工程测量平面控制网应在框架控制网(CP0)基础上分三级布设,第一级为基础平面控制网(CPⅠ),主要为勘测、施工、运营维护提供坐标基准;第二级为线路平面控制网(CPⅡ),主要为勘测和施工提供控制基准;第三级为为轨道控制网(CPⅢ),主要为轨道铺设和运营维护提供控制基准。 ?高速铁路工程测量高程控制网分二级布设,第一级线路水准基点控制网,为高速铁路工程勘测设计、施工提供高程基准; 第二级轨道控制网(CPⅢ),为高速铁路轨道施工、维护提供高程基准。

高速铁路工程施工测量技术方案

高速铁路工程施工测量技术方案 一技术依据 《客运专线无渣轨道铁路工程测量技术暂行规定》; GB/T18314-2001《全球定位系统(GPS)测量规范》; BT10054-97《全球定位系统(GPS)铁路测量规范》。 二施工控制测量 2.1 测量组织管理形式 针对本项目的特点及高速铁路的高标准要求,测量组织机构本着人尽其责、物尽其力的原则,建立了一支精干高效、组织纪律严明的管理队伍来进行项目的测量管理工作。 工区经理部的测量工作由工区总工程师总负责,由测量工程师具体负责日常工作。对于测量方案设计、测量成果的整理以及测量放样数据的计算等工作,须经测量工程师复核,总工程师审核合格后上报项目经理部工程管理审核,审核合格后报送监理单位审批,所有内业计算资料须经监理单位审查合格后方可投入使用。 2.2 施工测量控制点的复测及加密 2.2.1 测量人员: 2.2.2 测量设备:莱卡GPS一套、 GTS-711全站仪、苏光水准仪、 SOKKI ∧ C32Ⅱ水准仪 2.2.3 加密点的选布 加密桩选点时应充分利用设计单位的CPI、CPII控制点,并结合施工放样的要求,加密点应按少而精的选择分布。 加密点应选埋在便于施工放样和保存的地方,应在设计单位的CPI或者CPII 控制点之间进行加密,两相邻加密点间的距离不应短于300米;相邻点之间要求通视,为便于GPS测量,加密点应埋设在开阔地带,远离高压线、发射塔、树木、房屋等遮盖物。选点位置直接影响GPS测量的观测质量,点位务必选在高度角15°以上无障碍物遮挡的地方。

2.2.4 加密点的埋设 ****高速铁路施工工期较长,为保证控制点长期保存,避免锈蚀,加密点标心应采用不锈钢桩头,十字丝刻划,标石采用混凝土现场浇注,标石面规格为40cm*40cm. 2.2.5 加密点命名原则 为防止加密点点名命名重复,在使用时造成混淆,以距离设计单位CPI、CPII 点最近的点名为基础,点名加后缀,如在某个设计控制点附近加密两个点,沿线路桩号加大方向第一个点名后缀为:“-1”,第二个点名后缀为:“-2”,依次类推。水准和平面共用点的在编号前加G。点名应标识清楚,便于识别和保存。 2.3 施工平面控制点加密技术要求 2.3.1 测量方法 采用GPS测量的方法进行施工控制点的加密测量。测量等级和技术标准按《客运专线无渣轨道铁路工程测量暂行规定》和《全球定位系统(GPS)铁路测量规程》执行,按C级网的精密度要求进行复测。 2.3.2 GPS测量作业的基本要求 2.4 水准点加密测量技术要求 2.4.1 加密水准点的布置 水准点加密和平面控制网并网。点位规格参照四等水准点的规格实施。水准

高速铁路工程测量规范-2009-12(附录).

95 附录A 控制点埋石图及标志注字方法 本附录所规定的各级平面水准点标石的埋设规格均为一般地区普通标石的埋设(标石可采用混凝土预制桩或现场浇注),对于特殊地区的标石埋设,应根据线路所在地区的土质、地质构造及区域沉降等因素,进行特殊地区的控制点埋设(如基岩点、深埋点等)。 A.1 控制点标志 A.1.1 金属标志制作材料为铸铁或其它金属。规格应符合图A.1.1的规定,图中“××××××”处为测量单位名称。 A.1.2 不锈钢标志可采用直径为12~20mm ,长度为20~30mm 不锈钢材料,下部采用普通钢筋焊接而成。规格应符合图A.1.2的规定。 不锈钢

普通钢 图A.1.1 金属标志(单位:mm )图A.1.2 不锈钢标志(单位:mm ) A.2 平面控制点标石的埋设 A.2.1 建筑物顶上设置标石,标石应和建筑物顶面牢固连接。建筑物上各等平面控制点标石设置规格应符合图A.2.1-1、图A.2.1-2的规定。 图A.2.1-1 建筑物CP0平面控制点标石(单位:mm ) 96 图A.2.1-2 建筑物上CPI 、CPII 平面控制点标石(单位:mm ) A.2.2 CP0控制点标石埋设规格应符合图A.2.2的规定。 图A.2.2 CP0控制点标石埋设图(单位:mm ) 注:1-盖;2-土面;3-砖;4-素土;5-冻土;6-贫混凝土 A.2.3 二等导线/三角形网/GPS平面控制点标石埋设规格应符合图A.2.3的规定。 97

图A.2.3 二等导线/三角形网/GPS平面控制点点标石埋设图(单位:mm ) 注:1-盖;2-土面;3-砖;4-素土;5-冻土线;6-贫混凝土 A.2.4 三等导线/三角形网/GPS平面控制点标石埋设规格应符合图A.2.4规定。 图A.2.4 三等及以上导线/三角形网/GPS平面控制点点标石埋设图(单位:mm ) 注:1-盖;2-土面;3-砖;4-素土;5-冻土;6-贫混凝土

京沪高速铁路精密控制测量技术设计书

京沪高速铁路精密控制测量技术设计书 二○○六年十二月

目录 1.任务概况 (1) 2.作业依据 (1) 3.基本技术要求 (1) 4.B级GPS点测量 (3) 4.1点名及点号 (3) 4.2标石 (3) 4.2.1类型 (3) 4.2.2规格 (3) 4.2.3制作 (5) 4.2.4中心标志 (5) 4.3控制点布设要求 (5) 4.3.1选点 (5) 4.3.2埋石 (6) 4.3.3施测概略经纬度 (6) 4.3.4点之记 (6) 4.3.5拍照 (7) 4.4 GPS观测及内业数据处理 (7) 4.4.1坐标基准 (7) 4.4.2时间 (7) 4.4.3 GPS B级网技术、精度指标 (7) 4.4.4设站 (8) 4.5大地点联测 (9) 4.6内业数据处理 (9) 4.7上交资料清单 (10) 5.二等水准测量 (12) 5.1水准线路布设 (12) 5.2 水准点选点 (12) 5.3 水准点编号 (13) 5.4水准点标石及点之记 (13) 5.5水准测量 (17) 5.6 联测 (19) 5.7计算 (19) 5.8 上交成果 (20) 6.项目质量管理 (20) 附录1:B级GPS点之记的绘制 (21) 附录2:B级GPS观测手簿 (23)

京沪高速铁路精密控制测量技术设计书 京沪高速铁路精密控制测量技术设计书 1.任务概况 根据部工管中心《关于保证无碴轨道控制测量精度的通知》及院生产安排,对京沪高速铁路徐州至上海段(DK665+100~DK1309+150),正线长度646.207km。的线路,施测基础平面控制网(B级GPS平面控制网)、线下施工控制测量(C级GPS平面控制网、既有四等GPS网联测)及二等水准高程控制网。制定本技术设计书。 2.作业依据 《客运专线无碴轨道铁路工程测量技术暂行规定》; GB/T18314-2001《全球定位系统(GPS)测量规范》; BT10054-97《全球定位系统(GPS)铁路测量规程》; GB12879-91《国家一、二等水准测量规范》; CH1002-95《测绘产品检查验收规定》; CH1003-95《测绘产品质量评定标准》; 本《技术设计书》。 3.基本技术要求 平面坐标系采用30分带宽的投影,采用WGS-84椭球参数,保证投影长度变形值不大于10mm/km。中央子午线见表: 第1页

高速铁路工程测量精度和测量模式

高速铁路工程测量精度和测量模式 一、背景和意义 铁路对于我国经济发展具有重要的意义,铁路是我国国民经济发展的重要基础。随着我国经济快速发展,国民的生活、工作以及社会的发展都对铁路运输事业提出了更高的要求,高速铁路应运而生。高铁是一个具有时代特点的概念,其涉及的专业方面十分广泛,高铁工程包含了先进的铁路技术、管理方式、运营方式、资金筹措等多方面的内容,是一项复杂的系统性工程。我国高速铁路的建设是保证我国交通事业发展的重要基础,也是我国运输事业发展的必然结果。现代工业化中,运输化已经成为实现经济活动的重要内容。我国经济发展迅速,铁路的运输水平已经成为了制约我国经济发展的一个重要的方面,我国铁路事业必须要提高铁路运输生产力发展的水平,加强高速铁路的深化改革,适应我国经济发展需求。 工程测量是建筑工程施工之前的一项首要工作,它在整个施工的过程中发挥着至关重要的作用,是施工过程中保障各道工序正常运行与建筑工程质量的重要手段。随着科学技术的发展与建筑水平的提高,工程测量的新技术与新设备的出现给工程测量带来了很多便利,但由于测量人员对工程测量的精度控制不够准确,使得工程测量的质量与水平一直停滞不前,在一定程度上影响工程建设的进度与工程质

量。 二、高速铁路工程测量精度标准的相关问题 要想提高铁路工程测量标准,就必须大力的投入资金、人力、物力、时间等多方面的资源。在测量标准的制定上,要经过大量的实验与严谨的论证,从而保证测量精度得到有效的保证。与此同时,在测量精度标准的制定上,要做好权衡,避免出现提高测量精度未能满足工程实际需求,从而造成工程的质量事故出现。我国关于高速铁路测量的相关规定中已经对于工程测量精度有所提及,相关规定对于工程测量的规定为:“高速铁路自身运行速度比较快,对于整体线路的平顺性要求较传统铁路更高,所以要提高高速铁路的工程测量精度水平”。但是,相关规定当中,并未对铁路工程测量的精度提出具体的要求,也未对具体的原因进行相应的解释。在不同的设计院进行铁路测量细则的拟定以及相关论文的撰写时,采用国际二、三等平面高程控制精度进行工程的测量,也有人考虑建立独立的控制网。相关设计院的工程测量人员对于工程测量精度控制上,存在着一定的困难。 首先,从工期方面分析,控制测量量的增长直接增加了观测时间,并且造成工期项目的工期增长。与此同时,工程观测量的层级增长也会造成工程经费的大幅增长。

试论精密工程测量技术在高铁中的运用

试论精密工程测量技术在高铁中的运用 发表时间:2019-08-14T09:45:31.703Z 来源:《防护工程》2019年10期作者:赵江龙[导读] 本文简要阐述了精密工程测量技术的内容、特点,并分析其在高铁中的应用。希望本文研究可以为精密工程测量技术在高铁中的运用提供帮助。 赵江龙 身份证号码:21132219820309xxxx 摘要:随着社会的不断发展,高铁事业也不断壮大,并逐渐成为我们生活的重要组成部分。然而,高铁安全问题越来越受到人们关注,而精密工程测量技术又是高铁安全的重要保障。在高铁建设过程中,精密工程测量技术是必不可少的重要环节。本文简要阐述了精密工程测量技术的内容、特点,并分析其在高铁中的应用。希望本文研究可以为精密工程测量技术在高铁中的运用提供帮助。 关键词:高铁;精密;工程;测量;技术 引言 随着我国交通行业的不断发展,高铁建设也得到突飞猛进的发展。高铁具有速度快、安全、环保、占地少和承载量大的优点,是未来我国运输的主要交通方式。然而,高铁项目相对于传统铁路项目来说,在测量技术方面要求更高的精度。传统测量技术不能满足高铁发展的需要,并在一定程度上阻碍其发展。精密工程测量技术作为一种先进测量技术,可以弥补传统测量在精度方面的不足,满足高铁技术的发展要求。同时,精密工程测量技术在一定程度上,可以推动我国高铁事业的发展. 1高铁精密工程测量的目的 精密工程测量技术的目标是提高高铁项目的测量精度,保证高铁工程按照设计标准进行施工,进一步提高轨道铺设的精度,满足高铁行驶的安全和速度。目前,我国高铁设计时速为250-350km/h,行驶速度相对较高。在这样高速行驶的情况下,客运列车要想达到舒适和安全,必须要做到以下两点:①高速列车的设计线路保持精确的几何线性参数;②高铁的轨道设计要具有较高的平顺性,而且施工进度控制在毫米级范围内。因此,精密工程测量技术可以保证轨道铺设,符合施工的精度要求。 2高速铁路工程测量的主要内容 2.1高速铁路施工内容 精密工程测量技术在高铁建设过程中的作用主要体现在最初的路线勘察、中期设计和最后验收等方面。在整个高铁线路铺设过程中,精密工程测量技术都发挥积极地作用,否则就会导致高铁建设处于瘫痪状态。在高铁施工过程中,涉及很多精密工程测量内容,诸如:轨道板铺设施工测量、轨道调整测量等。精密工程测量技术在高铁施工过程中的应用,可以保证高铁施工的安全,是其他施工项目进行的基础。因此,高铁施工单位要重视精密工程测量技术在建设过程中的作用。 2.2精密工程测量意义 高铁建设要保证工程施工的质量,从而保证客运列车的速度和安全,这就需要精密工程测量技术作为前提和保障。精密工程测量技术作为一项重要技术,广泛应用于高铁建设的各个环节,并保证各项施工环节的有效进行。在精密工程测量过程中,要保证高铁测量的精度,尽量控制在毫米以内,才能保证客运列车的行驶安全。另外,在高铁施工过程中,要依据实际情况,微调线路的设计数据,保证高铁轨道铺设的平顺性。 3高铁精密工程测量的精度要求 高铁建设过程中,进行轨道铺设时,如果不能达到预定要求,很难保证轨道的平顺性。由于高铁轨道铺设属于庞大工程,设计很多施工环节,各个环节精度出现问题,都会影响高铁的施工精度。①要注意高铁轨道内部的几何尺度的精度,如果不能达到预定要求,就会影响高铁内部的形状,进而影响高铁的平滑性。国内对高铁内部尺度的精度进行详细规定,特别是在允许偏差方面,诸如有砟轨道误差、无砟轨道误差、以及轨距、轨向、水平、弯曲等方面的误差。无砟轨道就是采用混凝土或者沥青混凝土浇筑的整体轨道,有砟轨道就是用松散颗粒体进行铺设的轨道,前者在舒适性、连续性和稳定性方面更好。无咋轨道对基础的质量要求比较高,否则就会出现下沉和变形的问题。②施工单位在考虑轨道的外部几何尺寸的时候,对高铁精密工程测量精度的要求更高,而测量对铁路的建设起着至关重要的作用。在进行高铁具体施工的时,施工人员要对铁路的定位特别关注,以此保证其与桥梁、站台的有效衔接。③施工人员要控制轨道轨面的高程、轨道中线与线间的偏差,按照施工标准进行施工,保证误差在允许范围内。 4高铁精密工程测量技术的特点 4.1分级布网的精密测量 目前,我国精密工程测量的控制网包括三个方面:基础平面控制网、线路平面控制网、轨道控制网,各个控制网都发挥各自的作用。基础平面控制网主要负责高铁线路勘测、设计以及维护坐标基准;在进行施工时,应该运用线路平面控制网对铁路的勘测和施工进行控制;轨道控制网主要在铁路铺设与后期运营时发挥作用,负责提供铁路轨道控制的基准。施工人员严格按照相应标准,进行三网的有效铺设,确保每层网络的正常运行,提升铁路建设的质量。 4.2测量系统的独立坐标系 目前,我国对高铁质量的要求越来越高,各种测量数据的误差越来越少,使其更加接近实际数据。在测量的平面坐标系统中,施工者可以建立独立的测量体系。这样不仅避免了不同施工测量之间的干扰,而且可以提高施工测量的精度。另外,高铁项目之间具有较高的连续性,需要前、后测量项目的承接,独立坐标体系可以很好地保证测量项目前后之间的连续性。因此,独立测量坐标体系是高铁项目测量精度的保障,也是精密工程测量技术的显著特征。 4.3较高精度的高程控制网 改革开放以前,我国经济发展比较落后,测量技术水平也比较低,对铁路建设的质量要求也不高,更不用说轨道的线型和平顺度测量。另外,施工人员在测量的时候,由于测量技术比较差,测量方法比较落后,很难达到预期的测量精度,施工部门缺乏完善的测量体系。因此,测量精度不准确对铁路工程的施工质量造成严重影响。

高铁精密测量

(1)三网合一:确定了无砟轨道铁路工程控制测量“三网合一”的测量体系。即勘测控制网、施工控制网、运营维护控制网成为“三网”,三个阶段的平面和高程必须采用统一基准,即称为“三网合一”。(一)、“三网合一”的内容和要求 1、“三网”高程坐标系统的统一 在无砟轨道的勘测设计、线下施工、轨道施工及运营维护的各阶段均采用坐标定位控制,因此,必须保证“三网”高程坐标系统的统一,各阶段的工作才能顺利进行。 2、“三网”起算基准的统一 “三网”平面测量应以基础平面控制网CPⅠ为平面控制基准,以二等水准基点为高程控制测量的基准。 (2)轨排粗调 《测规》“7.6.2 轨排安装前应测设加密基桩,加密基桩宜设于线路中线上。 7.6.3 轨排粗调应以加密基桩为调整基准点。” 双块式轨排可分为现场组装及预组装,但不论何种方式,轨排的调整均为测设轨道的中心线,使轨排的中心线与线路中心线重合。为方便施工,直接在线路中心线上测设加密基桩,方便轨排调整。 因为轨排粗调只需轨排大概就位,方便上层钢筋的绑扎,防止精调后上层钢筋绑扎扰动轨排,故粗调轨排时,轨排中线放样误差应不大于5mm;钢轨内轨顶面高程放样误差应不大于2.5mm。精调使用轨检小车配合全站仪进行。 (3)轨排固定 《测规》“7.7.3 轨枕固定架支脚安装测量方法及定位误差如下: 1 在支承层线路中心线两侧测设固定架支脚,直线段纵向每隔3.25m安放支脚,曲线段两支脚中心线与线路中心线保持垂直,外侧两支脚距离为 3.25m,内侧两支脚距离应小于3.25m; 2 先通过CPⅢ控制点测设其中一个支脚的位置,再在该支脚上架设测量仪器测定其它三个支脚的位置。 3 支脚间轴线平面X,Y方向定位限差应不大于0.5mm,高程限差不大于0.5mm。”CRTSⅡ型双块式无碴轨道的测量主要特点为通过CPⅢ点直接测设其支撑系统的支脚,不测设加密基桩,减少了一道测量工序,提高了精度控制。 固定架安装支脚间距应根据轨枕设计间距和工装确定,根据旭普林公司现采用设备,轨枕间距650mm,一组固定架上5根轨枕,因此支脚间距为3.25m (4)轨道控制网CPIII: 沿线路布设的三维控制网,起闭于基础平面控制网(CPI)或线路控制网(CPII),一般在线下工程施工完成后进行施测,为轨道施工和运营维护的基准。CPIII网按自由设站边角交会方法测量。点间距为纵向60m左右、横向为线路结构物宽度,测量精度为相邻点位的相对点位中误差小于1mm。 1)CPIII控制网的网形 测站间距为120m时,CPIII平面控制网测量网形示意图如图所示。

高速铁路精密工程测量问题研究 田文斌

高速铁路精密工程测量问题研究田文斌 发表时间:2019-09-04T09:54:44.790Z 来源:《防护工程》2019年12期作者:田文斌胡泽金 [导读] 精密工程测量技术是工程测量的重要组成部分,已广泛地应用到高速铁路、大型水库等基础工程建设领域。 中国建筑土木建设有限公司北京 100000 摘要:轨道施工质量对高速铁路形势安全起到关键作用。高速铁路列车行驶速度250~350km/h,轨道必须具有非常高的平顺性和精确的几何线性参数、精度要求保持在毫米级范围内的特点,要求我们必须建立一套与之相适应的、能满足高速铁路勘测设计、施工建设和运营维护各个阶段要求且十分完整、高效、高精度的精密工程测量体系。高速铁路精密工程测量技术体系已成为高速铁路建设成套技术的一个重要组成部分,在高速铁路勘测设计、施工建设和运营维护中起到了决定性的作用。 关键词:高速铁路;精密工程;测量问题 引言 精密工程测量技术是工程测量的重要组成部分,已广泛地应用到高速铁路、大型水库等基础工程建设领域。为了确保高速铁路建设和运营安全、高效、顺利,必须要进行高速铁路的精密工程测量,因此对测量技术的准确性提出了更为严格的要求,必须建立一套高速铁路精密工程测量技术。我国高铁的安全运行验证了高速铁路精密工程测量技术的科学性、先进性、适用性和可靠性。 1高速铁路精密工程测量技术概述 高速铁路精密工程测量的主要目的是建立各级平面与高程控制网,在控制网的作用下,保证高速铁路工程能够按照设计线型进行施工,确保高速铁路轨道铺设精度,最终保证高速列车能够平稳安全运行。影响高速铁路轨道铺设精度的因素中,精密工程测量技术的可靠性是其中重要因素。在进行高速铁路轨道铺设时,必须重视两方面工作,一方面是要严格按照高速铁路工程设计线型进行施工,也就是说,在铺设高速铁路轨道时一定要确保轨道线型几何参数的精确度与可靠性;另一方面就是确保高速铁路轨道铺设的平顺性,要将轨道线型参数控制在合理范围内,一般要控制在毫米级范围内,才能确保高速铁路轨道铺设的平顺性。 2控制网布设 (1)CPⅠ。在布设过程中以B级静态测量方式进行,一般在设计中,网点的测量距离为50~100km,完成连续测量的基准网点设置后,需要按照每3~4km的距离再布设一个单点,即使是布设作业难度较大的地段,布设点之间的距离不能小于1km。在特大桥梁与特长隧道布设过程中,要根据具体情况适当增加CPⅠ控制点,并且要确保相邻布设点间有良好的透视性,各个透视点间有一个相邻的透视方向,实现三网合一的目标。在处理转换关系简化问题时,要充分考虑CPⅠ控制网联测控制点至少为三个国家或者城市控制点。CPⅠ控制网大多应用在工程勘测、工程施工以及工程运维中坐标基准勘测过程中,是确保坐标基准准确性的重要技术。 (2)CPⅡ。主要应用在工程勘测与工程施工过程中,CPⅡ的主要作用是为工程勘测与工程施工提供基准,通常在布设过程中,需要使用全站仪与C级GPS静态控制测量相结合的方式完成布设工作。一般在布设CPⅡ控制点时,需要注意两个控制点的测量距离在800~1000m之间。另外,还要注意的是在布设难度较大的地段进行布设作业时,要保证控制点的距离不能小于600m。通常CPⅡ控制网的布设点要根据线路走向进行设置,在线路中线与布设点之间的距离要在50~100m之间。在CPⅡ控制网布设过程中,要对布设点的位置进行严格考察与设置,确保布设点位置符合相关测量要求。 (3)CPⅢ。CPⅢ的主要作用是为高速铁路轨道铺设以及高速铁路运维提供有效的良好的控制基准,CPⅢ是在CPⅡ的基础上发展而来的。在具体设置过程中,采用沿着高速铁路线路两侧布设五等导线测量的方式完成布设作业。高程控制多用三等水准,将控制点嵌入到墙体侧面的点位内,要注意确保控制点的点位与高程位置都要比高速铁路轨道标记的螺栓前缘上侧高。 3水准网的稳定性控制 已经建成高铁的运营复测数据分析表明,许多地段存在着较为严重的沉降情况,甚至导致了铁路限速,在这些地区,如果没有稳定的控制点,控制网复测往往会出现控制基准稳定性无法判定的情况。为了在这些区段进行变形监测,必须要从可靠的稳定控制点(国家基岩点)引出,监测工作往往费时、费力。《客运专线无砟轨道铁路工程测量暂行规定》中没有对铁路高程控制网中深埋及基岩点进行要求。在京津城际、京沪高速铁路实施过程中,由于沿线地质条件非常复杂,存在多个不均匀沉降漏斗区,有些地方地表沉降非常严重,因此采用了深埋水准基点的控制方式。多次复测证明,相对于地面控制标石,深埋点具有显著的抗沉降性,可为铁路的运营、维护、监测提供长效的高程基准支持。因此,《高速铁路工程测量规范》对深埋标石做了如下的要求:在地表沉降不均与及地质不良地区,宜按每10km设置一个深埋水准点,每50km设置一个基岩水准点。基岩水准点和深埋水准点应尽量利用国家或其他测绘单位埋设的稳定基岩水准点和深埋水准点。因此,在地表沉降不均匀与及地质不良地区,基岩水准点应当作为线路水准基点的高一级控制点,每50km设置一个。深埋水准点是线路水准基点的同级控制点,但其较之一般水准点抗沉降性好,在控制网复测过程可作为区段稳定性判断的重要依据。深埋水准点可以选择稳定的老旧建筑基础、大型桥台基础等替代;也可以选择国家或其他测绘单位埋设的基岩、水准点作为深埋控制桩(不兼容的情况下可不采用原国家控制成果,仅作为本条线路的深埋控制)。 4长大隧道贯通后水准控制网处理 在跨越大江大河及长大隧道时,水准采用绕行观测或者跨河观测的方式,桥梁铺架施工完成或隧道贯通后,对水准测量而言,新的贯通条件产生了,路线会大大缩短,在一定范围内的闭合精度也会大大提高。以某山区铁路隧道高程控制为例:设计隧道长度约10km,受地形及交通条件影响,水准绕行路线达到100km。按照二等水准的观测方法实施,隧道贯通前符合路线闭合差限差为40.0mm;贯通后限差为12.6mm,精测网高程在隧道贯通后可能会产生断高。若前期未做任何附加考虑,甚至在隧道贯通测量之前进行了隧道段的精密测量,将会给后期施工造成较大的影响。因此,在此类特殊的施工条件下,必须对工点的精密测量进行专项设计。 (1)根据水准绕行设计观测成果计算隧道两端高程控制点间闭合差。 (2)根据斜井闭合条件、贯通路线及水准限差估算贯通后两端高程控制点间闭合差;每公里水准测量的全中误差按下式计算。

高速铁路工程测量有关技术问题

高速铁路工程测量有关技术问题 发表时间:2019-02-25T14:32:46.607Z 来源:《防护工程》2018年第32期作者:鲁军[导读] 工作人员才会具有高度责任心的工作态度,并且能够认真完成自己的工程测量任务,进而促进我国高铁工程事业的快速发展。摘要:交通运输业与国家经济的发展有很大的联系,在高速发展的今天,我国大力发展高铁建设,国家对高速铁路工程测量的要求也不断提高,对高速铁路测量中应用到的技术要求也越来越高。一般情况下,传统的测量技术都存在一些不足,甚至跟不上时代发展得脚步,因 此,这就需要将先进的测量技术应用到高速铁路工程测量中。我国的高速铁路工程测量技术在不断提高,以适应我国高速铁路建设的发展,只有保证了工程测量的精度要求,才能够很好的满足高速铁路发展需求。关键词:高速铁路;工程测量;技术问题 1、高速铁路测量技术概述 1.1工程测量的作用及方式 铁路工程测量的主要目的是为铁路工程的设计、施工、运营管理以及养护等工作提供有效的测量数据支持。根据测量方式进行划分,可分为高程控制网测量、平面控制网测量两种类型。铁路工程测量中,最为常用的测量方式便是平面控制网测量。 1.2要求解析 铁路工程测量中运用平面控制网测量方式时,主要是按照逐级控制、分级布网原则来进行实际测量。平面控制网测量的具体步骤包括六个方面。第一,框架控制网。采取卫星定位测量技术构建而成的三维控制网,是铁路全段的坐标起算基准。第二,基础平面控制网。主要通过采取卫星定位测量技术,为铁路工程勘测设计、施工、运营管理与养护提供准确的坐标基准。第三,线路平面控制网。其主要作用是为铁路勘测、施工提供准确的控制基准。第四,轨道控制网。其主要作用是为轨道铺设、铁路工程的运营维护提供准确的控制基准。第五,施工测量。主要为铁路工程的施工提供可靠的测量数据,包括桥梁控制网、施工控制网加密、隧道控制网、施工放样、线路中线贯通、建筑物变形以及竣工测量等。第六,运营管理及维护。主要为铁路工程的运营管理及维护提供可靠的测量数据,包括构筑物变形测量、各级控制网的复测、轨道几何状态测量以及沉降地段变形测量等。 2、高速铁路工程测量技术存在问题2.1测量仪器导致的质量问题 在实际铁路工程测量中,测量仪器的质量问题以及使用不当是导致工程测量数据不准确的一个重要因素,主要表现在:①测量仪器相对落后,达不到当前工程测量的标准要求。在一些工程施工中,为了节省成本,不能及时的换新的仪器,还在使用比较老式的测量仪器,这样难保证测量精度;②测量人员在使用测量仪器进行工程测量时,往往凭借自己的经验对工程测量,没能够按照相关的规范来使用仪器,这很可能使测量的数据与实际不符,最终导致铁路工程出现质量问题;③没能按照相关的规定来管理仪器,造成仪器失真。而对于工程测量仪器来说,其管理及保养都需要专业人员来进行,不能让其他人员随意使用或放置,以防仪器失去精度。 2.2未能控制好测量质量 对于高速铁路工程质量监控来说,它既涉及到铁路工程的质量问题,又涉及到人们的生命和财产安全问题,不仅需要相关部门的监察,更加需要政府的职能监督。政府及社会监理要和相关部门协同进行工程验收,高铁质量重中之重不可忽视。然而,许多工程监理没能担负起应尽的责任,没有按照监理要求对工程质量进行评估。其次有一些监理人员未使得当的测量仪器进行工程监理,这会很大程度上影响监理质量。 2.3工程测量产生误差 2.3.1GPS测量误差 (1)与控制段相关的误差,包括星历误差和卫星时钟误差,指的是在卫星传播过程中导航电文的参数值产生误差。(2)与接收机有关的误差,一般是接收机噪声引起的误差。(3)与卫星信号有关的误差,指信号受到接收机和卫星之间的传播介质的影响而造成的误差。 2.3.2CPⅢ控制测量误差 CPⅢ控制网测量方式是采用后方交会全站仪自由设站的形式。误差来源主要是:(1)由观测值误差产生的自由设站点误差,主要原因是出现了方向观测误差;(2)两相邻测站在平面位置和高程产生的相对误差;(3)全站仪测量轨道各点的误差。 3、高速铁路工程测量技术的主要内容和要求3.1检查工作 为了可以做好测量放线工作,提高施工质量,开工前的放线测量工作必须要严谨且精准,只有检测以及检查合格之后,才可以开始后续测量工作。具体检测内容如下:在开展测量放线工作之前,需要检测使用仪器的精准度以及破损程度;仪器安置完成以后,需要对三脚架的牢固性以及架腿伸缩的灵活性进行检测;对各种脚螺旋、对光螺旋以及微调螺旋和制动螺旋的有效性予以精确检测;对读数显微镜和望远镜呈现的清晰程度予以精确检测;检测仪器竖轴与照准部水准管轴、仪器横轴与十字丝、横轴与视准轴、仪器竖轴与横轴的垂直情况。 3.2重复测量水准点和导线点坐标项目部在开展施工之前,需要复测设计单位以及业主提供的控制点,复测的时候需要采用同精度等级的测量标准,复测内容主要包括水准点和导线,通过复测可以对设计单位以及业主所提供材料与桩位的精读、准确度的吻合程度、交桩点位的精确度进行检测。复测结果若是与设计单位提供的资料存在较大的差异,则需要二次复测。如果二次复测结果依旧与设计单位提供的资料不相符,则需要与相关单位进行沟通,联合分析该问题,并予以有效且合理的解决。 3.3高速铁路精密工程测量平面控制

相关主题
文本预览
相关文档 最新文档