当前位置:文档之家› 虚拟现实与仿真实验报告

虚拟现实与仿真实验报告

虚拟现实与仿真实验报告
虚拟现实与仿真实验报告

合肥工业大学

计算机与信息学院

实验报告

课程:虚拟现实与仿真技术

专业班级:计算机科学与技术11-2班

学号:

姓名:谢云飞

实验一

一.实验名称

从3Dmax8中导出mesh并添加mesh到场景。

二.实验过程或实验程序(增加的代码及代码注解)

启动3Dmax

1.在安装有3Dmax8的计算机上,可以使用两种不同的方法来启动3Dmax8:

(1)在桌面上双击“3Dmax8”图标

(2)点击“开始”菜单,在“程序”中的选择“3Dmax8”

2.观察3Dmax8主窗口的布局。3Dmax8主要由若干元素组成:菜单栏、工具栏、以及停靠在右边的命令面板和底部的各种工具窗口

使用3Dmax8建模并导出mesh

导出mesh的步骤如下:

1.启动3Dmax8

2.在停靠在右边的命令面板中,点击几何体按钮

3.选择标准几何体

4.在对象类型中选择对象(如:长方体),在“前”视口中,通过单击鼠标左键,创建出模型

5.在工具栏中单击“材质编辑器”按钮,通过上步操作,可开启“材质编辑器”对话框

6.在“材质编辑器”对话框中,点击漫反射旁方形按钮,进入到“材质/贴图浏览器”

7.在“材质/贴图浏览器”中选择位图,鼠标左键双击位图

8.弹出选择位图图像文件对话框,从本地电脑中选择一张图片

9.选择好图片,在材质编辑器对话框中,点击将材质指令给选定对象

10.点击菜单栏上的oFusion按钮,在弹出的菜单栏中选择Export Scene

11.选择文件夹并输入文件名qiu,点击保存,在弹出的对话框中勾选Copy Textures,点击Export按钮,此时mesh文件已成功导出

导出的mesh文件放入到指定位置

1.找到mesh文件,把mesh文件放到当前电脑的OgreSDK的models中,以我的电脑为例,OgerSDK放在C盘中

2.打开C盘,找到OgreSDK,打开OgreSDK,找到media,打开media文件夹,找到models,打开models文件夹,将mesh文件复制到此文件夹中

3.将导出mesh文件附带的材质文件放到OgreSDK的scripts (C:\OgreSDK\media\materials\scripts)中

4.将导出mesn文件时同时导出的图片放到OgreSDK的textures (C:\OgreSDK\media\materials\textures)中

mesh文件导入到场景中

mesh文件导入到场景中步骤:

1.启动vs2008

2.在“文件”菜单中选择“打开”,然后单击“项目/解决方案”

3.找到项目MFCOgre1,选择,点击打开按钮

4.打开,创建节点变量,SceneNode *node1(中的第55行),创建实体变量 Entity* ent1(中的第57行);

5.打开,在的构造函数中对创建的节点和实体对象初始化node1(NULL)、 ent1(NULL)(在的第37行和第39行)

6.获取根节点的子节点,并将其赋值给节点node1(的第225行)

7.给创建的实体对象ent1赋值(的第224行)

8.设置节点的位置(的第226行)

9.将实体附在节点上(的第227行)

void CMFCOgre1View::CreateEntity(void)

{

ent1 = m_pSceneManager->createEntity("Sphere","");

菜单栏中选择视图

2.点击视图,在弹出的菜单窗口中,选择类视图

3.在类视图中,选择类MFCOgre1View

4.再次选择菜单栏中的视图,在菜单的菜单窗口中,选择其他窗口

5.在其他窗口中,选择属性窗口

6.在属性窗口中,点击消息按钮

7.找到WM_KEYDOWN,添加OnKeyDown()消息响应函数

在OnKeyDown()消息响应函数中,添加按键控制

1.找到的onKeyDown()(的第296行)

2.创建一个3维变量Vector3 trans = Vector3::ZERO;

3.使用switch语句,判断用户按下的按键

4.如果用户按下的是A键,将变量trans的x坐标减10,然后将摄像机移动到当前的trans 坐标处(注:按键消息获取的都是大写字母),则摄像机向左移动,代码如下:case'A':

-=10;

m_pCamera->moveRelative(trans);

break;

5. 如果用户按下的是D键,将变量trans的x坐标加10,然后将摄像机移动到当前的trans 坐标处(注:按键消息获取的都是大写字母),则摄像机向左移动

case‘D':

+=10;

m_pCamera->moveRelative(trans);

break;

6.实现其它移动和旋转的代码如下:

case'G':

-=10;

m_pCamera->moveRelative(trans);

中创建void

CreateAnimation(Ogre::String MyAnimation);( MFCOgreView1 中第77行)

2.创建一个全局变量AnimationState *as(中第17行)

3.实现void CreateAnimation(Ogre::String MyAnimation);(中第319行)

4.判断动画是否存在,如果动画存在,删除已有的动画

5.使用sceneManager来创建一个animation,同时指定动画的名字和帧的长度

6. 设置该段动画的关键帧间帧的插值方式,这里使用线性

7. 使用animation创建为每个要驱动的node创建一个track,比如这里我们只想让一个结点(node,比如它上面挂着摄像机)运动,就只为他创建一个track就行了,第一个参数是这个track的编号

8. 对于每个track创建它的每个关键帧

9. 设置该帧的时间点

10. 设置该帧处这个结点的位置和其他几何状态

11.设置动画运动状态

12.在项目解决方案资源管理器中,找到MFCOgre1

13.右击MFCOgre1,在弹出的界面中,选择添加类

14.选择MFC类,点击添加,在类名中输入MyFrameListener

15.在中类MyFrameListener继承FrameListener

16.在中添加virtual bool frameStarted(const FrameEvent &evt);(在的第12行)

17.在中重写frameStart()函数(在第14行),代码如下:

bool MyFrameListener::frameStarted(const FrameEvent &evt)

{

if(NULL != as)

{

as->addTime;

}

return true;

}

18.在的构造函数中创建关联监听类对象(m_pRoot->addFrameListener(new MyFrameListener());)(在第50行)

19. 找到的onKeyDown()(的第296行)使用switch语句,判断用户按下的按键,代码如下:

case'M':

CreateAnimation("MyAnimation");

break;

生成项目

使用“生成项目”功能可以将程序的源代码文件编译为可执行的二进制文件,方法十分简单:在“生成”菜单中选择“生成解决方案”。

在项目生成过程中,“输出”窗口会实时显示生成的进度和结果。如果源代码中不包含语法错误,会在最后提示生成成功,如下图所示:

如果源代码中存在语法错误,“输出”窗口会输出相应的错误信息(包括错误所在文件的路径,错误在文件中的位置,以及错误原因),并在最后提示生成失败。此时在“输出”窗口中双击错误信息所在的行,OS Lab会使用源代码编辑器打开错误所在的文件,并自动定位到错误对应的代码行。可以在源代码文件中故意输入一些错误的代码(例如删除一个代码行结尾的分号),然后再次生成项目,然后在“输出”窗口中双击错误信息来定位存在错误的代码行,将代码修改正确后再生成项目。

执行项目

在MFCOgre1中选择“调试”菜单中的“开始执行(不调试)”,可以执行刚刚生成的程序,运行出实验要求的结果

三.实验结果(包括必要的截图)

注释:由于实现了曲线运动,所以相应代码如下,每个球的曲线运动轨迹相同,故只实现了下面的两个球体。

/*判断动画是否存在,如果动画存在,删除已有的动画*/

if (m_pSceneManager->hasAnimation(MyAnimation))

{

m_pSceneManager->destroyAnimation(MyAnimation);

}

To specify snap grid spacing:

1. On the View menu, click Edit Snap Grid....

2. In the Specify snap grid spacing menu, type . By default, length units will be in feet, however, you can type a value followed by a unit .: "in" or "m") and the length will be converted to feet.

3. Click OK.

To define the default floor height:

1. In the Floor Height box(on the above Toolbar), type .

To create the room:

1. In the View toolbar, click Top View

( ).

2. In the Tools toolbar, click Add a Rectangular Room

( ).

3. In the Z Plane box, type .

4. In the coordinate boxes enter the following values: X1: , Y1: , X2: , Y2: .

5. Click Create.

Replicate the room to create three floors.

1. In the View toolbar, click the Selection Too l icon

.

2. Select the room.

3. In the Tools toolbar, click the Move Objects icon

.

4. Select Copy Mode.

5. In the Copies box type 2.

6. In the Move Z box, type .

7. Click Copy/Move.

8. Click the Zoom Fit icon to rescale the view.

Your model should now look like Figure 1.

Figure 1: The floors in the model

To define the landings:

1. Create the first landing at Z= ft. In the View toolbar, click Top View

( ). In the Tools toolbar, click Add a

Rectangular Room ( ). In the Z Plane box,

type . In the coordinate boxes enter the following values: X1: , Y1: , X2: , Y2: . Click Create.

2. Replicate the landing. In the View toolbar, click the Selection Tool icon

. Select the landing. In the Tools

toolbar, click the Move Objects icon . Select Copy Mode. In the Copies box type the Move Z box, type . Click Copy/Move.

3. Repeat for the landing on the opposite side. In the View toolbar, click Top View ( ). In the Tools toolbar, click Add a

Rectangular Room( ). In the Z Plane box,

type . In the coordinate boxes enter the following values: X1: , Y1: , X2: , Y2: . Click Create.

4. Replicate the landing. In the View toolbar, click the Selection Tool icon

. Select the landing. In the Tools

toolbar, click the Move Objects icon . Select Copy Mode. In the Copies box type 1. In the Move Z box, type . Click Copy/Move.

Your model should now look like Figure 2.

Figure 2:The floors and landings in the model

To add the first stairway on the left side of the building:

1. In the Tools toolbar, click Create Stairs between two edges

( ).

2. In the Stair Width box, type in. In the Door 1 Width box and the Door 2 Width box, type in.

3. Click on the lower landing and position the stair towards the front side of the landing. Click on the lower floor to create the stairs from the landing to the lower floor, Figure 3.

4. Use the Move Objects tool to make 1 copies of the stair, separated by 12 ft in the Z direction.

5. Add the stairs that go up from the landing. Click on the lower landing and position the stair opposite the first stairs. Click on the second floor to create the stairs from the landing to the second floor.

6. Use the Move Objects tool to make a copy of the stair, separated by 12 ft in the Z direction.

7. Repeat on the other side of the model. This time, position the first stairs on the back side of the landing.

Figure 3 : First stairs on left side of building

Add the exit doors:

1. Select the door tool ( ) and in the

Max Width box, type in.

2. Place a door adjacent to both stairs on the lowest floor. These doors are wide enough that exit

from the first floor does not affect the egress time.

3. Name the doors Right Exit and Left Exit to aid in later plotting of the exit rates through

each door, Figure 4.

Figure 4: The left Exit

Add Occupants

To add occupants:

1. Select the first (lowest) floor. On the Model menu click Add Occupants. For Occupant Count select By Number and type 100. Click OK.

2. Repeat for each floor, selecting the corresponding profile for each floor. When finished, your model should look like Figure 5.

Figure 5: Pathfinder model with occupants

Run Simulation

To run the simulation:

1. Save your document to a new folder. Use the name .

1. On the toolbar, click Run Simulation

( ). By default, the problem will be

solved using the Steering behavior mode.

2. A summary report is provided in the analysis dialog. It provides FIRST IN and LAST OUT times for each room and door. The total time required for evacuation is approximately seconds.

View Results

When the simulation is finished, the 3D Pathfinder results window will display. To view results:

1. Click the Play button. This will display the occupants as cylinders with their direction indicated by a triangle.

2. At any time click the Pause or Stop button. You can drag the time line to control the animation.

3. To view occupants as people, click the Stop button, on the Agents menu, click Show as People, then click the Play button, Figure 6.

Figure 6: Display of results

三.实验结果(包括必要的截图)

建模效果如下:

模拟人群疏散:

通过建模以及仿真模拟,可以看出结果能够满足实验要求。

四.实验体会

此次实验主要是通过构建楼层模型,添加必要的楼梯以及门和人群模型来模拟人群疏散。由于有者一定的3dmax场景建模的基础,所以做起来很顺手。实验结果能够达到预定目标。我也考虑了其实现机制,并看了其代码,虽然不太懂,但还是有一定收获,至少知道了一些定义和参数的含义,希望后面能够有机会进一步深入了解。

实验五

一.实验名称

基于OGRE的Boids算法实验

二.实验过程或实验程序(增加的代码及代码注解)

在OGRE中实现Boids算法,将OpenGL平台的MyBoids算法移植到OGRE中进行实现;

在OGRE中添加以下交互功能,通过按键或者菜单均可:

增加/减少Boids的速度;

启动/停止Cube的移动,观察Boids的跟随效果;

case 'Z':

bCubeMotion = !bCubeMotion;

break;

case 'X':

StepSpeed += ;

break;

case 'C':

StepSpeed -= ;

if(StepSpeed < 0) StepSpeed=0;

break;

case ' ':

StepSpeed=0;

bCubeMotion = !bCubeMotion;

break;

改变4个规则的权值(0-1之间),观察Boids的飞行效果;

#define Separation

#define Aligment

#define Cohesion

#define Follow

基于OGRE的Boids算法实现

1.拷贝,到E:\MFCOgre1\MFCOgre1(对应的项目位置)

2.添加、到工程中

3.在中引入头文件(#include"")

4.在的OnInitialUpdate()函数(OnInitialUpdate()在MFCOgre1View的第115行)中,添加函数AllInit();

5.打开,在类中创建节点变量SceneNode* node,实体变量Entity* ent,节点变量数组SceneNode* node4[BoidsNum],实体变量数组Entity* ent4[BoidsNum],字符串数组Ogre::String Name[BoidsNum]。

6.打开,在的构造函数中对创建的节点和实体对象以及字符串数组初始化

的CreateEntity函数中创建实体,并将实体绑定到节点上

的OnTimer消息响应函数中添加CubMotion(),设置节点的node的位置;添加BoidsMotion(),设置节点数组node4[BoidsNum]的位置

void CMFCOgre1View::OnTimer(UINT_PTR nIDEvent)

{

m_pRoot->renderOneFrame();

CFormView::OnTimer(nIDEvent);

CubeMotion();

node->setPosition(CubePosition[0],CubePosition[1],CubePosition[2]+40);

BoidsMotion();

for(int i=0;i

{

VR实验报告

《虚拟现实技术》课堂实验报告(2015-2016学年第2学期) 班级:地信1102 姓名:曹晓东 学号:31130503

实验一:Sketch Up软件认识与使用 一、实验目的与要求: 1. 目的 通过本次实验,使学生掌握Sketch Up软件的基本架构,理解利用Sketch Up进行场景制作的基本步骤,能够熟练运用Sketch Up软件的主要功能及相关工具。 2. 要求 每位学生进行Sketch Up软件的安装和配置,操作练习Sketch Up的主要功能及相关工具,理解体会各种操作的执行结果,并独立总结撰写完成实验报告。 二、Sketch Up的主要功能: 边缘和平面:这是绘图最基本的元素 每个 Sketch Up 模型皆由两种元素组成:边缘和平面。边缘是直线,而平面是由几条边缘构成一个平面循环时所形成的平面形状。例如,矩形平面是由四条边缘以直角角度互相连接在一起所构成的。自己可在短时间内学会使用 Sketch Up 的简单工具,从而绘制边缘和平面来建立模型。一切就是这么简单容易! 推/拉:从 2D 迅速转为 3D 使用 Sketch Up 专利设计的 [推/拉] 工具,可以将任何平面延伸成立体形状。单击鼠标就可开始延伸,移动鼠标,然后再单击即可停止延伸。自己可以将一个矩形推/拉成一个盒子。或绘制一个楼梯的轮廓并将其推/拉成立体的 3D 形状。想绘制一个窗户吗?只需在墙上推/拉出一个孔即可。Sketch Up 易于使用而广受欢迎,原因就在于其推/拉的功能。 精确测量:以精确度来进行作业处理 Sketch Up 特别适合在 3D 环境中进行迅速的绘图处理,但是它的功能不仅仅只是一只神奇的电子画笔而已。因为当自己在计算机上进行绘图处理时,自己在 Sketch Up 中所建立的一切对象都具有精确的尺寸。当自己准备好要建立模型时,自己可以随意根据自己想要的精确度来进行模型的建立。如果自己愿意,自己可以将模型的比例视图打印

虚拟仿真(虚拟现实)实验室解决方案设计

数虎图像提供虚拟仿真实验室硬件设备搭建和内容制作整体解决 方案 虚拟现实实验室是虚拟现实技术应用研究就的重要载体。 随着虚拟实验技术的成熟,人们开始认识到虚拟实验室在教育领域的应用价值,它除了可以辅助高校的科研工作,在实验教学方面也具有如利用率高,易维护等诸多优点.近年来,国内的许多高校都根据自身科研和教学的需求建立了一些虚拟实验室。数虎图像拥有多名虚拟现实软硬件工程师,在虚拟现实实验室建设方面有着无与伦比的优越性! 下面请跟随数虎图像一起,让我们从头开始认识虚拟现实实验室。【虚拟现实实验室系统组成】: 建立一个完整的虚拟现实系统是成功进行虚拟现实应用的关键,而要建立一个完整的虚拟现实系统,首先要做的工作是选择确实可行的虚拟现实系统解决方案。 数虎图像根据虚拟现实技术的内在含义和技术特征,并结合多年的虚拟现实实验室建设经验,最新推出的虚拟现实实验室系统提供以下组成:

虚拟现实开发平台: 一个完整的虚拟现实系统都需要有一套功能完备的虚拟现实应用开发平台,一般包括两个部分,一是硬件开发平台,即高性能图像生成及处理系统,通常为高性能的图形计算机或虚拟现实工作站;另一部分为软件开发平台,即面向应用对象的虚拟现实应用软件开发平台。开发平台部分是整个虚拟现实系统的核心部分,负责整个VR场景的开发、运算、生成,是整个虚拟现实系统最基本的物理平台,同时连接和协调整个系统的其它各个子系统的工作和运转,与他们共同组成一个完整的虚拟现实系统。因此,虚拟现实系统开发平台部分在任何一个虚拟现实系统中都不可缺少,而且至关重要。 虚拟现实显示系统: ·高性能图像生成及处理系统 ·具有沉浸感的虚拟三维显示系统 在虚拟现实应用系统中,通常有多种显示系统或设备,比如:大屏幕监视器、头盔显示器、立体显示器和虚拟三维投影显示系统,

虚拟现实与仿真实验报告

合肥工业大学 计算机与信息学院 实验报告 课程:虚拟现实与仿真技术 专业班级:计算机科学与技术11-2班 学号: 姓名:谢云飞 实验一 一.实验名称

从3Dmax8中导出mesh并添加mesh到场景。 二.实验过程或实验程序(增加的代码及代码注解) 启动3Dmax 1.在安装有3Dmax8的计算机上,可以使用两种不同的方法来启动3Dmax8: (1)在桌面上双击“3Dmax8”图标 (2)点击“开始”菜单,在“程序”中的选择“3Dmax8” 2.观察3Dmax8主窗口的布局。3Dmax8主要由若干元素组成:菜单栏、工具栏、以及停靠在右边的命令面板和底部的各种工具窗口 使用3Dmax8建模并导出mesh 导出mesh的步骤如下: 1.启动3Dmax8 2.在停靠在右边的命令面板中,点击几何体按钮 3.选择标准几何体 4.在对象类型中选择对象(如:长方体),在“前”视口中,通过单击鼠标左键,创建出模型 5.在工具栏中单击“材质编辑器”按钮,通过上步操作,可开启“材质编辑器”对话框 6.在“材质编辑器”对话框中,点击漫反射旁方形按钮,进入到“材质/贴图浏览器” 7.在“材质/贴图浏览器”中选择位图,鼠标左键双击位图 8.弹出选择位图图像文件对话框,从本地电脑中选择一张图片 9.选择好图片,在材质编辑器对话框中,点击将材质指令给选定对象 10.点击菜单栏上的oFusion按钮,在弹出的菜单栏中选择Export Scene 11.选择文件夹并输入文件名qiu,点击保存,在弹出的对话框中勾选Copy Textures,点击Export按钮,此时mesh文件已成功导出 导出的mesh文件放入到指定位置 1.找到mesh文件,把mesh文件放到当前电脑的OgreSDK的models中,以我的电脑为例,OgerSDK放在C盘中 2.打开C盘,找到OgreSDK,打开OgreSDK,找到media,打开media文件夹,找到models,打开models文件夹,将mesh文件复制到此文件夹中 3.将导出mesh文件附带的材质文件放到OgreSDK的scripts (C:\OgreSDK\media\materials\scripts)中 4.将导出mesn文件时同时导出的图片放到OgreSDK的textures (C:\OgreSDK\media\materials\textures)中

虚拟现实技术-综述

浅谈虚拟现实技术在规划领域中的应用 作者:Why 摘要:随着信息时代的到来,越来越多的高新技术应用到社会的各个领域中来,而作为信息技术发展的首要驱动力的“虚拟现实”技术也越来越多地应用到规划领域中来。本文着重论述了虚拟现实技术在城市规划中的应用范围、应用的意义及其为我们带来的便利。 关键词:虚拟现实、范围、发展、迫切性、城市规划 虚拟现实(Virtual Reality,简称VR),又称灵境技术,是90年代为科学界和工程界所关注的技术。它的兴起,为人机交互界面的发展开创了新的研究领域;为智能工程的应用提供了新的界面工具;为各类工程的大规模的数据可视化提供了新的描述方法。它是一种基于可计算信息的沉浸式交互环境,具体的说,就是采用以计算机技术为核心的现代高科技生成逼真的视、听、触觉一体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互使用、相互影响,从而产正亲临其境的真实环境的感受和体验。这种技术的应用,改进了人们利用计算机进行多工程数据处理的方式,尤其在需要对大量抽象数据进行处理时;同时,它在许多不同领域的应用,可以带来巨大的经济效益。 1、虚拟现实技术的发展概述 1965年,Sutherland在篇名为《终极的显示》的论文中首次提出了包括具有交互图形显示、力反馈设备以及声音提示的虚拟现实系统的基本思想,从此,人们正式开始了对虚拟现实系统的研究探索历程。 随后的1966年,美国MIT的林肯实验室正式开始了头盔式显示器的研制工作。在这第一个HMD的样机完成不久,研制者又把能模拟力量和触觉的力反馈装置加入到这个系统中。1970年,出现了第一个功能较齐全的HMD系统。基于从60年代以来所取得的一系列成就,美国的JaronLanier在80年代初正式提出了“VirtualReality”一词。 80年代,美国宇航局(NASA)及美国国防部组织了一系列有关虚拟现实技术的研究,并取得了令人瞩目的研究成果,从而引起了人们对虚拟现实技术的广泛关注。1984年,NASAAmes研究中心虚拟行星探测实验室的M.McGreevy和J.Humphries博士组织开发了用于火星探测的虚拟环境视觉显示器,将火星探测器发回的数据输入计算机,为地面研究人员构造了火星表面的三维虚拟环境。在随后的虚拟交互环境工作站(VIEW)项目中,他们又开发了通用多传感个人仿真器和遥现设备。 进入90年代,迅速发展的计算机硬件技术与不断改进的计算机软件系统相匹配,使得基于大型数据集合的声音和图象的实时动画制作成为可能;人机交互系统的设计不断创新,新颖、实用的输入输出设备不断地进入市常而这些都为虚拟现实系统的发展打下了良好的基矗例如1993年的11月,宇航员利用虚拟现实系统成功地完成了从航天飞机的运输舱内取出新的望远镜面板的工作,而用虚拟现实技术设计波音777获得成功,是近年来引起科技界瞩目的又一件工作。可以看出,正是因为虚拟现实系统极其广泛的应用领域,如娱乐、军事、航天、设计、生产制造、信息管理、商贸、建筑、医疗保险、危险及恶劣环境下的遥操作、教育与培训、信息可视化以及远程通讯等,人们对迅速发展中的虚拟现实系统的广阔应用前景充满了憧憬与兴趣。 2、虚拟现实在规划领域的应用范围 虚拟现实在规划信息存储和查询系统中的应用 例如土质数据库系统,地域信息系统,地理信息系统,城市政策信息系统等。这一类系

虚拟现实实验报告

虚拟现实实验报告 篇一:虚拟现实技术实验报告 虚拟现实技术实验报告 实验一:Sketch Up软件认识与使用 一、实验目的与要求: 1. 目的 通过本次实验,使学生掌握Sketch Up软件的基本架构,理解利用Sketch Up进行场景制作的基本步骤,能够熟练运用Sketch Up软件的主要功能及相关工具。 2. 要求 每位学生进行Sketch Up软件的安装和配置,操作练习Sketch Up的主要功能及相关工具,理解体会各种操作的执行结果,并独立总结撰写完成实验报告。 二、Sketch Up的主要功能: 边缘和平面:这是绘图最基本的元素 每个 Sketch Up 模型皆由两种元素组成:边缘和平面。边缘是直线,而平面是由几条边缘构成一个平面循环时所形成的平面形状。例如,矩形平面是由四条边缘以直角角度互相连接在一起所构成的。自己可在短时间内学会使用Sketch Up 的简单工具,从而绘制边缘和平面来建立模型。一切就是这么简单容易! 推/拉:从 2D 迅速转为 3D

使用 Sketch Up 专利设计的 [推/拉] 工具,可以将任何平面延伸成立体形状。单击鼠标就可开始延伸,移动鼠标,然后再单击即可停止延伸。自己可以将一个矩形推/拉成一个盒子。或绘制一个楼梯的轮廓并将其推/拉成立体的 3D 形状。想绘制一个窗户吗?只需在墙上推/拉出一个孔即可。Sketch Up 易于使用而广受欢迎,原因就在于其推/拉的功能。 精确测量:以精确度来进行作业处理 Sketch Up 特别适合在 3D 环境中进行迅速的绘图处理,但是它的功能不仅仅只是一只神奇的电子画笔而已。因为当自己在计算机上进行绘图处理时,自己在 Sketch Up 中所建立的一切对象都具有精确的尺寸。当自己准备好要建立模型时,自己可以随意根据自己想要的精确度来进行模型的建立。如果自己愿意,自己可以将模型的比例视图打印出来。如果自己有 Sketch Up Pro,自己甚至还可将自己的几何图形导出到 AutoCAD 和 3ds MAX 等其他程序内。 路径跟随:建立复杂的延伸和板条形状 使用 Sketch Up 创新万能的 [路径跟随] 工具,可以将平面沿预先定义的路径进行延伸以建立 3D 形状。沿 L 形线路延伸一个圆形即可建立一个弯管的模型。绘制瓶子的一半轮廓,然后使用 [路径跟随] 工具沿一个圆形来扫动,就能建立一个瓶子。自己甚至还可以使用 [路径跟随] 工具

交通仿真中的虚拟现实技术

图1.1:虚拟现实的3I特交通仿真中的虚拟现实技术 【摘要】虚拟现实技术是当今科技发展的新热点,虚拟现实技术也越来越多的成为交通仿真领域应用软件发展的新趋势。本文简要介绍了虚拟现实技术的特点,探讨了在交通仿真中虚拟现实技术的应用情况,并对虚拟现实技术在这些领城的发展进行了展望。 【关键词】虚拟现实;交通仿真 随着我国的交通事业迅速的发展。在交通仿真应用软件不断更新,除了模型本身,虚拟现实技术的应用越来越多的成为这些软件发展的新趋势以及评价的一个重要指标,为实际应用提供了更为直观、有效的工具。本文就交通仿真中虚拟现实技术的应用进行了分析和介绍,并对今后交通仿真领域虚拟现实技术的发展进行了展望。 一、虚拟现实技术综述 虚拟现实技术(virtual reality, VR),又称临境技术,是以沉浸性、交互性和构想性为基本特征(如图1.1)的计算机高级人机界面。它综合利用了计 算机图形学、仿真技术、多媒体技术、人工智能技术、 计算机网络技术、并行处理技术和多传感器技术,模拟 人的视觉、听觉、触觉等感觉器官功能,使人能够沉浸 在计算机生成的虚拟境界中,并能够通过语言、手势等 自然的方式与之进行实时交互,创建了一种适人化的多维信息空间。使用者不仅能够通过虚拟现实系统感受到在客观物理世界中所经历的“身临其境”的逼真性,而且能够突破空间、时间以及其它客观限制,感受到真实世界中无法亲身经历的体验。 虚拟现实技术具有超越现实的虚拟性。虚拟现实系统(如图1.2)的核心设备仍然是计算机。它的一个主要功能是生成虚拟境界的图形,故此又称为图形工作站。图像显示设备是用于产生立体视觉效果的关键外设,目前常见的产品包括光阀眼镜、三维投影仪和头盔显示器等。其中高档的头盔显示器在屏蔽

基于虚拟现实技术的景物仿真

基于虚拟现实技术的景物仿真 毕业 基于虚拟现实技术的景物仿真摘要:虚拟现实(Virtual Reality,简称VR),是1种基于可计算信息的沉浸式交互环境。具体地说,就是采用以计算机技术为核心的现代高科技生成逼真的视、听、触觉1体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互作用、相互影响,从而产生亲临等同真实环境的感受和体验。本设计是1个基于VRML(虚拟现实建模语言)的虚拟校园系统,它要求实现虚拟现实中基本的场景建立和在场景中漫游,本程序建立场景所需的建筑物均在3DS MAX 中建立,然后以VRML97的格式导出并保存为.wrl文件,这样在VrmlPad编辑器中可以打开这些文件了。然后在VRML编辑环境下,通过添加材质、纹理、传感器、声音、动画等来完善该虚拟校园系统,并通过内联(Inline)、锚点(Anchor)造型节点来实现室外与室内的链接和切换。最后在VRML浏览器中通过键盘和鼠标的移动来漫游观看该虚拟系统。为了使场景漫游更真实,还须在场景图中设置碰撞节点,从而防止观察者从场景中的物体(如教学楼)中穿过或进入不可见的视角观察。关键字:虚拟现实;VRML;漫游;场景;碰撞检测。 Scenery Simulation base on Virtual Reality Technology Abstract: Virtual Reality(VR), It is a immersing type base on the communication that could be calculate. Concretely to say, adopt taking technology of the computer as the core modern Hi-Tech turn into lifelike look ,listen,sense of touch integrated specific fictitious environment of range, users carry on the reciprocation , influence each other with the target in the fictitious environment by way of nature through the essential equipment, thus produced and came personally the feeling and experience of the true environment equally. It is a system of virtual reality school based on VRML technology,and it demands realizing that the basic scene is set up and one can roam in the scene of virtual reality, This procedure sets up buildings of the scene in 3DS MAX then exports and saves them in the format of .wrl files. Under the environment of VrmlPad, we can open these files and perfect the scenes by adding material,texture,sensors,sounds and interpolators.By the node of inline,anchor,we can realize linking or transfering between different scenes.In the end,we can roam the virtual reality system through the movement of the keyboard and mouse in the VRML explorer.In order to approach Reality,a node of collision must be set up to prevent observer from wear or enter impossible visual angle which can’t be observed from object of scene. Keywords: Virtual Reality;VRML;roaming;scene;Collision detecting. 目录前言 1 1 虚拟现实介绍 2 1.1 虚拟现实的定义 2 1.2 虚拟现实系统的发展历史 2 1.3 虚拟现实系统的应用 3 1.4虚拟现实系统的发展方向 4 2 系统开发环境介绍 5 2.1 VRML概

虚拟现实实习报告

虚拟现实实习报告 篇一:VR虚拟现实实验报告 《虚拟现实技术》课堂实验报告 (XX-XX学年第2学期) 班级:地信一班 姓名:冯正英 学号: 3 实验一:Sketch Up软件认识与使用 一、实验目的与要求: 1. 目的 通过本次实验,使学生掌握Sketch Up软件的基本架构,理解利用Sketch Up进行场景制作的基本步骤,能够熟练运用Sketch Up软件的主要功能及相关工具。 2. 要求 每位学生进行Sketch Up软件的安装和配置,操作练习Sketch Up的主要功能及相关工具,理解体会各种操作的执行结果,并独立总结撰写完成实验报告。 二、Sketch up的主要功能: 1、独特而便捷的推拉工具:功能强大且操作简便的推拉工具,所有的造型几乎都可从推拉方式中完成。 2、可汇入导出AutoCAD的各式图面:可读取与写出各版本的AutoCAD DWG格式,并可自模型中汇出平、立、剖面

的DWG图面,让您延用原有的设计而无须重新处理。 3、精确的尺寸输入与文字注释:所有的外型不再只是大约的视觉比例,透过数值输入框可赋予精密而正确的尺寸,也能直接在立体图面上进行尺寸标注和注释,大大地增强图面解说力。 4、随贴即用的材质彩绘功能:任何的图像档均能搭配彩绘工具贴附于模型表面,无须经过彩现计算,便能直接呈现出材质的原貌,既快速又有效率。所有材质均可立即编修大小比例、角度与扭转变形,并直接调整透明度。 5、随贴即用的材质彩绘功能:任何的图像档均能搭配彩绘工具贴附于模型表面,无须经过彩现计算,便能直接呈现出材质的原貌,既快速又有效率。所有材质均可立即编修大小比例、角度与扭转变形,并直接调整透明度。 6、动态剖面:提供即时互动的剖面功能,清楚的呈现出剖切后的空间状态。透过场景功能,还可以动态模拟剖面的生成效果。 7、卓越的路径跟随建构能力:只需设计出所要的断面,便能沿着路径组合出各种复杂的造型。 8、全新的Layout布图能力:以类似于AutoCAD图纸空间的方式,将多种不同的图面角度和内容,依您的需要置放在Layout图纸上,并可直接标注尺寸、注释和加注图框,完全不需要再使用传统的2D软件即可完成图说。

VR虚拟训练仿真系统

VR虚拟训练仿真系统

目录 一概述 (3) 1.1 项目背景及目标 (3) 1.2 系统优点 (3) 二系统功能 (4) 2.1 地形选择 (4) 2.2 沉浸式畅游 (4) 2.3 模拟射击 (4) 2.4 参数分析 (4) 2.5 模拟对抗训练 (4) 三系统组成 (4) 3.1 系统组成框图 (5) 四系统模块设计 (5) 4.1 地形编辑 (5) 4.2 模型设计 (6) 4.3 数据分析 (6) 4.4 对抗训练 (7) 4.5 沉浸式畅游 (7)

一概述 1.1 项目背景及目标 VR虚拟训练仿真系统是以VR虚拟技术与真实枪械模型相结合所开发出来的虚拟仿真系统。 采用VR技术模拟出逼真多维的环境,通过立体头盔、数据服和数据手套或三维鼠标操作传感装置,做出或选择相应的战术动作。通过不同的处置方案,体验不同的作战效果,进而像参加实战一样,锻炼和提高战术水平、快速反应能力和心理承受力,培养作战技能。包含枪械射击、对抗训练等项目。 1.2 系统优点 (1)VR虚拟训练仿真系统优点,分别是:不受环境影响、性价比高、观赏性强、仿真度高。 不受环境影响:无需亲临现场就可以起到真实的操作过程,不受条件的约束。 性价比高:实际的实验造价高,成本高,运用VR技术可以大大的较少成本,让您以最低的成本完成实验的真实效果。 开放性好:提供各类武器、装备的高精度复原、特性展示、虚拟拆装训练等功能。 观赏性强:VR虚拟训练仿真系统有专门的的武器展间,会罗列出不同型号的枪械。 仿真度高:整个系统是采用真实的物理模型,结合三维设计模型,制作复杂的作战地形、雨雪天气等各种可能对战局产生影响的场景或事件,实现真实对抗,为对抗训练起到一个有力指导。 (2)虚拟现实技术具有3大特征,分别是沉浸感、交互性、想象性:沉浸性:是指利用计算机产生的三维立体图像,让人置身于一种虚拟环境中,就像在真实的客观世界中一样,能给人一种身临其境的感觉; 交互性:在计算机生成的这种虚拟环境中,人们可以利用一些传感设备进行交互,感觉就像是在真实客观世界中一样,比如:当用户用手去抓取虚拟环境中的物体时,手就有握东西的感觉,而且可感觉到物体的重量; 想象性:虚拟环境可使用户沉浸其中并且获取新的知识,提高感性和理性认识,从而使用户深化概念和萌发新的联想,因而可以说,虚拟现实可以启发人的创造性思维。

虚拟现实技术实验报告----创建VRML基本造型

虚拟现实技术实验报告----创建VRML基本 造型 华北水利水电学院虚拟现实技术实验报告 20XX~20XX学年第二学期 20XX 级计算机科学与技术专业班级: 20XX153 学号: 20XX15320 姓名:李晓娜 实验二创建VRML基本形体 一、实验目的: 掌握创建虚拟现实复杂形体的方法与步骤,掌握虚拟现实背景环境、光照、纹理贴图、视点的创建与使用。 二、试验内容: 1)虚拟现实复杂组合形体的构建 2)虚拟现实背景建模与特殊场景效果的实现 3)虚拟现实光照与纹理贴图 4)虚拟现实视点的创建与使用 三、试验步骤: 1)虚拟现实复杂组合形体的构建 1、设置背景颜色,skyColor 1 1 1,即白色。 2、构造Shape造型节点。设置外观,材质漫反射颜色为:,即红色;几何造型为Box,其size为:10 5。 3、创建坐标变换节点。位置变换translation为- 0 ,旋转rotation为:1 0 0 ,子结点为挤压造型,外观颜色

设置为红色,其中crossSection [0 0 0 2 0 2 ] spine [ 0 0 0 9 0 0] solid 为:FALSE。 4、构造坐标变换节点,translation 为:2 - - rotation为: 0 1 0 其子结点children为文本造型,字符串为:“20XX15320”。 5、构造坐标变换节点,translation为:-4 -5 ,其子结点children中定义shape节点造型,命名为:leg,材质漫反射颜色为红色,几何造型节点为:Box,其size为: 6 6、连续创建3个坐标变换节点,分别设置其translation 值,子结点children引用leg。 7、创建桌子下面的横木。构造坐标变换节点,translation为:-4 -6 0 子结点children中为shape节点命名为:hengmu,外观漫反射颜色为:红色;几何造型为:Box,大小size为: 3。然后再构造一个坐标变换节点,子结点引用hengmu。 2)虚拟现实背景建模与特殊场景效果的实现 1、背景建模。构建空间全景:skyAngle [ ] skyColor [ 0 0 1 0 1 1 ] groundAngle [ ] groundColor [ ] 2、创建树坐标变换节点,命名为Tree,子节点项目children中的值为老师所给的素材shu, 第 1 页共 4 页 以备以后调用。

虚拟现实技术的概念与类型

虚拟现实技术的概念和类型 虚拟现实技术的概念和类型 1. 虚拟现实的概念 虚拟现实技术是利用三维图形生成技术、多传感交互技术以及高分辨显示技术,生成三维逼真的虚拟环境,使用者戴上特殊的头盔、数据手套等传感设备,或利用键盘、鼠标等输入设备,便可以进入虚拟空间,成为虚拟环境的一员,进行实时交互,感知和操作虚拟世界中的各种对象,从而获得身临其境的感受和体会。 2. 虚拟现实的特征 (1) 沉浸性 虚拟现实技术是根据人类的视觉、听觉的生理心理特点,由计算机产生逼真的三维立体图像.使用者戴上头盔显示器和数据手套等交互设备,便可将自己置身于虚拟环境中,成为虚拟环境中的一员。使用者和虚拟环境中的各种对象的相互作用,就如同在现实世界中的一样。当使用者移动头部时,虚拟环境中的图像也实时地跟随变化,拿起物体可使物体随着手的移动而运动,而且还可以听到三维仿真声音。使用者在虚拟环境中,一切感觉都是那么逼真,有一种身临其境的感觉。。 (2) 交互性 虚拟现实系统中的人机交互是一种近乎自然的交互,

使用者不仅可以利用电脑键盘、鼠标进行交互,而且能够通过特殊头盔、数据手套等传感设备进行交互。计算机能根据使用者的头、手、眼、语言及身体的运动,来调整系统呈现的图像及声音。使用者通过自身的语言、身体运动或动作等自然技能,就能对虚拟环境中的对象进行考察或操作。 (3) 想象 由于虚拟现实系统中装有视、听、触、动觉的传感及反应装置,因此,使用者在虚拟环境中可获得视觉、听觉、触觉、动觉等多种感知,从而达到身临其境的感受。 3.虚拟现实技术的类型 (1) 桌面虚拟现实 (2) 沉浸的虚拟现实 (3) 增强现实性的虚拟现实 (4) 分布式虚拟现实 4.虚拟现实技术在网络教育中的作用 (1) 弥补远程教学条件的不足 在远程教学中,往往会因为实验设备、实验场地、教学经费等方面的原因,而使一些应该开设的教学实验无法进行。利用虚拟现实系统,可以弥补这些方面的不足,学生足不出户便可以做各种各样的实验,获得和真实实验一样的体会,从而丰富感性认识,加深对教学内容的理解。 (2) 避免真实实验或操作所带来的各种危险

虚拟现实技术-实习报告

虚拟现实技术小组实习报告 学院遥感信息工程学院 班级XXX班 组员 汤XX 王XX 郑XX 指导教师XXX 日期20XX.11.XX

(一)小组实习报告 一、实习目的 1、了解和熟悉了3ds max、unity 3D等虚拟现实设计建模及开发软件各自的功能和操作。 2、了解并掌握利用c++进行虚拟现实漫游系统开发的基本算法和理念。 3、加深对课本所学的理论知识的理解和掌握,掌握虚拟现实技术的基本概念、原理、分类、特性等,学会利用一些常用的虚拟现实设计软件进行虚拟现实系统的开发设计。 二、实习内容 设计并实现了古代小镇五侠镇虚拟现实的漫游系统。本次实习我们小组在3DS MAX里进行三维场景创建、修改导出为FBX模型之后,导入unity3D再通过使用unity3D 进行三维漫游系统设计与开发,最后导出exe文件。 三、实习实现方案 对于此次虚拟现实漫游系统设计,我们组考虑以古代小镇为背景场景设计建模漫游系统对象,所建立的漫游系统将包括小镇房屋、地形、河流、喷泉、天气变化等基本对象,使用unity3D添加河流、光照、喷泉等特效;使用脚本编辑完成天气的变化;每个房屋和树木进行碰撞体添加之后完成碰撞检测功能;通过添加粒子系统完成了落叶等效果。 3.1 3dsmax简介 3dsmax是美国Autodesk公司旗下优秀的电脑三维动画、模型和渲染软件,全称:3D Studio MAX。该软件早期名为3DS,是应用在dos下的三维软件,之后随着PC机的高速发展,Autodesk公司于1993年开始研发基于PC 下的三维软件,终于在1996年3D Studio MAX V1.0问世,图形化的操作界面,使应用更为方便。3D Studio MAX从V4.0开始简写成3dsmax,随后历经V1.2,2.5,3.0,4.0,5.0(未细分).....Autodesk坚持不懈的努力不断更新更高级的版本,逐步完善了灯光、材质渲染,模型和动画制作。广泛应用于三维动画、影视制作、建筑设计等各种静态、动态场景的模拟制作。 3.2 Unity 3D简介 Unity3D是由Unity Technologies开发的一个让玩家轻松创建诸如三维视频游戏、建筑可视化、实时三维动画等类型互动内容的多平台的综合型游

《熠熠发光的虚拟现实技术》阅读理解及答案

2013年中考说明文阅读题精选:熠熠发光的虚拟现实技术 阅读下面选文,完成12-16题。 熠熠发光的虚拟现实技术 刘露 2010年上海世博会已在全球瞩目之中落下了帷幕,但是,“永不落幕”的网上世博会却依然吸引无数游客的眼球。世博史上首个“在线世博”成为中国举办世博会的一大创举,“在线世博”充分利用和借助3D、虚拟现实和互联网技术将上海世博会的精彩内容以虚拟和现实相结合的方式呈现出来,打造出一个能够进行三维体验和互动交流的综合性网络平台,为世博会插上数字化的翅膀,使世博会得到更广泛的传播。上海世博会惟妙惟肖的网上展馆以及2.8亿次的点击访问量,已经让虚拟现实技术展现出了巨大的吸引力。 虚拟现实是一种可以创建和体验虚拟世界的计算机系统。它充分利用计算机硬件与软件资源的集成技术,提供了一种实时的、三维的虚拟环境,使用者完全可以进入虚拟环境中,观看计算机产生的虚拟世界,听到逼真的声音,在虚拟环境中交互操作,有真实感,可以讲话,甚至能够嗅到气味。 虚拟与现实两词具有相互矛盾的含义,把这两个词放在一起,似乎没有意义,但是科学技术的发展却赋予了它新的含义。 虚拟现实的关键技术可以包括以下几个方面:1、动态环境建模技术;2、实时三维图形生成技术;3、应用系统开发工具;4、系统集成技术。使用者不仅能够通过虚拟现实系统感受到在客观物理世界中所经历的“身临其境”的逼真性,而且能够突破空间、时间以及其他客观限制,感受到真实世界中无法亲身经历的体验。 现在虚拟现实技术已经和理论分析、科学实验一起,成为人类探索客观世界规律的三大手段。当人们需要构造当前不存在的环境(合理虚拟现实)、人类不可能达到的环境(夸张虚拟现实)或构造纯粹虚构的环境(虚幻虚拟现实)以取代需要耗资巨大的真实环境时,就可以利用虚拟现实技术。 虚拟现实技术的应用前景十分广阔。它始于军事和航空航天领域的需求——早在20世纪70年代,美国便开始将虚拟现实技术用于培训宇航员。随后,这种省钱、安全、有效的虚拟方法被推广到各行各业中。例如,克莱斯勒公司1998年初便利用虚拟现实技术,在设计某两种新型车上取得突破,首次使设计的新车直接从计算机屏幕投入生产线,也就是说完全省略了中间的试生产过程。 近年来,虚拟现实技术更是大步走进工业、建筑设计、教育培训、文化娱乐等各个方面,逐渐改变着我们的生活。而在虚拟现实技术的应用领域,基于互联网的应用开始显现出前所未有的爆发力。 国内为数不少的数字科技馆、数字规划馆、数字博物馆都已经开始采用虚拟现实技术。馆内展品都经过虚拟现实技术得到了1:1的数码还原,供人们在网上“端详”、“赏玩”。 此外,根据国外媒体的报道,澳大利亚新南威尔士大学采矿工程学系,还利用虚拟现实技术开发出面向煤炭开采行业的培训系统,并为国外一些先进的采矿公司所使用。该系统通过虚拟现实技术,模拟出矿坑内常见问题,让矿工们针对自主逃生、倒班前矿车检查、危险预警、隔离程序、瓦斯管理、煤层自燃等各种环节进行训练,以此降低矿难造成的伤亡。该大学采矿工程学系教授罗伯特·路易斯说:“这个项目可以让人更深刻理解虚拟现实技术对人类的影响,它的作用远不只展示和娱乐。” 虚拟现实技术的应用领域日趋网络化、多元化,虚拟现实技术将与人类更加贴近,未来互联网的主角很有可能就是虚拟现实技术。

虚拟现实VR系统开发软件使用说明书V1.0

第一章系统概述 1.1 系统介绍 “虚拟现实VR系统开发软件”是基于客户/服务器模式,其中服务器提供VR文件及支持资源客户通过网络下载希望访问的文件,并通过本地平台上的VR 浏览器交互式访问该文件描述的虚拟境界。因为浏览器是本地平台提供的,从而实现了和硬件平台的无关性。VR象HTML一样,是一种ASCII码描述语言,它是一套告诉浏览器如何创建一个三维世界并在其中航行的指令,这些指令由再现器解释执行,再现器是一个内置于浏览器中或外部的程序。由于VR是一个三维造型和渲染的图形描述性语言,复杂的3D术语转换为动态虚拟世界是高速的硬件和浏览器,又由于其交互性强和跨平台性,使虚拟现实在Internet上有着广泛的应用,例如远程教育、商业宣传等等。 为此本公司研发出“基于VR的虚拟模型软件”,从用户的角度来说,基本上是HTML加上第三维,但从开发者角度来说, VR环境的产生提供了一套完全的新标准,新过程以及新的Web 技术。交叉平台和浏览器的兼容性是首先要解决的问题。设计之前,必须明确指定目标平台(PC、 Mac、SGI的新O2等等), CPU 速度、可以运行的带宽以及最适合使用的VR浏览器。 1.2系统功能概述 1.建模 “虚拟现实VR系统开发软件”的建造概念和其他工程建模概念相似,必须解决交流的问题,画出草图并研究材质的处理,生成模型、空间、化身,但必须考虑一些技术的限制,如,考虑到目标平台,决定在VR文件中放入多少多边图形;预先考虑到虚拟现实VR系统开发软件执行的动作,把相应的目标归类,用于设定三维物体之间的相互联系,建模与动画相互配合,如果归类正确合适,就会缩小生成动画效果之后文件的体积。虚拟现实的设计中必须考虑加入重力和碰撞的效果,以使虚拟现实的场景和生活中的相似。

( VR虚拟现实)虚拟仿真实训系统解决方案

(VR虚拟现实)虚拟仿真实训系统解决方案

大娱号 虚拟仿真实训系统解决方案VSTATIONHD(V1.0)

前言 近年来,由于信息技术的快速发展与国家教育部门的大力提倡,虚拟仿真实训在高职教育中开始得到广泛的应用,成为实训教学重要的组成部分和提高教学质量的重要手段。虚拟仿真技术是将多媒体技术、虚拟现实技术与网络通信技术等信息技术进行集成,构建一个与现实世界的物体和环境相同或相似的虚拟教学环境,并通过虚拟环境集成与控制为数众多的实体,构成一个虚拟仿真教学系统。虚拟仿真教学技术以提高学生的技能水平为核心,具有多感知性、沉浸性、交互性、构想性等特点。这些特点有益于教师的实训教学和学生专业核心技能的训练,为解决职业教育面临的实训难、实习难和就业难等问题开辟了一条新思路。目前,高职院校很多专业,如外语教学、旅游专业、数控技术、焊接技术、机电技术、食品加工、服装设计等专业都引入了虚拟仿真实训教学方式。虚拟仿真实训教学,已经逐渐成为高职院校教学变革的一种有效手段。

目录 前言2 一、总体需求分析4 1.1 “情景”的定义:4 1.2 为什么要在教学中使用“虚拟仿真实训系统”?5 1.3 根据教学建设,用户需求归纳如下:6 二、设计原则7 三、大娱号虚拟仿真实训系统概述8 四、大娱号虚拟仿真实训系统系统运行原理示意图:10 五、大娱号虚拟仿真实训系统构成及特点11 六、与教材同步完备的虚拟场景库16 七、大娱号虚拟仿真实训系统构成及特点18 八、大娱号虚拟仿真实训系统配置与指标19 九、系统技术支持及服务21

一、总体需求分析 通过运用学语言,已经为越来越多的教师认同。学习者必须通过“用语言”才能真正掌握语言。 让学生置身于真实的交际情景中,让学生使用语言进行交际。而真正的交际应该是互动的。当一方发出信息后,另一方根据上下文进行意义协商,作出反馈,他可以表示支持、进行反驳或提出疑问,然后接受方对反馈意见再进行意义协商,作出回应,双方如此反复交流,形成互动。互动是“交际的核心”。 语言课堂就是一个充满“交流和互动”的场所。在课堂教学中,这种互动不仅包括师生互动和生生之间互动,还应该包括教材,因为课堂上的师生互动和生生互动都是基于一定教材展开的。“大娱号”虚拟仿真实训系统能够在教材与师生之间搭起一座互动教学的桥梁。 使用“虚拟仿真实训系统”在互动教学的设计和组织上突出情景性、实训性和互动性,力求三者有机结合。 1.1“情景”的定义: 情景指的是具体场合的情形或景象。在教学过程中引入或创设生动具体的场景,有利于学生进行意义建构使其产生交际的动机。“大娱号”虚拟仿真实训系统所提供的虚拟场景可以提供直观生动的形象,通过大屏或投影再现学生在虚拟场景中的表演,可以让学生通过视觉和听觉去感受场景,产生想象和联想,激发学生的学习兴趣。参与表演的学生可以身临其境的学语言,使用虚拟仿真实训系统教学,学生觉得有话可说,有戏可演,可以

虚拟现实技术实验报告三

华北水利水电学院虚拟现实技术实验报告 2009~2010学年第二学期07 级计算机专业 班级:学号:姓名: 实验三虚拟现实复杂场景建模与漫游仿真 一、实验目的: 掌握虚拟现实技术复杂三维场景建模技术。在场景中引入环境背景、动画与交互等,构建逼真的三维场景。 二、试验要求: 本次试验为综合性质试验,要求自行设计一个较为复杂的场景或者单体模型,其中包含各种造型与渲染技术,比如纹理材质、光照、环境背景、声音视频、动画与交互等。场景内容不限。 三、试验步骤: 我感觉主要是这些物品的平移比较主要。 Transform { translation -2 0.35 0.15 children [ # import the file "int_comp2.wrl" to draw the computer on the left side of the desktop Inline {url "zhuji.wrl"} ] }, # move to draw the next object and reduce the size to 40% Transform{ translation 0.0 1.1 0.25 scale 0.4 0.4 0.4 children [ # import the file "monb11.wrl" to draw the monitor on top of the desk Inline {url "computer.wrl"} ] }, # move to draw the next object and reduce the size to 40% Transform{ translation 2 0.1 -0.05 scale 0.4 0.4 0.4 children [ # import the file "lx4'.wrl" to draw the desklamp on top of the desk Inline {url "diandeng.wrl"} ]

我对虚拟现实技术的理解和虚拟现实技术的研究热点

我对虚拟现实技术的理解和虚拟现实技术的研究热点 1 引言 虚拟现实技术是一种人- 机交互工具, 这种工具的创造或设计是基于人与周围真实世界的交互方式。交互是通过多种传感器信息来进行的, 除了视觉、听觉, 还包括触觉、力觉、嗅觉等。也就是利用计算机生成一种模拟环境, 通过多种传感器使用户“投入”到该环境中去, 实现用户与该环境进行直接自然的交互技术。这里所谓的模拟环境就是用计算机生成的具有表面色彩的立体图形, 它可以是某一特定现实世界的真实体现, 也可以是纯粹的构想世界。 2 虚拟现实技术重要的特征 ( 1) 多感知性 是指除了一般计算机技术所具有的视觉感知之外, 还有听觉感知、力觉感知、触觉感知、运动感知、甚至还包括味觉感知、嗅觉感知等。理想的虚拟现实技术应该具有一切人所具有的感知功能。由于相关技术的限制, 特别是传感技术的限制, 目前虚拟现实技术所具有的感知功能仅限于视觉、听觉、力觉、触觉、运动等几种, 无论从感知范围还是从感知的精确程度都尚无法与人相比拟。 ( 2) 存在感 又称临场感, 它是指用户感到作为主角存在于模拟环境中的真实程度。理想的模拟环境应该达到使用户难以分辨真假的程度。例如,可视场景随视点的位置而变化。 ( 3) 交互性 是指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。例如, 用户可以用手去直接抓取模拟环境中的物体, 这时手有握着东西的感觉, 并可以感觉物体的重量, 视场中被抓住的物体也立刻随着手的移动而移动。 ( 4) 自主性 是指虚拟环境中物体依据物理定律动作的程度。例如, 当受到力的推动时, 物体会向力的方向移动, 或翻倒, 或从桌面落到地面等。虚拟现实技术的四大特征使得我们不难将V R与相关技术区分开来, 如仿真技术、计算机图形技术及多

虚拟仿真施工技术

1虚拟仿真施工技术 (1)主要技术内容 虚拟仿真施工技术是虚拟现实和仿真技术在工程施工领域应用的信息化技术。虚拟仿真技术在工程施工中的应用主要有以下几方面: A.施工工件动力学分析:如应力分析、强度分析; B.施工工件运动学仿真:如机构之间的连接与碰撞 C.施工场地优化布置:如外景仿真、建材堆放位置, D.施工机械的开行、安装过程; E.施工过程结构内力和变形变化过程跟踪分析; F.施工过程结构或构件及施工机械的运动学分析; G.施工过程动态演示和回放。 (2)技术指标 虚拟仿真施工主要包含以下技术体系: A.三维建模技术 运用三维建模和建筑信息模型(BIM)技术,建立用于进行虚拟施工和施工过程控制、成本控制的施工模型。该模型能将工艺参数与影响施工的属性联系起来,以反应施工模型与设计模型之间的交互作用,施工模型要具有可重用性,因此必须建立施工产品主模型描述框架,随着产品开发和施工过程的推进,模型描述日益详细。通过BIM技术,保持模型的一致性及模型信息的可继承性,实现虚拟施工过程各阶段和各方面的有效集成。 B.仿真技术 计算机仿真是应用计算机对复杂的现实系统经过抽象和简化形成系统模型,

然后在分析的基础上运行此模型,从而得到系统一系列的统计性能。基本步骤为;研究系统→收集数据→建立系统模型→确定仿真算法→建立仿真模型→运行仿真模型→输出结果,包括数值仿真、可视化仿真和虚拟现实VR仿真。 C.优化技术 优化技术将现实的物理模型经过仿真过程转化为数学模型以后,通过设定优化目标和运算方法,在制定的约束条件下,使目标函数达到最优,从而为决策者提供科学的、定量的依据。它使用的方法包括:线性规划、非线性规划、动态规划、运筹学、决策论和对策论等。 D.虚拟现实技术 虚拟建造是在虚拟环境下实现的,虚拟现实技术是虚拟建造系统的核心技术。虚拟现实技术是一门融合了人工智能、计算机图形学、人机接口技术、多媒体工业建筑技术、网络技术、电子技术、机械技术等高新技术的综合信息技术。目的是利用计算机硬件、软件以及各种传感器创造出一个融合视觉、听觉、触觉甚至嗅觉,让人身临其境的虚拟环境。操作者沉浸其中并与之交互作用,通过多种媒体对感官的刺激,获得对所需解决问题的清晰和直观的认识。 (3)适用范围 工业与民用建筑、市政工程、土木工程施工方案编制。

相关主题
文本预览
相关文档 最新文档