当前位置:文档之家› 电路计算机仿真实验报告

电路计算机仿真实验报告

电路计算机仿真实验报告
电路计算机仿真实验报告

电路计算机仿真分析

实验报告

实验一直流电路工作点分析和直流扫描分析

一、实验目的

1、学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。

2、学习使用Pspice进行直流工作点分析和直流扫描分析的操作步骤。

二、原理与说明

对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。PSPICE软件是采用节点电压法对电路进行分析的。

使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE

的元件符号库绘制电路图并进行编辑、存盘。然后调用分析模块、选择分析类型,就可以“自

动”进行电路分析了。需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电

压方程的,因此,在绘制电路图时,一定要有参考节点(即接地点)。此外,一个元件为一

条“支路”(branch),要注意支路(也就是元件)的参考方向。对于二端元件的参考方向定

义为正端子指向负端子。

三、示例实验

应用PSPICE求解图1-1所示电路个节点电压和各支路电流。

图1-1 直流电路分析电路图

4.000V

R2

1

2.000A

0V

Idc2

4Adc

4.000A

6.000V

R1

1

4.000A

Idc1

2Adc 2.000A

R3

3

2.000A

图1-2 仿真结果

四、选做实验

1、实验电路图

(1)直流工作点分析,即求各节点电压和各元件电压和电流。

(2)直流扫描分析,即当电压源Us1的电压在0-12V之间变化时,求负载电阻R L中电流I RL随电压源Us1的变化曲线。

R4 3

Is3 2Adc

0Vs2

10Vdc

RL

1

Is1 1Adc

Is2

1Adc

R1

4

I

Is5

3Adc

R2

2

12Vdc

IPRINT

Vs3

5Vdc

Vs4

7Vdc

图1-3 选做实验电路图

2、仿真结果

Is2

1Adc

1.000A

Vs3

5Vdc

3.200A R4

3

1.200A

23.20V

Vs4

7Vdc

1.200A 0V

R1

4

2.800A

Is32Adc 2.000A

12Vdc

2.800A

I

IPRINT

3.200A

10.60V 12.00V Is11Adc 1.000A

18.80V 28.80V

15.60V

3.600V

R22

2.800A

RL

1

3.200A

18.80V

Vs2

10Vdc

2.800A Is53Adc

3.000A

I4

2Adc

图1-4 选做实验仿真结果

3、直流扫描分析的输出波形

图1-5 选做实验直流扫描分析的输出波形

4、数据输出

V_Vs1 I(V_PRINT2)

0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00

9.000E+00 2.300E+00

1.000E+01

2.400E+00

1.100E+01

2.500E+00

1.200E+01

2.600E+00

从图1-3可以得到IRL与USI的函数关系为:

I RL=1.4+(1.2/12)U S1=1.4+0.1U S1 (公式1-1)

五、思考题与讨论:

1、根据图1-1、1-3及所得仿真结果验证基尔霍夫定律。

答:根据图1-1、1-3及所得仿真结果图1-2、1-4的数据显示可以得出,回路的电压满足KVL方程,各个节点的电流满足KCL方程,验证了基儿霍夫定律。

2、怎样理解式(1-1)表示的电流I RL随U S1变化的函数关系?这个式子中的各项分别表示什么物理意义?

答:式(1-1)I RL=1.4+(1.2/12)U S1=1.4+0.1U S1表示负载电阻R L中的电流I RL与电压源U S1的电压成线性关系。式中1.4表示电压源U S1置零时其他激励在负载电阻R L上产生的电流响应,0.1U S1表示仅保留电压源U S1,其他电源置零(电流源开路,电压源短路)时,负载上产生的电流响应。

3、对图1-3的电路,若想确定节点电压UN1随US1变化的函数关系,如何使用Pspice 软件?操作分几步进行?

答:1)、在节点n1处放置节点电压探针;

2)、进行直流扫描分析:

a、单击PSpice/Edit Simulation Profile,打开分析类型对话框,选择“DC Sweep”。在“Sweep Var. Type”选择“Voltage Source”,在“Sweep Type”选择“Linear”,在“Name”选择“Vs1”,在“Start Value”输入“0”,“End Value”输入“12”,“ Increment”输入“0.5”。

b、运行PSPICE的仿真计算程序,进行直流扫描分析,即得节点电压UN1随US1变化的函数关系。

4、对上述电路,若想确定负载电阻R L的电流I RL随负载电阻R L变化(设R L变化范围为0.1Ω-100Ω)的波形,又该如何使用Pspice软件进行仿真分析?

答:应在图1-3负载电阻R L处放置电流探针,将负载电阻的阻值设置为全局变量var,添加PARAM,对其相应参数进行设置。然后单击Pspice/Edit Simulation Profile,选择“Global parameter”,将“Parameter”设为“var”,”Sweep Type”选择“Linear”,“Start”设为”0.1”,“End”设为“100”,”Increment”设为“1”,然后运行仿真,即可得到负载电流随负载电阻变化的曲线。

实验二戴维南定理和诺顿定理的仿真

一.实验目的

1、进一步熟悉Pspice仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。学习Probe窗口的简单设置。

2、加深对戴维南定理与诺顿定理的理解。

二.原理与说明

戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻串联的支路来代替,该电压源的电压Us 等于原网络的开路电压Uoc ,电阻Ro 等于原网络的全部独立电源置零后的输入电阻Req 。诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电流源与电导并联的支路来代替,该电流源的饿电流Is 等于原网络的短路电流Isc ,其电导Go 等于原网络的全部独立电源置零后的输入电导Geq (Geq=1/Req )。

三、示例实验

1、实验电路图

测量有源一端口网络(如图2-1)等效输入端电阻Req 和对外电路的伏安特性。

V1

5Vdc

RL {v ar}

RLn {v ar}

G027.273

R3150

V2

4Vdc

0R027.273

RLd {v ar}

R1100

is 0.13Adc

R250

0PARAMETERS:

V3

3.5455Vdc

图2-1 实验电路图

2、原电路及等效电路外特性的显示结果

var

0V

0.1GV

0.2GV

0.3GV

0.4GV

0.5GV

0.6GV

0.7GV

0.8GV

0.9GV

1.0GV

I(RL)

-200mA

-100mA

0A

0p,-130.000m)

V(RL:2)

0V

2.0V

4.0V

SEL>>

(444.318M,3.5455)

图2-2

测得I(RL)最大值即短路电流Isc=130mA,V(RL:2)最大值即Uoc为3.5455V。则输入

端电阻Req=3.5455/0.13=27.273 Ω。

0A

-100mA

SEL>>

-200mA

I(RL)

0A

-100mA

-200mA

I(RLd)

0A

-100mA

-200mA

0V0.4V0.8V 1.2V 1.6V 2.0V 2.4V 2.8V 3.2V 3.6V I(RLn)

V(RL:2)

图2-3原电路及等效电路外特性的显示结果

选择Tools=>Cursor=>Display显示坐标轴列表,点击I(RL)、I(RLd)和I(RLn)前面的

小方块,数值列表中将显示相应坐标中的坐标值。用鼠标拖动十字交叉线,可显示不同电压

时的相应电流值。

三个电源对外伏安特性曲线完全相同,从而验证了戴维南定理和诺顿定理。

二、思考题与讨论

1、戴维南定理和诺顿定理的使用条件分别是什么?

答:戴维南定理和诺顿定理使用条件均要求等效替代网络为线性有源一端口网络。

2、如果图2-4出现渐增的波形,则是由于电流的正负不一致,但是并不影响实验的结

果。

实验三正弦稳态电路分析和交流扫描分析

一.实验目的

1、学习用Pspice进行正弦稳态电路分析。

2、学习用Pspice进行正弦稳态电路的交流扫描分析。

3、熟悉含受控源电路的连接方式。

二.原理与说明

在“电路”课中已学过,对于正弦稳态电路,可以用相量法列写电路方程(支路电流法、节点电压法、回路电流法),求解电路中各个电压和电流的振幅(有效值)和初相位(初相

角)。PSPICE 软件是用相量形式的节点电压法对正弦稳态电路进行分析的。

三.示例实验

(1)正弦稳态分析。以图3-1的电路为例。其中正弦电源的角频率为10Krad/s ,要求计算两个回路中的电流。

0V

IPRINT

V3

10Vac 0Vdc

0V

0V

R1

10

C1

10u

IPRINT

0V

TX1

0V

0V

图3-1

(2)仿真计算的输出结果:

FREQ IM(V_PRINT1)IP(V_PRINT1)IR(V_PRINT1)II(V_PRINT1) 1.592E+03 2.268E-03 8.987E+01 5.145E-06 2.268E-03 FREQ IM(V_PRINT2)IP(V_PRINT2)IR(V_PRINT2)II(V_PRINT2) 1.592E+03 2.004E+00 8.987E+01 4.546E-03 2.004E+00 由以上结果可知,电源回路中的电流振幅近似等于0,而负载回路中的电流振幅近似等于2A 。

四.选做实验

1、实验电路图

R53

R22

R32

L1

10mH

12R4

2

V2

FREQ = 16

VAMPL = 144VOFF = 0+-

H1

H

R11

C11000uF

图3-2 选做实验的电路图

2、各元件的电流如下图所示:

图3-3 各元件电流源

3、电流随电容变化的曲线:

VAR

10u

11u 12u 13u 14u 15u 16u 17u 18u 19u 20u

I(V2)

1.56A

1.58A

1.60A

1.62A

1.64A

(14.340u,1.5773)

图3-4 电流随电容变化曲线

由图可明显看出电容对功率因素的影响为一抛物线图形,这与理论是相当吻合的,从图也得出电容为14.34μF 时,电路发生并联谐振,此时电流最小,功率因数为1。

五、思考与讨论

1、为了提高电路的功率因数,常在感性负载上并联电容器,此时增加了一条电流之路,试问电路的总电流时增大还是减小,此时感性元件上的电流和功率是否改变?

答:在感性负载上并联电容器后,电路的总电流可能增大也可能减小,具体的变化要看电容的大小,令电路发生谐振时的电容为μ0,则当μ<μ0时,电流随着电容的增大而减小,当μ>μ0时,电流随着电容的增大而增大,当μ=μ0时,电流最小.此时感性元件上的电流和功率不会改变.

2、提高线路功率因数为什么只采用并联电容器法,而不用串联法?所并的电容器是否越大越好?

答:并联电容的容性无功功率可以补偿感性负载的感性无功功率而不会改变负载的工作状态,如果采用串联电容法来提高功率因数,会导致负载的工作状态改变,故不用串联电容法来提高功率因数。所并的电容并不是越来越好,太大可能导致过补偿。

实验四 一阶动态电路的研究

一.实验目的

1、掌握Pspice 编缉动态电路、设置动态元件的初始条件、掌握周期激励的属性及对动态电路仿真的方法。

2、理解一阶RC 电路在方波激励下逐步实现稳定充放电的过程。

3、理解一阶RL 电路在正弦激励下,全响应与激励接入角的关系。

二、原理与说明

电路在一定条件下有一定的稳定状态,当条件改变,就要过度到新的稳定状态。从一种稳定状态转到另一种新的稳定状态往往不能跃变,而是需要一定的过渡过程(时间)的,这个物理过程就称为电路的过渡过程。电路的过渡过程往往为时短暂,所以在过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。

三、示例实验

1.分析图4-1所示RC 串联电路在方波激励下的全响应。电容初始电压为2V (电容Ic 设为2V )。

Vs

TD = 2ms TF = 0.001us PW = 2ms PER = 4ms

V1 = 0

TR = 0.001us V2 = 7V

C

2uF

V R 1.8k

图4-1 电路图

2、仿真计算及结果分析。

图4-2 电容电压与激励的波形

由输出波形可知,电容的工作过程是连续在充放电过程,开始电容放电,达到最小值,当第一个方波脉冲开始以后,经历一个逐渐的“爬坡过程”,最后输出成稳定的状态,产生一个近似的三角波。最后电容电压输出波形稳定在最大值为4.450V,最小值为2.550V。

TIME V(N00390)

0.000E+00 2.000E+00

2.000E-03 1.146E+00

4.000E-03 3.645E+00

6.000E-03 2.089E+00

8.000E-03 4.185E+00

1.000E-02

2.399E+00

1.200E-02 4.363E+00

1.400E-02

2.500E+00

1.600E-02 4.421E+00

1.800E-02

2.534E+00

2.000E-02 4.440E+00

2.200E-02 2.545E+00

2.400E-02 4.447E+00

2.600E-02 2.548E+00

2.800E-02 4.449E+00

3.000E-02 2.550E+00

3.200E-02

4.449E+00

3.400E-02 2.550E+00

3.600E-02

4.450E+00

3.800E-02 2.550E+00

4.000E-02 4.450E+00

四、选做实验

(1)参照示例实验,改变R 和C 的元件参数,观察改变时间常数对电容电压波形的影响。

V

C3

1uf

V

V1

TD = 2ms TF = 0.001us PW = 2ms PER = 4ms

V1 = 0TR = 0.001us V2 = 7R19k

图4-3 选做实验(1)电路图

图4-4 电容电压随时间的变化

由以上输出波形可知,时间常数增大时,电容器充放电变慢。

(2)仿真计算R=1K ,C=100uf 的RC 串联电路,接入峰-峰值为3V 、周期为2S 的方形激励时的零状态响应。

V1

TD = 2ms TF = 0.001us V1 = 0TR = 0.001us V2 = 3C3100uf

V

R1

1k V

图4-5 选做实验(2)电路图

Time

0s

0.2s

0.4s

0.6s

0.8s

1.0s 1.2s

1.4s

1.6s

1.8s

2.0s

V(V1:+)

V(C3:+)

0V 1.0V

2.0V

3.0V

图4-6 仿真输出结果

(3)仿真计算R=1K ,C=100uf 的RC 串联电路,接入峰-峰值为5V 、周期为2S 的方波激励时的全响应。其中电容电压的初始值为1V 。

C3

100uf

V

R11k

V

V1

TD = 2ms TF = 0.001us PW = 500ms PER = 2s

V1 = 0TR = 0.001us V2 = 5

图4-7 选做实验(3)电路图

Time

0s

0.2s

0.4s

0.6s

0.8s

1.0s 1.2s

1.4s

1.6s

1.8s

2.0s

V(V1:+)

V(C3:+)

0V 2.0V

4.0V

6.0V

图4-8仿真输出结果

五、思考与讨论

(1)在RC串联电路中,电容充电上升到稳态值的多少所需时间为一个时间常数τ?

答:RC串联电路中,电容电压上升到稳态值的63.2%所需要的时间为一个时间常数τ。(2)在RC串联电路中,电容放电衰减到初始值的多少所需时间为一个时间常数τ?

答:RC串联电路中,电容电压衰减到初始电压的36.8%所需要的时间为一个时间常数τ。(3)通常认为电路从暂态到达稳定状态需要多少时间?

答:从理论上讲,电路的动态过程需要经历无限长时间才能结束,也就是说当t=∞时,电感放电才能衰减到零,达到新的稳态。但实际上,当时间T=5τ时,U L=U0 e-5=0.007U0。

此时电感电压已接近于零,电感的放电过程已基本结束。所以工程上一般认为从暂态到稳定状态的的时间为4τ-5τ。

实验五二阶动态电路的仿真分析

一.实验目的

1、研究R,L,C串联电路的电路参数与其暂态过程的关系。

2、观察二阶电路在过阻尼、临界阻尼和欠阻尼三种情况下的响应波形。利用响应波形,计算二阶电路暂态过程有关的参数。

3、掌握利用计算机仿真与示波器观察电路响应波形的办法。

二.实验原理

(1)用二阶微分方程描述的动态电路,称为二阶电路。电路的零输入响应只与电路的参数有关,对应不同的电路参数,其响应有不同的特点:

当 R>2 时,零输入响应中的电压、电流具有非周期的特点,称为过阻尼状态。

当 R<2时,零输入响应中的电压、电流具有衰减振荡的特点,称为欠阻尼状态。此时衰减系数δ=R/2L,ω0=1/ 是在R=0情况下的振荡角频率,称为无阻尼振荡电路的固有角频率。在R≠0时,R、L、C串联电路的固有振荡频率ω’= 将随δ=R/2L的增加而下降。

当R=2 时,有δ=ω0 ,ω’= =0,暂态过程界于非周期与振荡之间,称为临界状态。其本质属于非周期暂态过程。

(2)此外还可以在相平面作同样的研究工作。相平面也是直角坐标系,其横轴表示被研究的物理量度x,纵轴表示被研究的物理量对时间的变化率dx/dt。由电路理论可知,对于R、L、C串联电路,两个状态变量分别为电容电压Uc、电感电流i l。因为i L=ic=CdUc/dt,所以取Uc为横坐标,i l为纵坐标,构成研究该电路的状态平面。每一个时刻的Uc、i l,可用相平面上的某一点来表示,这个点称为相迹点。Uc、i l随时间变化的每一个状态可用相平面上一系列相迹点表示。一系列相迹点相连得到的曲线称为状态轨迹(或相轨迹)。

利用Pspice仿真可以很方便地得到状态轨迹。

三.示例实验

1.研究R、L、C串联电路零输入响应波形。

R1

{v al}

-10.00V

V 0V

PARAMETERS:

v al = 1

V L10.8m

1

2

C12u

I

-10.00V

图5-1 R 、L 、C 串联电路

2、不同情况下的U C 、I L 、U L 波形:

Time

0s

0.1ms

0.2ms 0.3ms

0.4ms

0.5ms 0.6ms

0.7ms

0.8ms

0.9ms

1.0ms

V(C1:2)

V(L1:1)

-I(L1)

-10

-5

5

10

(a) R=0,00001Ω

Time

0s

0.1ms

0.2ms 0.3ms

0.4ms

0.5ms 0.6ms

0.7ms

0.8ms

0.9ms

1.0ms

V(C1:2)

V(L1:1)

-I(L1)

-10

-5

5

(b) R =20 Ω欠阻尼

Time

0s

0.1ms

0.2ms 0.3ms

0.4ms

0.5ms 0.6ms

0.7ms

0.8ms

0.9ms

1.0ms

V(C1:2)

V(L1:1)

-I(L1)

-10

-5

(c) R =40 Ω临界阻尼

Time

0s

0.1ms

0.2ms 0.3ms

0.4ms

0.5ms 0.6ms

0.7ms

0.8ms

0.9ms

1.0ms

V(C1:2)

V(L1:1)

-I(L1)

-10

-5

5

(d) R =100 Ω过阻尼

图5-2 4种不同情况下U C 、I L 、U L 波形

四.选做实验

1、研究方波信号作用下的R 、L 、C 串联电路。

0V

0V

0V

C12uf

V 0V

PARAMETERS:

v ar = 1

L1

0.8m 1

2

V1

TD = 0

TF = 0.001us PW = 2ms PER = 4ms

V1 = 0TR = 0.001us V2 = 10R1

{v ar}

图5-3 方波幸好作用下的RLC 串联电路

2、不同参数下Uc 的波形:

100V

0V

-100V

-200V

0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms 6.0ms7.0ms8.0ms V(C1:2)

Time

Val=-0.5Ω

40V

20V

0V

-20V

-40V

0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms 6.0ms7.0ms8.0ms V(C1:2)

Time

Val=0.1Ω

40V

20V

0V

-20V

-40V

0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms 6.0ms7.0ms8.0ms V(C1:2)

Time

Val=1Ω

10V

5V

0V

-5V

0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms 6.0ms7.0ms8.0ms V(C1:2)

Time

Val=10Ω

12.0V

8.0V

4.0V

0V

0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms 6.0ms7.0ms8.0ms V(C1:2)

Time

Val=40Ω

10V

5V

0V

0s 1.0ms 2.0ms 3.0ms 4.0ms 5.0ms 6.0ms7.0ms8.0ms V(C1:2)

Time

Val=200Ω

图5-4 不同参数下U C的波形

五、思考与讨论

1、R 、L 、C 串联电路的暂态过程为什么会出现三种不同的工作状态?试从能量转换的角度对其作出解释。

答:RLC 串联电路的暂态过程中,电感和电容之间存在能量转换,在能量传递过程中,由于电阻会消耗能量,所以随着R 的大小的不同,电路会出现不同的工作状态。当R 较小(

2

L R C

<)时,电路处于振荡状态,电感和电容通过电流来实现能量交换,由于电阻总

是消耗能量(此时消耗能量较小),使整个系统的能量不断减少,从而使电容电压的振幅值衰减。当当

2

L

R C

>时,电路处于非振荡状态,由于电阻较大,消耗的能量较多,从而“阻

碍”了电容和电感之间能量的传递,故称之为“过阻尼”。当

2

L

R C =时,电路处于临界

状态,由于此时能量没有消耗,故此时电容电压幅值不会衰减,而是等幅振荡。

实验六 频率特性和谐振的仿真

一.实验目的

1、学习使用Pspice 软件仿真分析电路的频率特性。

2、掌握用Pspice 软件进行电路的谐振研究。

3、了解耦合谐振的特点。

三、示例实验

1、双T 型网络如图6-1所示。分析该网络的频率特性。

C10.1u

0V

R31k

V1

1Vac 0Vdc

0V

R22k 0V

V

C30.2u

R12k

C20.1u

0V

0V

图6-1 双T 型网络实验电路

2、双T 型网络的帧频特性

图6-2 双T 型网络的帧频特性

从图6-2可以看出,这是一个带阻滤波器,低频截止频率近似为182HZ ,高频截止频率近似为3393HZ ,带阻宽度3211HZ 。

四、选做实验

1、图6-3所示为RLC 串联电路,测试其幅频特性,确定其通带宽△f 0。 若△f 小于40KHZ ,试采用耦合谐振的方式改进电路,使其通带宽满足设计要求。

图6-3 RLC 串联电路

I

0V 0V 0

V1

10Vac

0Vdc

C1

253p 0V

0V L1

100uH

1

2R112.56

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

计算机仿真实验

计算机仿真实验报告 专业:电气工程及其自动化班级:09电牵一班学号:22 姓名:饶坚指导老师:叶满园实验日期:2012年4月30日 一、实验名称 三相桥式SPWM逆变电路仿真 二、目的及要求 1.了解并掌握三相逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink的使用及构建模块; 3.掌握SPWM原理及构建调制电路模块; 4.复习在Figure中显示图形的程序编写和对图形的修改。 三、实验原理与步骤、电路图 1、实验原理图

2、电路原理(采用双极性控制方式) U、V和W三相的PWM控制通常公用一个三角波载波Uc,三相的调制信号Uru、Urv和Urw依次相差120°。 电路工作过程(U相为例):当Uru>Uc时,上桥臂V1导通,下桥臂V4关断,则U相相对于直流电源假想中点N’的输出电压Uun’=Ud/2。当Uru

对电路模型进行封装如下图示:

其中Subsystem1为主电路,Subsystem2为负载,Subsystem3为检测电路,Subsystem4为输入信号,Subsystem5为调制电路,Scope 为示波器,Repeating Sequence为三角载波。 各子系统电路分别如下所示: Subsystem1 Subsystem2 Subsystem3

计算机仿真与建模实验报告

中南大学 计算机仿真与建模 实验报告 题目:理发店的服务过程仿真 姓名:XXXX 班级:计科XXXX班 学号:0909XXXX 日期:2013XXXX

理发店的服务过程仿真 1 实验案例 (2) 1.1 案例:理发店系统研究 (2) 1.1.1 问题分析 (3) 1.1.2 模型假设 (3) 1.1.3 变量说明 (3) 1.1.4 模型建立 (3) 1.1.5 系统模拟 (4) 1.1.6 计算机模拟算法设计 (5) 1.1.7 计算机模拟程序 (6) 1实验案例 1.1 案例:理发店模拟 一个理发店有两位服务员A和B顾客随机地到达该理发店,每分钟有一个顾客到达和没有顾客到达的概率均是1/2 , 其中60%的顾客理发仅用5分钟,另外40%的顾客用8分钟. 试对前10分钟的情况进行仿真。 (“排队论”,“系统模拟”,“离散系统模拟”,“事件调度法”)

1.1.1 问题分析 理发店系统包含诸多随机因素,为了对其进行评判就是要研究其运行效率, 从理发店自身利益来说,要看服务员工作负荷是否合理,是否需要增加员工等考 虑。从顾客角度讲,还要看顾客的等待时间,顾客的等待队长,如等待时间过长 或者等待的人过多,则顾客会离开。理发店系统是一个典型的排队系统,可以用 排队论有关知识来研究。 1.1.2 模型假设 1. 60%的顾客只需剪发,40%的顾客既要剪发,又要洗发; 2. 每个服务员剪发需要的时间均为5分钟,既剪发又洗发则花8分钟; 3. 顾客的到达间隔时间服从指数分布; 4. 服务中服务员不休息。 1.1.3 变量说明 u :剪发时间(单位:分钟),u=5m ; v: 既剪发又理发花的时间(单位:分钟),v=8m ; T : 顾客到达的间隔时间,是随机变量,服从参数为λ的指数分布,(单位: 分钟) T 0:顾客到达的平均间隔时间(单位:秒),T 0=λ 1; 1.1.4 模型建立 由于该系统包含诸多随机因素,很难给出解析的结果,因此可以借助计算机 模拟对该系统进行模拟。 考虑一般理发店的工作模式,一般是上午9:00开始营业,晚上10:00左 右结束,且一般是连续工作的,因此一般营业时间为13小时左右。 这里以每天运行12小时为例,进行模拟。 这里假定顾客到达的平均间隔时间T 0服从均值3分钟的指数分布, 则有 3小时到达人数约为603 603=?人, 6小时到达人数约为1203 606=?人, 10小时到达人数约为2003 6010=?人, 这里模拟顾客到达数为60人的情况。 (如何选择模拟的总人数或模拟总时间)

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号:

年月日 实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个

平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图:

五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

电路计算机仿真实验报告

电路计算机仿真分析 实验报告

实验一直流电路工作点分析和直流扫描分析 一、实验目的 1、学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 2、学习使用Pspice进行直流工作点分析和直流扫描分析的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。PSPICE软件是采用节点电压法对电路进行分析的。 使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE 的元件符号库绘制电路图并进行编辑、存盘。然后调用分析模块、选择分析类型,就可以“自 动”进行电路分析了。需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电 压方程的,因此,在绘制电路图时,一定要有参考节点(即接地点)。此外,一个元件为一 条“支路”(branch),要注意支路(也就是元件)的参考方向。对于二端元件的参考方向定 义为正端子指向负端子。 三、示例实验 应用PSPICE求解图1-1所示电路个节点电压和各支路电流。 图1-1 直流电路分析电路图

4.000V R2 1 2.000A 0V Idc2 4Adc 4.000A 6.000V R1 1 4.000A Idc1 2Adc 2.000A R3 3 2.000A 图1-2 仿真结果 四、选做实验 1、实验电路图 (1)直流工作点分析,即求各节点电压和各元件电压和电流。 (2)直流扫描分析,即当电压源Us1的电压在0-12V之间变化时,求负载电阻R L中电流I RL随电压源Us1的变化曲线。 R4 3 Is3 2Adc 0Vs2 10Vdc RL 1 Is1 1Adc Is2 1Adc R1 4 I Is5 3Adc R2 2 12Vdc IPRINT Vs3 5Vdc Vs4 7Vdc 图1-3 选做实验电路图 2、仿真结果

电路仿真实验报告

单片机原理及接口技术电路仿真实验报告 实验一:独立式键盘与LED显示示例 例4—17: 功能:数码管的数据端与P0口引脚采用正序,试编写程序,分别实现功能:上电后数码管显示“P”,按下任何键后,显示从“0”开始每隔1秒加1,加至“F”后,数码管显示“P”,进入等待按键状态。 Keil编程: 电路图: 初始状态时:

3 秒后:程序: TEMP EQU 30H ORG 0000H JMP START ORG 0100H START:MOV SP,#5FH MOV P0,#8CH MOV P3,#0FFH NOKEY:MOV A,P3 CPL A JZ NOKEY MOV TEMP,P3 CALL D10ms MOV A,P3 CJNE A,TEMP,NOKEY MOV R7,#16 MOV R2,#0 LOOP:MOV A,R2 MOV DPTR,#CODE_P0 MOVC A,@A+DPTR MOV P0,A INC R2 SETB RS0 CALL D_1S CLR RS0 DJNZ R7,LOOP JMP START D_1S:MOV R6,#100 D10:CALL D10ms DJNZ R6,D10 RET D10ms:MOV R5,#10 D1ms:MOV R4,#249 DL:NOP NOP DJNZ R4,DL DJNZ R5,D1ms RET CODE_P0:DB 0C0H,0F9H,0A4H,0B0H,99H, 92H,82H,0F8H DB 80H,90H,88H,83H,0C6H,0A1 H,86H,8EH END 例4—18: 功能:执行程序时,先显示“P” 1、按键K0按下后,数码管显示拨动开关S3~S0对应的十进制值; 2、按键K1按下后,P0口数码管显示拨动开关S3~S0对应的十六进制值; 3、按键K2按下后,P2口数码管显示拨动开关S3~S0对应的十六制值;

计算机仿真技术的发展概述及认识

计算机仿真技术的发展概述及认识 摘要:随着经济的发展和社会的进步,计算机技术高速发展,使人类社会进入了信息时代,计算机作为后期新秀渗入到人们生活中的每一个领域,给人们的生活带来了前所未有的变化。作为新兴的技术,计算机技术在人类研究的各个领域起到了只管至关重要的作用,帮助人类解决了许多技术难题。在科研领域,计算机技术与仿真技术相结合,形成了计算机仿真技术,作为人们科学研究的一种新型方法,被人们应用到各个领域,用来解决人们用纯数学方法或者现实实验无法解决的问题,对科研领域技术成果的形成有着积极地促进作用。 本文在计算机仿真技术的理论思想基础上,分析了计算机仿真技术产生的基本原因,也就是人们用计算机模拟解决问题的优点所在,讨论了模拟、仿真、实验、计算机仿真之间的联系和区别,介绍了计算机仿真技术的发展历程,并查阅相关资料介绍了计算机仿真技术在不同领域的应用,分析并预测了计算机仿真的未来发展趋势。经过查阅大量数据资料并加以分析对比,这对于初步认识计算机仿真技术具有重要意义。 关键词:计算机仿真;模拟;仿真技术;发展 一、引言 计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。计算机仿真(模拟)早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。其原理可追溯到1773年法国自然学家G.L.L.Buffon为估计圆周率值所进行的物理实验。根据仿真过程中所采用计算机类型的不同,计算机仿真大致经历了模拟机仿真、模拟-数字混合机仿真和数字机仿真三个大的阶段。20世纪50年代计算机仿真主要采用模拟机;60年代后串行处理数字机逐渐应用到仿真之中,但难以满足航天、化工等大规模复杂系统对仿真时限的要求;到了70年代模拟-数字混合机曾一度应用于飞行仿真、卫星仿真和核反应堆仿真等众多高技术研究领域;80年代后由于并行处理技术的发展,数字机才最终成为计算机仿真的主流。现在,计算机仿真技术已经在机械制造、航空航天、交通运输、船舶工程、经济管理、工程建设、军事模拟以及医疗卫生等领域得到了广泛的应用。 二、基本概念 模拟:(Simulation)应用模型和计算机开展地理过程数值和非数值分析。不是去求系统方程的解析解,而是从系统某初始状态出发,去计算短暂时间之后接着发生的状态,再以此为初始状态不断的重复,就能展示系统的行为模式。模拟是对真实事物或者过程的虚拟。模拟要表现出选定的物理系统或抽象系统的关键特性。模拟的关键问题包括有效信息的获取、关键特性和表现的选定、近似简化和假设的应用,以及模拟的重现度和有效性。可以认为仿真是一种重现系统外在表现的特殊的模拟。 仿真:(Emulation)利用模型复现实际系统中发生的本质过程,并通过对系统模型的实验来研究存在的或设计中的系统,又称模拟。即使用项目模型将特定于某一具体层次的不确定性转化为它们对目标的影响,该影响是在项目仿真项目

计算机仿真实验-基于Simulink的简单电力系统仿真

实验七 基于Simulink 的简单电力系统仿真实验 一. 实验目的 1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用; 3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。 二.实验内容与要求 单机无穷大电力系统如图7-1所示。平衡节点电压0 44030 V V =∠? 。负荷功率10L P kW =。线路参数:电阻1l R =Ω;电感0.01l L H =。发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流 70 fn i A =;额定频率50n f Hz =。发电机定子侧参数:0.26s R =Ω, 1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。发电机阻尼绕组参数:0.0224kd R =Ω, 1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。发电机转动惯量和极对数分别 为224.9 J kgm =和2p =。发电机输出功率050 e P kW =时,系统运行达到稳态状态。在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。

G 发电机节点 V 负 荷 l R l L L P 图 7.1 单机无穷大系统结构图 输电线路 三.实验步骤 1. 建立系统仿真模型 同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。模块的第1个输入端子(Pm)为电机的机械功率。当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。在发电机模式下,输入可以是一个正的常数,也可以是一个函数或者是原动机模块的输出;在电动机模式下,输入通常是一个负的常数或者是函数。模块的第2个输入端子(Vf)是励磁电压,在发电机模式下可以由励磁模块提供,在电动机模式下为一个常数。 在Simulink仿真环境中打开Simulink库,找出相应的单元部件模型,构造仿真模型,三相电压源幅值为4403,频率为50Hz。按图连接好线路,设置参数,建立其仿真模型,仿真时间为5s,仿真方法为ode23tb,并对各个单元部件模型的参数进行修改,如图所示。

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

计算机仿真实训实验报告实验1-4

实验一 熟悉MATLAB 工作环境 16电气5班 周树楠 20160500529 一、实验目的 1.熟悉启动和退出MATLAB 软件的方法。 2.熟悉MATLAB 软件的运行环境。 3.熟悉MATLAB 的基本操作。 二、实验设备及条件 计算机一台(带有MATLAB6.0以上的软件境)。 三、实验内容 1.练习下面指令: cd,clear,dir,path,help,who,whos,save,load 。 2.建立自己的工作目录MYBIN 和MYDATA ,并将它们分别加到搜索路径的前面或者后面。 3.求23)]47(*212[÷-+的算术运算结果。 4.M 文件的建立,建立M 文件,求出下列表达式的值: ?? ????-+=++=+= 545.0212),1ln(21 185sin 2222 1i x x x z e z o 其中

5.利用MATLAB的帮助功能分别查询inv、plot、max、round函数的功能和用法。 四、运行环境介绍及注意事项 1.运行环境介绍 打开Matlab软件运行环境有图1-1所示的界面

图1-1 MATLAB的用户界面 操作界面主要的介绍如下: 指令窗( Command Window ),在该窗可键入各种送给 MATLAB 运作的指令、函数、表达式,并显示除图形外的所以运算结果。 历史指令窗( Command History ),该窗记录已经运行过的指令、函数、表达式;允许用户对它们进行选择复制、重运行,以及产生 M 文件。 工作空间浏览器( Workspace Browser ),该窗口罗列出 MATLAB 工作空间中所有的变量名、大小、字节数;并且在该窗中,可对变量进行观察、编辑、提取和保存。 其它还有当前目录浏览器( Current Directory Browser )、 M 文件编辑 / 调试器(Editor/Debugger )以及帮助导航/ 浏览器(Help Navigator/Browser )等,但通常不随操作界面的出现而启动。 利用 File 菜单可方便对文件或窗口进行管理。其中 File | New 的各子菜单, M-file ( M 文件)、 Figure (图形窗口)、或 Model ( Simulink 编辑界面)分别可创建对应文件或模块。 Edit 菜单允许用户和 Windows 的剪切板交互信息。 2.在指令窗操作时应特别注意以下几点 1)所有输入的指令、公式或数值必须按下回车键以后才能执行。例如: >>(10*19+2/4-34)/2*3 (回车) ans= 234.7500 2)所有的指令、变量名称都要区分字母的大小写。 3)%作为MATLAB注释的开始标志,以后的文字不影响计算的过程。 4)应该指定输出变量名称,否则MATLAB会将运算结果直接存入默认的输出变量名ans。 5)MATLAB可以将计算结果以不同的精确度的数字格式显示,可以直接在指令视窗键入不同的数字显示格式指令。例如:>>format short (这是默认的) 6)MATLAB利用了↑↓二个游标键可以将所输过的指令叫回来重复使用。按下↑则前一次输入的指令重新出现,之后再按Enter键,即再执行前一次的指令。

计算机仿真实验报告7

山东工商学院计算机仿真及应用实验报告 实验七 MATLAB的基本应用(二)及Simulink仿真 (验证性实验) 学院: 专业班级: 实验时间: 学号: 姓名:

一、实验目的 1、掌握连续信号的仿真和傅里叶分析方法 2、掌握连续系统的分析方法(时域分析法,拉氏变换法和傅里叶分析法); 3、掌握离散信号的仿真和分析运算方法 4、掌握离散系统的分析方法(时域分析法); 5、掌握符号运算方法; 6、掌握Simulink仿真工具; 二、实验原理 1、连续信号的仿真和分析法,参考教材第6.1节,重点: 单位冲激信号的仿真方法;单位阶跃信号的仿真方法;复指数信号的仿真方法 2、连续系统的分析方法,参考教材第6.1节,重点: 例6.2,LTI系统的零输入响应的求解方法; 例6.3,LTI系统的冲激响应的求解方法 例6.5,LTI系统的零状态响应的求解方法 例6.6,系统中有重极点时的计算 3、系统的频域分析方法,参考教材第6.2节,重点: 例6.7,方波分解为多次正弦波之和 例6.8:全波整流电压的频谱 例6.10:调幅信号通过带通滤波器 例6.12:用傅里叶变换计算滤波器的响应和输出 4、离散信号的仿真和分析法,参考教材第6.3节,7.1节,重点: 单位脉冲序列impseq,单位阶跃序列stepseq 例7.1:序列的相加和相乘 例7.2:序列的合成与截取 例7.3:序列的移位和周期延拓运算 三、实验内容(包括内容,程序,结果) 以自我编程练习实验为主,熟悉各种方法和设计,结合课堂讲授,实验练习程序代码。 1、根据教材第6.1节的内容,练习连续信号和系统的时域分析和拉氏变换方法。 q602 clear,clc a=input('输入分母系数向量a=[a1,a2,...]= '); n=length(a)-1; Y0=input('输入初始条件向量Y0=[y0,Dy0,D2y0,...]= '); p=roots(a);V=rot90(vander(p));c=V\Y0'; dt=input('dt= ');tf=input('tf= '); t=0:dt:tf;y=zeros(1,length(t));

单相半波整流电路仿真实验报告

单相半波整流电路仿真实验报告 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法,会设置各个模块的参数。 二、实验模型和参数设置 1. 总模型图: 有效值子系统模型图: 平均值子系统模型图:

2.参数设置 晶闸管:Ron=1e-3,Lon=1e-5,Vf=,Ic=0,Rs=500, Cs=250e-9.电源:Up=100*, f=50Hz. 脉冲发生器:Amplitude=5, period=, Pulse Width=2 情况一:R=1Ω,L=10mH; a=0°or a=60°; 情况二:L=10mH; a=0°or a=60°; 三、波形记录和实验结果分析 (1)R=1Ω,L=10mH; a=0°时的波形图: (2)R=1Ω,L=10mH; a=60°时的波形图:

(3)L=10mH; a=0°时的波形图: (4)L=10mH; a=60°时的波形图:

在波形图中,从上到下依次代表电源电压、脉冲发生器电压、晶闸管的电流,、晶闸管两端电压、负载电流和负载两端电压。 分析对比这四张图可以知道,由于负载中有电感,因此晶闸管截止的时刻并不在电压源为负值的时刻,而是在流过晶闸管的电流为零的时刻;同时,在对比中可以发现在电感相同的情况下,电阻负载的存在会使关断时间提前。 1.计算负载电流、负载电压的平均值: 以R=1Ω,L=10mH时 o α = 负载电压的平均值为如下: o α 60 = 负载电压的平均值为如下:

方波逆变电路的计算机仿真课案

电力电子系统仿真 题目:单相方波逆变电路仿真 院系:电气工程学院 班级:电气F1305 学号:201323010209 学生姓名:蒋广敬

单相方波逆变电路仿真 实验步骤 ①设计一单相桥式方波逆变电路,开关器件选用IGBT,直流电压为300V,电阻负载,电阻1欧姆,电感2毫亨。根据上述要求完成主电路设计。 ②完成上述单相桥式方波逆变电路的计算机仿真,观察输出电压波形。系统输入电流波形,电压电流波形的谐波情况、不同仿真条件时系统输入输出的变化情况和理论分析的结果进行比较。 仿真软件简介 MATLAB 是一种适用于工程应用各领域分析设计与复杂计算的科学计算软件,由美国MathWorks公司于1984年正式推出,1988年推出3.X(DOS)版本,1992年推出4.X(Windows)版本;近几年来,Mathworks公司将MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。MATLAB 已成为美国和其他发达国家大学教学和科学研究中最常用而且必不可少的工具。 MATLAB时“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需求。在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数,所有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。 MATLAB主要包括MATLAB和Simulink两大部分。MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便

电路仿真实验报告

本科实验报告 实验名称:电路仿真 实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或

AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。 TRAN分析:分析5个周期输出节点为Vout的时域响应。 实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。 根据并联谐振电路原理,谐振时节点out电压最大且谐振频率为w0=1/LC=1000 10,f0=w0/2 =503.29Hz 谐振时节点out电压 * 理论值由分压公式得u=2000/(2000+10)*5=4.9751V.

单管放大电路仿真实验报告

? 单管放大电路仿真实验报告 一、实验目的 1、 掌握放大电路支流工作点的调整与测量方法。 2、掌握放大电流主要性能指标的测量方法。 3、了解支流工作点对放大电路动态特性的影响。 4、掌握发射极负反馈电阻对放大电路性能的影响。 5、了解信号源内阻Rs 对放大电路频带(上限截止频率f H )的影响。 二、实验电路与实验原理图

2、直流通路 VCC 12V 将基极偏置电路用戴维南定理等效成电压源,得到支流通路。开路电压:V BB = V CC*R B2/(R B1 + R B2) 电源内阻:R B = R B1 // R B2 三、实验内容 1、静态工作点的调整 ※预习计算

直流工作点的调整 I CQ =1.0mA 时 3.3c R C CQ V R I V ==, 1.95BQ E CQ BE V R I V V ≈+= 12 '11 75.4//55.4CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω +=-=Ω -7.5C CEQ CC BQ R BE V V V V V V =-+= I CQ =2.0mA 时 6.6c R C CQ V R I V ==, 3.15BQ E CQ BE V R I V V ≈+= 12 ' 1140.8, //20.8CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω+=-=Ω -3C CEQ CC BQ R BE V V V V V V =-+= 由此可以得到扫描参数时的大致范围 要求:调节RW ,在ICQ=1mA 和2mA 时,测量VCEQ 的值,并记录RB1的值。 操作:对R W 进行参数扫描,通过观察Rc 上的电压变化 可以得到 CQ I ( c CQ c U I R = ), Uc 可以通过V (Vcc )-V(4)得到,从而可以在扫描参数设备时通过跟踪Uc 得到CQ I 为一 定值时对应的V CEQ 以及相应的R W 。 仿真结果(设备参数扫描):

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

计算机仿真实验报告实验

《计算机仿真》上机实验报告 姓名: 学号: 2012104021 专业:测控 班级: 12级

实验一常微分方程的求解及系统数学模型的转换一.实验目的 通过实验熟悉计算机仿真中常用到的Matlab指令的使用方法,掌握常微分方程求解指令和模型表示及转换指令,为进一步从事有关仿真设计和研究工作打下基础。 二. 实验设备 个人计算机,Matlab软件。 三. 实验准备 预习本实验有关内容(如教材第2、3、5章中的相应指令说明和例题),编写本次仿真练习题的相应程序。 四. 实验内容 1. Matlab中常微分方程求解指令的使用 题目一:请用MATLAB的ODE45算法分别求解下列二个方程。要求:1.编写出Matlab 仿真程序;2.画出方程解的图形并对图形进行简要分析;3.分析下列二个方程的关系。 1.2. 1.function fun=funl(t,x) fun=-x^2;

[t,x]=ode45('fun1',[0,20],[1]); figure(1);plot(t,x); grid 2.function fun=fun2(t,x) fun=x^2; [t,x]=ode45('fun2',[0,20],[-1]); figure(2);plot(t,x); grid

题目二:下面方程组用在人口动力学中,可以表达为单一化的捕食者-被捕食者模式(例如,狐狸和兔子)。其中1x 表示被捕食者, 2x 表示捕食者。如果被捕食者有无限的食物,并且不会出现捕食者。于是有1'1x x ,则这个式子是以指数形式增长的。大量的被捕食者将会使捕食者的数量增长;同样,越来越少的捕食者会使被捕食者的数量增长。而且,人口数量也会增长。请分别调用ODE45、ODE23算法求解下面方程组。要求编写出Matlab 仿真程序、画出方程组解的图形并对图形进行分析和比较。 1.ODE45

控制系统计算机仿真实验报告

计算机仿真试验报告 自动化1201 ** 3120502007 [实验目的] (1).掌握采样控制系统数字仿真的特点。 (2).了解数字控制器对系统动态性能的影响。 (3).学会编制双重循环法的仿真程序。 (1). 复习采样控制系统的仿真原理及特点。 (2).根据理论分析,初步估计系统在给定条件下可能出现的动态过程。

(1).按实验目的、要求和已知条件,建立系统的Simulink模型,并且编制双重循环法的仿真程序。 1) Simulink模型建立: 根据题目给出的条件,数字控制系统的结构图如下图所示: 其中的其中数字控制器为: 根据上面结构图,所建立 2) 编制双重循环法的仿真程序 根据数字控制系统的结构图与条件(1)式,我们可以得到得到被控对象的状态空间模型:

[]112212()()0010()() ()110()()01()x t x t u t x t x t x t y t x t ?????????=+?????????-? ????????? ?? ?=??? ??? (2) 按连续系统离散相似算法将(2)式离散化。为了保证精度,其离散化时的步长h (虚 拟采样周期)应比数字控制器的实际采样周期T (=1s)小得多。为简化起见,取h=T/N=T/100=0.01T=0.01s 。 利用MATLAB 控制系统工具箱提供的将连续系统转换成离散系统的函数c2d ,把连续状态空间模型(2)变换为离散状态空间模型。 离散程序如下(程序1): clear; h=0.01; A=[0 0;1 -1]; B=[10;0]; [G,H]=c2d(A,B,h) 运行后的结果为: 即: 1 0(())0.010.99T ??==???? G Φ (3) 0.1(())0.0005T ?? ==? ? ?? H Γ (4) 故连续系统被控对象(2)的等价离散化状态方程为: []112212(1)()100.1()(1)()0.010.990.0005()()01()x k x k u k x k x k x k y k x k ?+???????? =+????????? +???? ?????? ?? ?=??? ??? (5)

相关主题
文本预览
相关文档 最新文档