当前位置:文档之家› 催化裂化电液滑阀之我见

催化裂化电液滑阀之我见

催化裂化电液滑阀之我见
催化裂化电液滑阀之我见

BDY9电液滑阀使用及维护浅析

摘要:近几年以来,我厂催化裂化装置滑阀故障率有稳步下降趋势,这和我们工艺操作水平,检修质量,日常维护等方面是密不可分的,本文从这几个方面做了针对性的分析。

关键词:催化裂化电液滑阀操作维护

电液滑阀是催化裂化装置的关键设备,用于再生、待生、烟机入口旁路等关键部位。它的可靠性,稳定性关系到催化裂化装置的长周期安全运行。因此在生产中我们要重视电液滑阀,做好特级维护工作,使滑阀处于良好的运行状态。近几年来,随着工艺操作水平的不断提高,电气,仪表等专业的用心配合下,我厂电液滑阀保持了良好的运行状态,有了问题都能得到及时的解决,确保了生产的正常平稳运行。

首先,我们把近5年来的主要的故障点和故障次数做了以下统计(图1)

图1

从表中数据我门可以看到,设备故障率确实在逐年降低,尤其是今年以来,不少项目的故障次数还是0,其中的主要故障点集中在主放大器,电液伺服阀及机械导轨三个部分。其中液压系

统由于相对比较复杂,泄露点多,工作环境不理想,且一直处于高压运行状态,故障情况没有明显的改观。

液压系统(图2)主要由电液伺服阀,几个电磁阀换向阀,一些单项阀组成,其中电液伺服阀(YS)是本系统的核心,它可以将功率很小的输入信号,转换成功率较大的液压输出量,用以控制液压执行机构的工作,它的性能,工作状态直接影响执行机构,所以对工艺生产中压力,温度及操作料位有直接的影响,轻则造成操作不稳定,重则造成生产事故,所以千万不能小视,我们根据理论原理及多年的工作经验,对它的使用总结出以下几点:

1. 伺服阀的极性一定按使用说明正确连接

2. 伺服阀周围不允许有明显的磁场

3. 伺服阀拆卸清理或更换时必须盖上护板,严防杂物侵入

4. 安装前仔细检查表面有无污物,密封圈是否完好

5. 伺服阀工作前要先通液压油,后通电流

电磁换向阀(YV1)也是该系统的关键元件,它是利用阀芯与阀体相对位置的变化来控制液流方向,从而打开或关闭自锁油路,在电路或液压系统严重故障或失灵的关键情况下锁定阀位,避免事态扩大。其它的液压件如各个单向阀,滤油器,溢流阀等等也都各司其职,保证系统的正常运行。

图2

现我从工艺操作,检修质量,日常维护等几个方面谈一谈个人的看法。首先设备是人操作的,正确的操作能保证设备的稳定可靠工作。反之有可能会损坏设备及缩短设备寿命。电液滑阀在生产使用中常见的几个问题有:

1.手动液动切换手柄切换不到位。这样容易造成手动吃力,执行机构损坏。

2.手动操作下没有泄压。这样也会造成手动吃力,执行机构损伤。

3.控制室给出的信号过大,过小或过快。这样会造成设备现场锁定不能正常工作或阀体永远到不了控制位置而长期受力,缩短了设备寿命。

4.现场液动手操阀操作不到位。易造成自动状态下推力不足,油温过高等。针对以上问题我对设备各操作阀画出明确到位指示,并和操作工多交流。

5.保证每班活动滑阀,一方面能够及时发现问题,再则防止导轨的卡死

电液滑阀在整个生产周期中不停机工作,并在生产过程中不好修理。因此我们要认真细致的作好电液滑阀的检修工作,严把检修质量。在检修过程中我们要求施工单位做到:

1.不放过每一个漏点。有条件更换所有密封件。

2.对损伤老化的部件坚决更换。对工作中出现不稳定的部件坚决更换,不存侥幸心理。特别关注伺服阀的老化,对零偏电压大于正负0.8伏的于以更换。

3.检修过程中确保设备的清洁,不能有一点异物进入油路。更换所有滤芯,对液压油严格做到三级过滤。油品不合格一定更换。液压部分修理完毕后一定要窜油4小时以上。

4.因为检修过程中的交叉做业,要做好设备线缆的保护,特别是传感器线缆的保护。

5.做好现场油滓的处理,防止火灾的发生。

6.在调试中做到稳定压倒一切,不片面追求控制精度,确保各电气参数在合理范围内,避免处于临界或极限位置。

7.做好传感器,执行机构的紧固工做。电液滑阀在工做时有8吨以上的推拉力,如紧固不好,在多震的工业环境下易脱落。

8.做好滑道的吹扫工作。一定接好滑道吹扫风,保证风压,以减少滑道卡死故障。

9.做好电机保养工做。测量电机整体绝缘性,更换老化磨损的电机油泵间的缓冲垫,轴承加油,风扇清洗等工做。

10.处理好循环水。一定接好循环水,保证循环水的畅通,使设备在冷热天都有一个好的工做温度。

11.做好电气接插件的紧固工做。处理好要断没断,拉力不足,表面氧化等电气接触不良问题。实践证明,严把检修质量,严格做好设备的清洁工作,特别是液压油的清洁,合理调整电气参数,处理好电气接插件,能有效的减少滑阀的故障。12.做好备件工做,对每个可能发生故障的元件都要做好备品,并对关键点,故障多发点相对多备,这样有利于出现故障时能以最短的时间判断和处理好故障。

平时的日常维护也是很关键的一环,好的维护能保证设备的稳定和延长设备使用寿命。在日常维护中,做到定期检查。检查设备有无泄漏点,检察油压,油温,伺服阀电压等关键参数。在季节变换中做好设备的通风降温和避风保温。及时补充液压油,

做好清洁工作。经常检查传感器和执行机构等有无松动脱落现象。

在平时的巡回检查,日常维护工作中,我们遇到问题一般按照下表(图3)

的顺序逐一排查,直到问题彻底解决。

图3

总之,搞好滑阀安全运行是一长期的任务,需要多工种的密切配合,作为现代石化仪表设备实现机-电仪一体化的代表产物,其本身就包涵了许多高新技术和新的元器件,这就需要我们不断地定摸索、去实践、去发现和解觉问题,同时需要培养和造就一大批跨专业、跨工种的专业人才。就目前而言,在电液执行机构中,许多液压件的密封不好,密封圈老化,造成漏油以及滑阀自保线路过于复杂等等。这些问题都有待于在今后的工作中进一步努力加以解决。

电液控制系统复习大纲部分答案

1、液压控制系统是由哪些组成部分的? 指令元件,比较元件,反馈元件,放大元件,执行元件,被控对象,能源装置及其他辅助装置 2、液压控制系统工作的基本原理: 以液压速度控制系统为例说明,当指令电位器给出一个指令信号ur时,通过比较器与反馈信号uf比较,输出 偏差信号Δu,偏差信号经伺服放大器输出控制电流i,控制电液伺服阀运动,电液伺服阀输出流量、压力来控 制液压伺服缸,推动工作台运动。 3、将偏差电压信号放大并转换为电流信号的放大器,称为伺服放大器。 4、液压控制系统的能量传递效率,是高还是低?(低) 5、液压控制系统的主要优点和缺点是什么? 优点:①加速性好,结构紧凑,质量小;②系统刚度大,定位准确,控制精度高;③控制系统频带宽,响应 速度快;④散热性能好;⑤润滑性能好,系统寿命长。 缺点:控制系统的制造成本。①抗污染性能差;②温升对系统稳定和密封性能有不利影响;③制造精度要求 高,成本较高;④能源供给不方便,进一步提高了液压 1、液压控制阀在液压控制系统中的作用是什么? 液压控制阀是一个集能量转换、功率放大和系统控制的原件。故作为能量转换器、功率放大器、控制器。 2、常用的液压控制阀有哪三种?(圆柱滑阀式,喷嘴挡板式,射流管式) 3、正开口四通滑阀,与零开口阀相比较,在零位时各个阀系数有何不同之处? 与零开口四通阀阀系数比较: 正开口阀流量增益大一倍,正开口阀稳态特性曲线线性度好,正开口阀泄漏量大。 4、零开口四通滑阀,当处于零位工作时,各个阀系数(流量增益、压力增益、流量压力系数)以及阻尼比处于最大值还是最小值?零位工况点,是工况最好的点还是最差的点?(最差) 流量增益最大,流量-压力系数最小,压力增益最高,系统阻尼比最小。 5、圆柱滑阀的边、通的概念是什么?从控制性能看,哪种圆柱滑阀最好,哪种最差? 根据圆柱滑阀控制边(节流菱边)的数目不同,可分为单边、双边和四边滑阀。从加工性能来看,单边阀加工工艺最简单,四边阀加工工艺最难。从控制性能来看,四边阀最好,单边阀最差。 6、按反馈形式的不同,两级电液伺服阀中有位置反馈、负载压力反馈和负载流量反馈三种。 7、零开口四通阀,零位阀系数的计算公式:,, 8、作用在阀芯上的液动力分为哪两种?其中哪种液动力的方向恒为使阀芯关闭的方向?(稳态液动力) 分为稳态液动力和瞬态液动力。 9、四通滑阀与三通滑阀的阀系数相比较,有何不同之处? ①流量增益Kq:零开口阀是正开口阀的一半;开口型式相同,流量增益相同;②流量压力系数Kc:三通阀是四通阀的2倍;正开口是零开口的2倍;③压力增益Kp:三通阀是四通阀的一半;通道数相同,压力增益相同

催化裂化装置吸收稳定单元停工操作法

催化裂化装置吸收稳定单元停工操作法 一、吸收稳定单元退油 当反应切断进料后,分馏岗位将V22203A、B中轻燃油抽空后,停T22304至T22301的补充吸收油,退油原则尽量将油赶至T22304,各抽出泵抽空后停泵,退油结束。分馏一中扫线开始前T22304油退完。 轻油由T22301V22302T22302T22304精制单元出装置贫吸收油走付线不经T22303,直接返T22201A,T22303中油压回T22201A,现场注意T22303液位不要压空,严禁干气窜入T22201A。 稳定塔在再沸器出口温度变化不大的情况下,加大稳定轻燃油出装量,在保证塔顶温度不变的情况下尽量加大液化气外送量,V22303无液面时,停P22306AB。 二、吸收稳定单元水顶油 1. 分馏未吹扫干净E22310管程,T22304严禁进水,防止突沸。 2. 不合格轻燃油出装置线: 新鲜水P22202FV22218管线P22218/2管线P22222不合格轻罐油 3. 新鲜水走正常流程进T22301: P22202给水FV22218 T22301 P22203给水FV22218 4. T22301一中、二中回流线:

一中:二中:P22303LV22302E22303T22301 P22304LV22303E22304T22301 5. 凝缩油线: T22301P22302FV22302V22302P22301FV22306E22305T22302 FV22305 V22301注水P22309LV22901 6. 脱乙烷轻燃油线: T22302P22305FV22307E22307T22304 7. 稳定塔回流线: P22306给水FV22308T22304 8. T22301补充吸收剂线: P22307FV22301T22301 T22304 9. 吸收稳定单元撇油。 吸收稳定单元改为三塔循环流程,2小时后,将T22301、V22302抽空,水全部集中在T22302、T22304中,两塔内水位要高,以撇油线在P22307入口见水为准。通过撇油线用P22307将T22302、T22304中浮油经不合格线送至罐区,直至抽空,反复3次确认无油后,由P22202给水顶不合格线内存油至罐区。 三、扫线流程 1.T22301底扫线N2对T22301、22303、26202系统扫线流程如下:

电液控制技术及其应用

电液控制技术及其应用 作者:机械电子工程10级机自103班王名洲 [摘要] 20世纪70年代以来,随着人们对各类工艺过程的深入研究,电液比例控制技术作为连接现代微电子技术和大功率工程控制设备之间的桥梁,已经成为现代控制工程的基本技术构成之一。在实际生产中,电液比例控制技术涉及流量、压力、速度、转速、位移等,能随控制信号连续成比例地控制。电液比例控制技术起源于20世纪,并且经过了电液控制技术、电液比例控制技术以及电液伺服技术等发展阶段。电液比例技术覆盖很多工程机械,如起混凝土搅拌运输车液压系统,电液比例控制技术的广泛应用让工程简单化、高效化、信息化、安全化。[关键词] 电液控制技术控制工程机械混凝土搅拌运输车机电一体化0.前言 在当前的形式下,电液控制技术已经成为工业机械、工程建设机械及国防极端产品不可或缺的重要手段。以挖掘机、推土机、振动压路机等为代表的工程机械对国家基础设施建设起到了至关重要的作用,而火炮控制系统、导弹运输车中的电液控制技术则推动了我国国防实力的提升。电液控制技术在机床加工、交通运输、汽车工业等部门也有非常广阔的应用。他对我国国民经济的推动作用不可估量。 就所学机械电子工程专业来讲,电液控制技术与其密不可分。电液控制技术的调控精密度对于机械控制有着重要的意义。在电子计算机大行其道的今天,将电控、液压与机械紧密结合在一起,才是机械电子工程的发展新方向。 1.电液控制技术概述 1.1电液控制技术发展历程 液压技术早在公元前240年的古埃及就已经出现。在第一次工业革命时期,液压技术的到快速发展,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。18世纪出现了泵、水压机及水压缸等。19世纪初液压技术取得了一些重大的进展, 其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。第二次世界大战期间及战后,电液技术的发展加快。出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、

case 吸收稳定系统流程模拟案例

分离工程工业应用实例: 催化裂化吸收稳定系统模拟 1 工艺和计算用的流程简述 催化裂化装置是主要的炼油装置之一。它是将重质油轻质化,生产液化气、汽油和柴油的重要装置。而吸收稳定装置是催化裂化装置中的后处理系统,它将来自催化分馏塔塔顶的原料粗汽油和富气分离成产品液化气和稳定汽油,同时得到副产品干气。 本算例是以某石化公司的吸收稳定系统实际装置为例,详细阐述了其流程及算法。 催化裂化吸收稳定系统双塔流程共有四个塔,即:吸收塔、解吸塔、再吸收塔和稳定塔。此外,还有两个油气分离罐,即:压缩机后汽液分离罐和稳定塔塔顶回流罐。工艺流程如下:补充吸收剂(稳定汽油)进入吸收塔的顶部,粗汽油作为吸收剂进入吸收塔的上部。吸收塔设有3个中段取热,以取走吸收过程中放出的热量。吸收塔顶部引出的贫气直接进入再吸收塔的底部,吸收塔底的饱和吸收油与压缩富气和解吸塔解吸气混合冷却后进入汽液分离罐。汽液分离罐的气相进入吸收塔的底部,液相经泵加压后进入解吸塔的上部,解吸塔由塔底再沸器提供热量。稳定塔塔底脱乙烷汽油先与稳定汽油换热,再进入稳定塔的中部,经稳定塔分出稳定汽油和液化气。轻柴油作为再吸收塔的吸收油进入再吸收塔的顶部,吸收贫气中夹带的重组分。干气从再吸收塔顶放出并入瓦斯管网,富吸收油返回分馏塔。 工艺流程如图1-1所示:

10 19 11 22 4 1515 15 5 16 320 21 1 6 23 7 81418 14 9 12 17 2 13 图1-1 催化裂化吸收稳定系统工艺流程图 图例说明:1 富气 2 粗汽油 3 轻柴油 4 压缩机 5 汽液平衡罐前冷却器 6 汽液平衡罐 7 平衡罐气相 8 平衡罐液相 9 补充吸收剂提压泵 10 吸收塔 11 解吸塔 12 补充吸收剂 13 稳定汽油产品 14 换热器 15 吸收塔中间冷却器 16 贫气 17 脱乙烷汽油 18 稳定汽油 19 再吸收塔 20 干气 21 富吸收油 22 稳定塔 23 液化气 2 需要输入的主要参数 原料、主要设备操作参数如 表2-1、表2-2所示。 富气 粗汽油 轻柴油 温度/℃ 40 40 40 压力/MPa 0.17 1.6 1.5 流量/(kMol/h) 188.0000 136.6750 88.5 组分流量/(kMol/h) H2O 0.0000 0.0000 1.1948 H2S 0.0000 0.0000 0.0000 空气 0.0000 0.0000 0.0000 H2 13.4270 0.0000 0.0000 02 3.1885 0.0000 0.0000 N2 17.3092 0.0000 0.0000 CO 0.2388 0.0000 0.0000 CO2 1.3386 0.0000 0.0000 甲烷 12.3685 0.0000 0.0000 乙烷 4.5684 0.0000 0.0000 乙烯 10.4002 0.0000 0.0000

吸收稳定操作原则

●吸收稳定操作原则 吸收—稳定系统的任务是将来自分馏塔顶粗汽油和富气,通过吸收塔和解吸塔分离成干气和脱乙烷汽油,再通过稳定塔将脱乙烷汽油分离成液态烃和稳定汽油。 对于吸收操作,温度越低、压力越高、吸收剂量越大越有利于吸收;对于解吸操作,温度越高,压力越低越有利于解吸。 吸收和解吸操作又相互影响,要从吸收和解吸整体分离效果来考虑控制各自的操作条件。 吸收过度将增加解吸负荷,解吸过度又会增加吸收负荷,吸收或解吸过度后反而会造成分离效果恶化。 因此必须树立吸收—解吸系统整体操作的思想。 对于稳定塔操作,影响分离精度的主要因素是回流比,在塔底重沸器热源充足和塔顶冷凝品负荷允许的情况下,塔顶回流越大,分离效果越好。 但回流过大,将增加塔底重沸器加热负荷和塔盘的气液相负荷,一旦塔盘气、液相负荷超标后,将出现液泛或雾沫夹带,产品分割度变差。所以稳定塔操作需要根据进料组成、流量的变化,及时调整塔顶回流量,塔顶温度作为液态烃C5含量控制的关键指标,塔底重沸器出口温度作为稳定汽油10%点控制的关键指标。 正常操作 ●产品质量控制 ⑴干气中>C3含量的控制

①干气冷后温度高; ②吸收剂量不足或吸收剂温度高,吸收效果差(干气中C3含量高); ③吸收塔温度高或中段回流取热量少,吸收效果差; ④稳定深度不够,补充吸收剂用量过大; ⑤吸收塔压力过低或波动大; ⑥解吸塔温度过高,大量C3、C4组分过度解吸,增加吸收塔的负荷; ⑦不凝气排放。 ⑵液态烃C2含量的控制 a.影响因素 ①解吸塔底重沸器出口温度低,解吸效果差; ②吸收过度导致解吸塔进料中会有大量C2。 ⑶液态烃C5含量的控制 a.影响因素 ①稳定塔顶回汉量小或冷却器效果差,造成塔顶温度高; ②稳定塔底重沸器出口温度控制过高; ③稳定塔压力低或波动大; ④进料位置不同,进料口以上的精馏段塔盘娄目不同,影响精馏效果。 ⑤回炼轻汽油后塔盘上液相负荷降低,相当于降低了塔顶回流比; ⑥粗汽油流量下降或稳定塔进料中液态烃组分含量上升,液态烃C5含量上升。 ⑷汽油10%点的控制

催化裂化装置操作工:催化裂解吸收稳定测考试题模拟考试练习_2.doc

催化裂化装置操作工:催化裂解吸收稳定测考试题模 拟考试练习 考试时间:120分钟 考试总分:100分 遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。 1、单项选择题 原油中环烷酸含量可用原油( )的大小表示出来。A.硫含量 B.盐含量 C.酸值 D.PH 值 本题答案:C 本题解析:暂无解析 2、填空题 如稳定塔底重沸器热源不足,进料预热温度也不能再提高,则只( )或减小回流比。 本题答案:适当降低补充吸收剂量 本题解析:适当降低补充吸收剂量 3、判断题 封油循环是指三路循环的一部分。( ) 本题答案:错 本题解析:暂无解析 4、填空题 分馏塔2台顶回流泵均不能使用的情况下,可打开与粗汽油泵间的跨线,通过( ),将分馏塔顶回流罐内液体抽出。 姓名:________________ 班级:________________ 学号:________________ --------------------密----------------------------------封 ----------------------------------------------线----------------------

本题答案:粗汽油泵 本题解析:粗汽油泵 5、填空题 分馏塔顶前冷入口处有()个电动阀,()个手阀。 本题答案:2;2 本题解析:2;2 6、判断题 再吸收塔吸收剂用的是稳定汽油。() 本题答案:错 本题解析:暂无解析 7、单项选择题 反应注气量增大,在保持分馏塔顶不变的条件下,应()分馏塔顶温度,才能使汽油干点合格。A.提高 B.降低 C.不改变 D.先提后降 本题答案:B 本题解析:暂无解析 8、填空题 稳定塔回流比过大,液化气产率会()。 本题答案:减少 本题解析:减少 9、单项选择题 管壳式换热器管子与管板有三种连接方式,其中被广泛采用的是()。A.胀接 B.焊接 C.胀焊结合 D.爆炸胀管 本题答案:A 本题解析:暂无解析 10、填空题

催化裂化装置操作工:催化裂解吸收稳定_0.doc

催化裂化装置操作工:催化裂解吸收稳定 考试时间:120分钟 考试总分:100分 遵守考场纪律,维护知识尊严,杜绝违纪行为,确保考试结果公正。 1、问答题 回炼油自回炼油泵出口有哪些去处? 本题答案:1.经稳定塔底重沸器换热,返回分馏塔5层; 本题解析:1.经稳定塔底重沸器换热,返回分馏塔5层; 2.返回分馏塔2层; 3.至反应回炼。 2、问答题 油浆外甩的准备工作及操作步骤? 本题答案:1.联系高度及罐区,改好外甩流程用蒸汽贯通外甩线; 本题答案:C 和H ;95~99% 本题解析:C 和H ;95~99% 4、单项选择题 贫吸收油进入再吸收塔时的温度为t ,则富吸收油离开再吸收塔时的温度( )。A.t B.C.=t D.都对 本题答案:A 本题解析:暂无解析 5、问答题 油浆上返塔过小的危害是什么? 本题答案:1.增大上部负荷,产品质量难控制; 姓名:________________ 班级:________________ 学号:________________ --------------------密----------------------------------封 ----------------------------------------------线----------------------

2.Ca 本题解析:1.增大上部负荷,产品质量难控制; 2.Cat洗涤不完全,被带到塔盘上,易结焦,堵塞塔盘。 6、问答题 稳定塔底重沸器传热面积小,但加热负荷却较大,为什么? 本题答案:汽油进入重沸器后,经加热、升温,部分要汽化相变,由于沸 本题解析:汽油进入重沸器后,经加热、升温,部分要汽化相变,由于沸腾传热的影响,传热系数很大,且由于器内没有汽化空间,不进行气、液分离,汽油在器内停留时间短,故稳定塔底重沸器传热面积小,但加热负荷却较大。7、单项选择题 炼厂中()颜色的管线表示消防线。A.红 B.绿 C.黄 D.黑 本题答案:A 本题解析:暂无解析 8、单项选择题 二中回流量减小若其它条件不变,则稳定塔底重沸器出口温度()。A.升高 B.降低 C.无法判断 本题答案:B 本题解析:暂无解析 9、单项选择题 汽油的蒸汽压高,则辛烷值()。A.高些 B.低些 C.不变 本题答案:A 本题解析:暂无解析 10、填空题 吸收塔分离的关键组分是()和()。 本题答案:C2;C3

浅析吸收稳定系统操作

浅析吸收稳定系统操作 简言之,吸收稳定系统操作乃是一个“中心”,两个“基本点”,四项“基本原则”。 对于没有干气深加工的炼厂来说(目前绝大多数炼厂是此模式),干气是附加产品。因此降低干气中C3的含量,以使得液化气产量增加的操作,成为上述炼厂迫切需要完成的任务。正是基于这点,笔者形象的把它比喻成吸收稳定系统的“中心”。 据有关文献报道,粗汽油和稳定汽油的吸收效果相当,只与其初馏点有关(传统的认为稳定汽油效果好),一般来说初馏点低,吸收C3、C4效果好。尤其在吸收塔塔顶35-40℃范围内操作。因此调节干气量时,切记粗汽油与稳定汽油的加和性。例如,因粗汽油罐液位 低时,降低粗汽油量入吸收塔的同时,需同幅度的提高稳定汽油作吸收油的量,以减少操作的波动。笔者也曾摸索过,当每降低1.5t/h吸收油(包括粗汽油),干气量大约上升200Nm3/min。其实当生产条件不变的情况下,根据物料守恒还可得出,干气量的变化能很大程度上制约稳定塔的操作。例如夏季、冬季汽油蒸汽压指标苛刻度的不同,冬天可往35℃附近靠,来降低干气产量,从而可适当提高稳定塔塔顶压力以达到增产高价值的稳定汽油;夏季可往40℃附近靠,以多产干气来降低稳定塔压力,已达到适当增加了稳定塔冷却负荷以生产较高泡点的合格稳定汽油(对已待定的油品,泡点高,蒸汽压低)。 然而操作条件是在一定幅度范围内变化的,这确实不能单靠干气量的变化来完成稳定塔的调节。尤其一中循环量的波动,对稳定塔的操作变化极其明显。实践生产中,炼厂往往是用分馏塔一中循环量来控制稳定热源(对于有生产重柴油的装置,其热源一般由二中段循环量控制)及脱乙烷油的进料温度及流量来操作稳定塔。因此笔者生动的把它比喻成为吸收稳定系统的两个基本点。在生产中,必须控制好解析塔热源及稳定塔热源被供给的波动。 至于稳定塔本身的操作,和其他产品质量的调节一样。接班后,认真查询上班甚至上几个班的操作参数,找出稳定塔的控制点,是液

催化裂化吸收稳定流程说明

催化裂化吸收稳定流程说明 一、工艺流程叙述 催化装置吸收稳定系统流程模拟流程图如图1 所示。 由分馏塔顶油气分离器来的富气经富气压缩机压缩到 1.6MPa(绝)。压缩富气与解吸塔顶解吸气混合经气压机出口冷却器冷至55℃,再与吸收塔底油混合,经气压机出口后冷器冷至40℃,进入平衡罐(D-301)分离出气相(富气)及液相(凝缩油)。 吸收塔(C-301)位于脱吸塔(C-302)上部,压力1.4MPa(绝)。由平衡罐来的富气进入吸收塔的下部,自稳定塔返回的补充吸收剂和分馏塔来的粗汽油均进入吸收塔的顶部,与气体逆流接触。吸收塔设有两个中段回流,用以取走吸收过程所释放的热量,避免塔内温度上升过高。中段回流自第14 层及第21 层用泵P3 及P4 抽出,分别经水冷器(E-306,E-307)冷至40℃,返塔第15 层及第22 层上方,吸收塔底釜液饱和吸收油返回到上游与压缩富气混合。 吸收塔顶采出的贫气,进入再吸收塔(C-304)底部,与轻柴油吸收剂逆流接触,吸收贫气中的汽油组分。塔顶压力为1.3~1.4MPa(绝),塔顶干气为装置的副产品。塔底富吸收油返回分馏塔。 D-301 底凝缩油经泵P1 加压,与稳定汽油换热(E-304)至70℃进入解吸塔C-302 上部,塔顶压力1.6MPa(绝)。解吸塔底重沸器E-301 由分馏塔一中回流供热。解吸塔顶气返回至E-305 前与压缩富气混合。 C-302 塔底脱乙烷汽油经稳定塔进料泵与稳定汽油换热(E-302)至165℃入稳定塔(C-303)。C-303 塔顶压力1.17MPa(绝),塔底重沸器E-303由分馏二中回流供热。液化气组分由C-303 顶馏出,经水冷器(E-308)冷却至40℃,入回流罐(D-302)。液化气经回流泵加压(P-304)后,一部分作为顶回流,另一部分出装置。 稳定塔釜液稳定汽油先与脱乙烷汽油换热(E-302)至161.4℃,再与凝缩油换热(E-304)至130℃,再经除盐水冷却器(E-309)冷至40℃,一部分出装置,一部分用泵P6 打入塔C-301 顶作补充吸收剂。

稳定岗位试题(一)答案

稳定岗位试题(一)答案 一、填空题(每题1分,共20分): 1、影响吸收的因素是温度,压力,油气比,吸收剂性质。 2、影响汽油饱和蒸汽压的主要组分是 C4,因此稳定塔又称为脱丁烷塔。 3、液化气有火灾、爆炸、冻伤的危险性,液化气的爆炸极限为 1.5~12%。 4、稳定塔(T2304)共有53层双溢流浮阀塔盘,稳定塔三个进料口位置分别为24、28、32层塔盘。 5、压力容器的安全附件有:放空阀、安全阀、压力表、液面计、容器与工作介质切断阀。 6、解吸塔冷热进料口分别为第 1、 10 层进料口。 7、稳定岗位控制的几个质量指标分别为:稳定汽油饱和蒸汽压9月1日~2月29日≯88kpa,3月1日~8月31日≯74kpa,稳汽干点≯ 205 0C,稳汽腐蚀合格,液化气C5含量≯ 3%(v%)(标明单位)。 8、车用汽油的主要指标有: a、抗爆性:抗爆性用辛烷值表示 b、蒸发性:汽油的蒸发性用馏程和蒸汽压两个指标评定。 c、安定性:汽油的安定性是表明汽油在储存中抵抗氧化的能力,表明汽油安定性有两种方法,一种是汽油的胶质含量、另 一种是汽油的诱导期。 d、腐蚀合格;水溶性酸碱中性。 9、T2301、T2302、T2304操作压力分别为1.25MPa、1.35MPa、1.00MPa。 10、吸收稳定区有7个安全阀;精制区有11个安全阀. 11、吸收稳定系统双级泵是稳定汽油泵(P2306A/B)。 12、稳定汽油饱和蒸汽压高则辛烷值高;干点高则辛烷值低。 13、稳定塔底热源分馏一中,解吸塔底热源1.0MPa蒸汽。 14、利于吸收的条件高压,低温,选择性较好的溶剂。 15、热虹吸式换热器被加热介质走壳程. 16、干气的主要组分C1,C2,液化气的主要组分C3,C4,汽油的主要组分C5-C11。 17、稳定汽油精制碱液浓度10%;柴油精制碱液浓度5%;催化剂碱液浓度10%。 18、汽油脱硫醇的催化剂磺化酞菁钴,助催化剂氢氧化钠,催化剂载体活性炭。 19、汽油精制中氢氧化钠的作用脱除硫化氢, 助催化剂。 20、汽油脱硫醇后要求硫醇含量不大于10PPm;活化剂注入浓度100-200PPm;注风量10-15NM3/h。 二、选择题(每题1分,共20分): 1、吸收是利用各组分(B)的不同而分离混合气的。 A.挥发性B.溶解度C.浓度D.密度 2、蒸馏过程的主要环节是(C)。 A.加热 B.对流 C.汽化和冷凝 D.溶解 3、压力增加,组分间的相对挥发度(B)。 A.增大 B.减小 C.不变 D.波动 4、催化裂化的目的产品是(A)。 A.汽油 B.重柴油 C.煤油 D.油浆 5、液态烃组成含量最高的是(C)。 A.丙烷 B.乙烯 C.丙烯 D.丁烯 6、汽油中(A)含量直接影响汽油的蒸汽压。 A.C4 B.C5 C.C6 D.C7 7、液态烃的质量由(D)控制。 A.吸收塔 B.解吸塔 C.再吸收塔 D.稳定塔 8、液态烃中的C2以下组分是通过(A)塔的操作来控制的。 A.解吸 B.分馏 C.吸收 D.稳定 9、当反应压力高时,应(D)。 A.降低气压机转速,提高反飞动量 B. 降低气压机转速,降低反飞动量 C.提高气压机转速,提高反飞动量 D. 提高气压机转速,降低反飞动量 10、稳定岗位主要控制汽油的(C)。 A.干点 B.初馏点 C.蒸汽压 D.闪点 11、压缩富气经吸收塔吸收后塔顶抽出的气体为(A)。 A.贫气 B.干气 C.解吸气 D.液态烃 12、由吸收塔底部抽出经油气分离器分离后的(D)进入解吸塔。 A.粗汽油 B.凝缩油 C.脱乙烷汽油 D.饱和吸收油 13、含有更多轻组分的油品是(C)。 A.粗汽油 B.脱乙烷汽油 C.凝缩油 D.稳定汽油 14、设再吸收塔是因为(A)。 A.贫气中含有汽油 B.贫气中含有C2 C.富气中含有汽油 D.富气中含有C2 15、稳定塔底进料是由解吸塔底抽出的(D)。

电液调节系统原理及应用

电液调节系统原理及应用电液调节系统原理及应用 葸国隆

摘要 本文就汽轮机数字电液控制系统的组成、控制功能及其实现做了说明,并介绍常见项目实施过程出现的部分故障及处理方法;同时对EH油系统、电液伺服阀、ETS系统也做了介绍。 关键词:数字电液汽轮机转速电液伺服阀汽轮机保护 Abstract This text did the introduction to the Digital Electric Hydraulic steam turbine Control System, control function and implementation, and introduced the error and fault appears in the common item implementation process and the method;Also did introduction to the EH oil system, the electricity liquid servovalve and ETS system at the same time. Keywords: DEH STEAM TURBINE SPEED SERVOVALVE ETS

目录 前言........................................................................... 3 第一章DEH概述 .............................................................. 4 1.1DEH的发展经历.......................................................... 4 1.1.1 MHC .......................................................................... 4 1.1.2 EHC .......................................................................... 4 1.1.3 DEH .......................................................................... 51.2DEH系统的组成.......................................................... 61.3DEH的控制方案.......................................................... 81.4ETS ................................................................... 101.5TSI ................................................................... 12 第二章液压执行机构........................................................ 13 2.1DEH的硬件组成各部分功能.............................................. 13 2.1.1 DEH常用的电液转换器........................................................ 14 2.1.2 LVDT ....................................................................... 15第三章油系统.............................................................. 16 3.1低压透平油系统........................................................ 163.2供油装置的主要部件.................................................... 173.3自容式电液执行器...................................................... 183.4汽轮机的自动保护系统.................................................. 19 第四章DEH调试 ............................................................ 20 4.1LVDT .................................................................. 20 4.1.1 LVDT的安装调试............................................................. 204.2拉阀试验.............................................................. 224.3汽轮机冲转............................................................ 24 总结......................................................................... 26

催化吸收稳定系统工艺流程

催化吸收稳定系统工艺流程 气压机(M501/1.2.3)压缩后的富气,进入压缩富气—循环水换热器(E305)冷却后,再与来自解吸塔(T302)顶部的解吸气和吸收塔底的富吸收油合并进入压缩富气冷却器(E307/1.2),冷却后进入气压机出口油气分离器(V301)平衡汽化,气相压缩富气进入吸收塔底(T301)与上部的吸收剂—粗汽油、稳定汽油逆流接触,经吸收后的贫气自顶部进入再吸收塔(T304)底部,轻汽油组分解析下来,再吸塔底液压回粗汽油罐(容201)。干气自再吸收塔(T304)顶部出来去常压作燃料,剩余的低压瓦斯放火炬。 为了取走吸收塔内放出的吸收热,吸收塔设有中段循环回流中段循环在吸收塔(T301 )第13层抽出经泵(P303)加压后进入中段—循环水冷却器(E308/1),冷却后返回吸收塔第12层塔盘。 解吸塔(T302)。凝缩油从气压机出口油气分离器(V301)底部抽出经泵(P301/1.2)加压后,打入解吸塔(T302)第25层,由解吸塔底在为期(E301)提供热源,在塔内脱除凝缩油中轻于2C 的组分,脱乙烷汽油自塔底由稳定他(T303) 进料泵(P302/1.2)抽出加压后,经过稳汽—脱乙烷换热器(E302)换热后进入稳定塔(T303)作为进料。 稳定塔(T302)由塔底重沸器(E303)提供热量,在塔内将解吸塔送来的脱乙烷汽油中的43C C 、组分分离出来,并从

塔顶蒸出,经稳定塔(T303)顶空冷器(E309/1.2)和塔顶冷却器(E310)后,进入稳定塔顶回流罐(V302)平衡汽化,液相—液化石油气自底部经泵(P304/1.2)加压后一部分作为塔顶回流返回稳定塔顶,另一部分作为产品出装置,气相—不凝气经压控送至装置瓦斯管网。 稳定汽油由稳定塔(T303)底重沸器(E303)自流出,经稳汽—脱乙烷汽油换热器(E302)进入稳汽—凝缩油换热器(E304),再进入稳汽与采暖水换热,空冷器(E311/1.2)后,经循环水冷却后,一路经泵(P305/1.2)加压冷却后到吸收塔(T301)顶作吸收剂,另一路去碱洗出装置。

催化裂化装置吸收稳定系统的原理是什么

催化裂化装置吸收稳定系统的原理是什么? 催化裂化生产过程的主要产品是气体、汽油和柴油,其中气体产品包括干气和液化石油气,干气作为本装置燃料气烧掉,液化石油气是宝贵的石油化工原料和民用燃料。所谓吸收稳定,目的在于将来自分馏部分的催化富气中C2以下组分与C3以上组分分离以便分别利用,同时将混入汽油中的少量气体烃分出,以降低汽油的蒸气压,保证符合商品规格。 吸收-稳定系统包括吸收塔、解吸塔、再吸收塔、稳定塔以及相应的冷换设备。 由分馏系统油气分离器出来的富气经气体压缩机升压后,冷却并分出凝缩油,压缩富气进入吸收塔底部,粗汽油和稳定汽油作为吸收剂由塔顶进入,吸收了C3、C4(及部分C2)的富吸收油由塔底抽出送至解吸塔顶部。吸收塔设有一个中段回流以维持塔内较低的温度,吸收塔顶出来的贫气中尚夹带少量汽油,经再吸收塔用轻柴油回收其中的汽油组分后成为干气送燃料气管网。吸收了汽油的轻柴油由再吸收塔底抽出返回分馏塔。解吸塔的作用是通过加热将富吸收油中C2组分解吸出来,由塔顶引出进入中间平衡罐,塔底为脱乙烷汽油被送至稳定塔。稳定塔的目的是将汽油中C4以下的轻烃脱除,在塔顶得到液化石油气〈简称液化气〉,塔底得到合格的汽油——稳定汽油。 吸收解吸系统有两种流程,上面介绍的是吸收塔和解吸塔分开的所谓双塔 流程;还有一种单塔流程,即一个塔同时完成吸收和解吸的任务。双塔流程优于单塔流程,它能同时满足高吸收率和高解吸率的要求。 催化裂化反应装置基本原理 一、催化裂化工艺过程的特点 催化裂化过程是使原料在有催化剂存在下,在470~530度和0.1~0.3兆帕的压力条件下,发生一系列化学反应,转化成气体,汽油、柴油等轻质产品和焦炭的过程。 催化裂化的原料一般是重质馏分油,例如减压馏分油(减压蜻油)和焦化馏分油等,随着催化裂化技术和催化剂工艺的不断发展,进一步扩大了催化裂化

电液控制系统

电液系统 摘要:电液系统具有相应快速、控制灵活等优点而广泛应用于现代工业中,对促进工业发展具有重要的作用。本文从电液控制系统的建模以及电液元件(伺服阀、比例阀)研究状况、电液系统的未来发展趋势三方面进行了阐述。 关键词:电液系统;建模;比例阀;伺服阀;发展趋势 1前言 18世纪欧洲工业革命时期,多种液压机械装置特别是液压阀得 到开发和利用,19世纪液压技术取得进展,包括采用油作为工作流 体和采用电来驱动方向控制阀,20世纪50-60年代是电液元件和技术发展的高峰期,在军事应用中得到广泛应用[1]。液压技术是以液体为工作介质,实现能量传递、转换、分配及控制的一门技术。液压系统因其响应快、功率体积比较大、抗负载刚度大以及传递运动平稳等优点而广泛应用于冶金、化工、机械制造、航空航天、武器装备等领域[2]。随着液压技术与微电子技术、传感器技术、计算机控制等技术的结合,电液技术成为现代工程控制中不可或缺的重要技术手段和环节。电液技术既有电气系统快速响应和控制灵活的优点,又有液压系统输出功率大和抗冲击性好等优点[3]。 韩俊伟对电液伺服系统的发展历史、研究现状和系统集成技术的应用进行了全面阐述,通过介绍电液伺服系统在力学环境模拟实验系统中的应用,分析了电液伺服系统的集成设计,比较了我国在电液伺服系统技术研究中的优劣势,指出电液伺服系统的未来发展趋势与挑

战[4]。许梁等从电液元件、电液控制系统、现代电液控制策略三方面对电液系统进行了阐述,指出了电液发展趋势[5]。陈刚等从电液元件、电液控制系统、计算机在电液系统中应用、现代控制理论的电液技术方面对电液系统进行了阐述,对于现代控制理论的电液技术,从PID 调节、状态反馈控制、自适应控制、变结构控制、模糊逻辑控制、神经网络控制进行了探究[6]。本文从电液系统的建模、电液元件(比例阀、伺服阀)、发展趋势研究进行综述。 2系统的建模 伺服系统是一个由多个环节构成的复杂的动力学系统,而且是一种典型的非线性时变系统。一方面由于阀口固有的流量一压力非线性、液体可压缩性、电液转换、摩擦特性、阔的工作死区等非线性,以 及阻尼系数、流量系数、油液温度等的时变性[7];另一方面由于系 统的负载及所处的现场环境的变化,导致电液伺服系统参数变化大、非线性程度高、易受外界干扰。在工作过程中容易出现非线性振动、噪声、冲击和爬行等异常现象,而且其诱因不易确定,影响设备的 稳定运行[8]。对电液系统进行准确建立模型是分析电液系统的基础。电液伺服系统本身是非线性系统 ,传统上对电液伺服系统非线性问 题的处理方式是在稳态工作点处进行泰勒级数展开。如果把工作范围限制在工作点附近,高阶无穷小就可以忽略 ,并可以把控制滑阀的 流量方程局部线性化,变量的变化范围小 ,线性化的精确性就高 ,阀 特性的线性度高,所允许的变量变化范围就大[9]。当电液伺服系统工作在远离系统的工作点时,使增量线性化模型难于奏效 ,可能得到错

03稳定精制试题(带水场)详解

稳定精制试题 一、填空 1.汽油辛烷值的评定方法马达法、实验法。 2.吸收塔吸收剂是稳定汽油、粗汽油。 3.汽油主要组分范围C5以上。 4.再吸收塔的吸收剂是柴油。 5.固定床汽油脱硫醇的催化剂是磺化钛氰钴,助催化剂是氢氧化钠。 6.对于一种纯物质来说,在一定压力下,它的泡点和露点是相同的,即为该物质的沸点;对于混合物来说,无论是混合物的泡点、露点,还是纯净物的沸点,都随外界压力的变化而变化,压力升高沸点升高。 7.润滑油的主要作用是润滑冷却、冲洗、密封、减振、卸荷、保护。 8.粗汽油与稳定汽油相比,其比重稳定汽油大,其蒸气压粗汽油大。 9. 液化气脱硫是用乙醇胺作吸收剂,在塔内通过塔盘与液化气逆向接触,对硫化氢进行吸收,从而达到硫化氢脱离的目的,在脱硫塔内脱硫剂是上进下出,液化气是下进上出。 10.设备腐蚀的常见形式:化学腐蚀、电化学腐蚀、大气腐蚀、冲蚀。 11.稳定汽油腐蚀不合格时,需及时换碱。 12.分馏塔顶多用顶部循环回流,而稳定塔顶多用冷回流。 15.吸收是单向传质过程,精馏过程是双向传质过程。 18.汽油的 90% 和干点温度表示汽油在发动机中蒸发完全程度。 19.马达法辛烷值表示发动机转速高时汽油抗爆性,研究法辛烷值表示发动机转速低时汽油的抗爆性。 20.碘值表示汽油中不饱和烃含量,诱导期是汽油储存安定性评定方法。 21.柴油的十六烷值测试时采用的标准燃料是正十六烷和 a-甲基萘 23.汽油的商品牌号是汽油的辛烷值,柴油的商品牌号是柴油的凝点。24.除去钙镁离子的水称为软化水。 25.石油主要有碳、氢两种元素组成。 29.油气中C3.C4组分含量在50g/m3—150g/m3之间的称为贫气。 30.导热系数的数值和物质的组成、结构、密度、温度及压强有关。 31.蒸馏包括加热,汽化,分离,冷凝等几个环节,其中最重要的是汽化和冷凝。 32.粘度与油品的馏分组成与化学组成密切相关。

aspen催化吸收稳定系统流程模拟计算

催化吸收稳定系统流程模拟计算 一、工艺流程简述 催化裂化是我国最重要的重质石油馏份轻质化的装置之一。它由反再、主分馏及吸收稳定系统三部分所组成。分馏系统的任务是把反再系统来的反应产物油汽混合物进行冷却,分成各种产品,并使产品的主要性质合乎规定的质量指标。分馏系统主要由分馏塔、产品汽提塔、各中段回流热回收系统,并为吸收稳定系统提供足够的热量,不少催化装置分馏系统取热分配不合理,造成产品质量不稳定、吸收稳定系统热源不足。 吸收稳定系统对主分馏塔来的压缩富气和粗气油进行加工分离,得到干气、液化气及稳定汽油等产品。一般包括四个塔第一塔为吸收塔,用初汽油和补充稳定汽油吸收富气中的液化气组份,吸收后的干气再进入到再吸收塔,用催化分馏塔来的柴油吸收其中的较轻组份,再吸收塔顶得到含基本不含C3组份的合格干气,再吸收塔底富柴油回到分馏系统。吸收塔底富吸收液进到解吸塔,通过加热富吸收液中的比C2轻的组份基本脱除从解吸塔顶出来再回到平衡罐,再进到吸收塔内;解吸塔底脱除C2组份的液化气和汽油组份再进到稳定塔,通过分离稳定塔顶得到C5合格的液化气组份,塔底得到蒸汽压合格的汽油,合格汽油一部分作为补充吸收剂到吸收塔,一部分作为产品出装置。 吸收稳定系统分离其工流流程如图4-1所示,所涉及主要模块有吸收塔 (C10301)、解吸塔(C10302)、再解吸塔(C10303)、稳定塔(C10304)。解吸塔进料预热器(E302)、稳定塔进料换热器(E303),补充吸收剂冷却器(C39),平衡罐(D301)。

图4-1 催化吸收稳定系统模拟计算流程图 GGGAS干气; LLPG液化气; GGOIL稳定汽油;PCOIL贫柴油;PGAS干气;FCOIL富柴油;二汽油;LPG液化气;WDGOIL5稳定汽油产品;D301平衡罐;C10301吸收塔,C10302解吸塔,C10303再吸收塔,C10304稳定塔

电液伺服阀的应用及发展趋势

电液伺服阀的应用及发展趋势 摘要:电液伺服阀是电液伺服控制系统中的重要控制元件,在系统中起着电业转换和功率放大作用。具体地说,系统工作时,他直接接收系统传递来的电信号,并把电信号转换成具有相应极性的、成比例的、能够控制电液伺服阀的负载流量或负载压力的信号,从而使系统输出较大的液压功率,用以驱动相应的执行机构。电液伺服阀的性能和可靠性可以直接影响系统的性能和可靠性,是电液伺服控制系统中引人注目的关键元件。 关键字:电液伺服阀;现状;发展趋势;应用;展望 引言:电液伺服阀是一种变电气信号为液压信号以实现流量或压力控制的转换装置。它充分发挥了电气信号传递快、线路连接方便,适于远距离控制,易于测量、比较和校正的有点,和液压输出力大、惯性小、反应快的优点。这两者的结合使电液伺服阀成为一种反应灵活、精度高、快速性好、输出功率大的控制元件。[1] 一、电液伺服阀研究现状 群控系统(DNC)和柔性制造系统(FMS)等新工艺装备的使用,计算机辅助设计(CAD)和计算机辅助测试(CAT)的广泛应用,为我们进一步简化伺服阀结构,完善设计,降低工艺制造成本和管理费用,提高产品性能,稳定产品质量,增加产品可靠性和延长使用寿命创造了极其有利的条件。 1、伺服阀的结构改进 (1)在电液伺服阀的部分结构上,主要从余度技术、结构优化和材料的更替等方面进行改造,以提高相关性能。采用三余度技术的电液伺服作动系统[1]将伺服阀的力矩马达、喷嘴挡板阀、系统的反馈元件等做成一式三份,若伺服阀线圈有一路断开,而系统仍能够正常工作,且有系统动态品质性能基本不变,从而提高了伺服作动系统的可靠性和容错能力。在结构的改进上,针对阀出现的故障提出改进措施,进行结构优化,以满足其相关性能的要求。从材料方面考虑,阀的某些元件采用了强度、塑性、韧性、硬度等机械性能优良的材料,既可以减少故障,又让阀具备良好的动态性能。 (2)从阀芯和阀套磨配加工工艺的改进上,采用不同的磨配原理,如磁力研磨法等原理来提高阀的工作性能。阀芯和阀套组成的滑阀副是伺服阀的核心,阀套窗口棱边的几何精度决定了阀的工作性能。在阀芯加工最后磨配端面时,不能直接获得尖锐的棱边,而是在棱边处产生“毛刺”,然后采取措施加以去除。上海交大的陈鹏研制了智能化、全自动的伺服阀配磨系统,以计算机为核心,能自动测量阀的输出特性,并给出配磨参数,从而使阀芯、阀套的制造简便、迅速。1992年由美国某公司在加州制造了一台加工阀芯棱边的CNC液压磨床,由另一公司制造了一台配合磨床的液压测试台,二者结合起来就是自动化流量磨削系统,使产品的完好率从50%提高到85%~90%,生产阀芯的时间缩减75%~80%,制造厂称加工精度可达±015μm,性能相当优良。[2]

相关主题
文本预览
相关文档 最新文档