当前位置:文档之家› 数据挖掘中聚类算法研究进展_周涛

数据挖掘中聚类算法研究进展_周涛

数据挖掘中聚类算法研究进展_周涛
数据挖掘中聚类算法研究进展_周涛

数据挖掘考试题目聚类

数据挖掘考试题目——聚类 一、填空题 1、密度的基于中心的方法使得我们可以将点分类为:__________、________ 、_________。 2、DBSCAN算法在最坏的情况下,时间复杂度是__________、空间复杂度是__________。 3、DBSCAN算法的优点是_______、__________________________。 4、DBSCAN算法的缺点是处理_________________、_____________的数据效果不好。 5、DBSCAN算法的参数有:___________、____________。 6、簇的有效性的非监督度量常常可以分为两类:__________、__________,它常采用的指标为__________。 7、簇的有效性的监督度量通常称为___________,它度量簇标号与外部提供的标号的匹配程度主要借助____________。 8、在相似度矩阵评价的聚类中,如果有明显分离的簇,则相似度矩阵应当粗略地是__________。 9、DBSCAN算法的参数确定的基本方法是观察____________________的特性。 10、不引用附加的信息,评估聚类分析结果对数据拟合情况属于__________技术。 答案: 1、核心点边界点噪声点 2、O(n2) O(n) 3、耐噪声能够处理任意大小和形状的簇 4、高维数据变密度的 5、EPS MinPts 6、簇的凝聚性簇的分离性均方差(SSE) 7、外部指标监督指标的熵 8、块对角的 9、点到它的第K个最近邻的距离(K-距离) 10、非监督 二、选择题 1、DBSCAN算法的过程是(B)。 ①删除噪声点。 ②每组连通的核心点形成一个簇。 ③将所有点标记为核心点、边界点和噪声点。 ④将每个边界点指派到一个与之关联的核心点的簇中。 ⑤为距离在Eps之内的所有核心点之间赋予一条边。 A:①②④⑤③ B:③①⑤②④ C:③①②④⑤ D:①④⑤②③ 2、如果有m个点,DBSCAN在最坏的情况下的时间复杂度度为(C)。 A O(m) B O(mlogm) C O(m2) D O(logm) 3、在基本DBSCAN的参数选择方法中,点到它的K个最近邻的距离中的K选作为哪一个参数(B)。 A Eps B MinPts C 质心 D 边界

数据挖掘中的聚类分析方法

计算机工程应用技术本栏目责任编辑:贾薇薇 数据挖掘中的聚类分析方法 黄利文 (泉州师范学院理工学院,福建泉州362000) 摘要:聚类分析是多元统计分析的重要方法之一,该方法在许多领域都有广泛的应用。本文首先对聚类的分类做简要的介绍,然后给出了常用的聚类分析方法的基本思想和优缺点,并对常用的聚类方法作比较分析,以便人们根据实际的问题选择合适的聚类方法。 关键词:聚类分析;数据挖掘 中图分类号:TP311文献标识码:A文章编号:1009-3044(2008)12-20564-02 ClusterAnlaysisMethodsofDataMining HUANGLi-wen (SchoolofScience,QuanzhouNormalUniversity,Quanzhou362000,China) Abstract:Clusteranalysisisoneoftheimportantmethodsofmultivariatestatisticalanalysis,andthismethodhasawiderangeofapplica-tionsinmanyfields.Inthispaper,theclassificationoftheclusterisintroducedbriefly,andthengivessomecommonmethodsofclusteranalysisandtheadvantagesanddisadvantagesofthesemethods,andtheseclusteringmethodwerecomparedandanslyzedsothatpeoplecanchosesuitableclusteringmethodsaccordingtotheactualissues. Keywords:ClusterAnalysis;DataMining 1引言 聚类分析是数据挖掘中的重要方法之一,它把一个没有类别标记的样本集按某种准则划分成若干个子类,使相似的样品尽可能归为一类,而不相似的样品尽量划分到不同的类中。目前,该方法已经被广泛地应用于生物、气候学、经济学和遥感等许多领域,其目的在于区别不同事物并认识事物间的相似性。因此,聚类分析的研究具有重要的意义。 本文主要介绍常用的一些聚类方法,并从聚类的可伸缩性、类的形状识别、抗“噪声”能力、处理高维能力和算法效率五个方面对其进行比较分析,以便人们根据实际的问题选择合适的聚类方法。 2聚类的分类 聚类分析给人们提供了丰富多彩的分类方法,这些方法大致可归纳为以下几种[1,2,3,4]:划分方法、层次方法、基于密度的聚类方法、基于网格的聚类方法和基于模型的聚类方法。 2.1划分法(partitiongingmethods) 给定一个含有n个对象(或元组)的数据库,采用一个划分方法构建数据的k个划分,每个划分表示一个聚簇,且k≤n。在聚类的过程中,需预先给定划分的数目k,并初始化k个划分,然后采用迭代的方法进行改进划分,使得在同一类中的对象之间尽可能地相似,而不同类的中的对象之间尽可能地相异。这种聚类方法适用于中小数据集,对大规模的数据集进行聚类时需要作进一步的改进。 2.2层次法(hietarchicalmethods) 层次法对给定数据对象集合按层次进行分解,分解的结果形成一颗以数据子集为节点的聚类树,它表明类与类之间的相互关系。根据层次分解是自低向上还是自顶向下,可分为凝聚聚类法和分解聚类法:凝聚聚类法的主要思想是将每个对象作为一个单独的一个类,然后相继地合并相近的对象和类,直到所有的类合并为一个,或者符合预先给定的终止条件;分裂聚类法的主要思想是将所有的对象置于一个簇中,在迭代的每一步中,一个簇被分裂为更小的簇,直到最终每个对象在单独的一个簇中,或者符合预先给定的终止条件。在层次聚类法中,当数据对象集很大,且划分的类别数较少时,其速度较快,但是,该方法常常有这样的缺点:一个步骤(合并或分裂)完成,它就不能被取消,也就是说,开始错分的对象,以后无法再改变,从而使错分的对象不断增加,影响聚类的精度,此外,其抗“噪声”的能力也较弱,但是若把层次聚类和其他的聚类技术集成,形成多阶段聚类,聚类的效果有很大的提高。2.3基于密度的方法(density-basedmethods) 该方法的主要思想是只要临近区域的密度(对象或数据点的数目)超过某个阈值,就继续聚类。也就是说,对于给定的每个数据点,在一个给定范围的区域中必须至少包含某个数目的点。这样的方法就可以用来滤处"噪声"孤立点数据,发现任意形状的簇。2.4基于网格的方法(grid-basedmethods) 这种方法是把对象空间量化为有限数目的单元,形成一个网格结构。所有的聚类操作都在这个网格结构上进行。用这种方法进行聚类处理速度很快,其处理时间独立于数据对象的数目,只与量化空间中每一维的单元数目有关。 2.5基于模型的方法(model-basedmethod) 基于模型的方法为每个簇假定一个模型,寻找数据对给定模型的最佳拟合。该方法经常基于这样的假设:数据是根据潜在的概 收稿日期:2008-02-17 作者简介:黄利文(1979-),男,助教。

数据挖掘中聚类分析的研究_陈学进

收稿日期:2005-11-09 作者简介:陈学进(1972-),男,安徽六安人,讲师,硕士研究生,研究方向为计算机软件理论及数据挖掘;导师:胡学钢,博士,教授,研究方向为知识工程、数据挖掘、数据结构。 数据挖掘中聚类分析的研究 陈学进 (合肥工业大学计算机与信息学院,安徽合肥230009; 安徽工业大学计算机学院,安徽马鞍山243002) 摘 要:聚类分析是由若干个模式组成的,它在数据挖掘中的地位越来越重要。文中阐述了数据挖掘中聚类分析的概念、方法及应用,并通过引用一个用客户交易数据统计出每个客户的交易情况的例子,根据客户行为进行聚类。通过数据挖掘聚类分析,可以及时了解经营状况、资金情况、利润情况、客户群分布等重要的信息。对客户状态、交易行为、自然属性和其他信息进行综合分析,细分客户群,确定核心客户。采用不同的聚类方法,对于相同的记录集合可能有不同的划分结果对其进行关联分析,可为协助各种有效的方案,开展针对性的服务。关键词:数据挖掘;聚类分析;客户行为 中图分类号:T P311.13 文献标识码:A 文章编号:1673-629X (2006)09-0044-02 Research of Cluster Analysis in Data Mining CHEN Xue -jin (Computer and Information College of Hefei U niversity of T echnology ,Hefei 230009,China ; Computer College ,A nhui U niversity of T echnology ,M aanshan 243002,China ) Abstract :Cluster anal ysis is made up of patterns ,and becoming increasingly essential in data mining field .T his paper b riefly introduces the bas ic concept ,means and application of cluster anal ysis discussing about cluster analysis by using a case of customer trans action .In order to k now about much imoport information of running ,funds ,profits and customers .And anal yze state of cl ient ,bargaining action ,natu ral ess attribute and other information ,subdivide customer groups and fix on core client .By us ing various methods of cluster analysis ,it is effec -tive p roject to develop pertinence s ervice . Key words :data mining ;cluster analys is ;customer action 0 引 言 自20世纪60年代数据库系统诞生以来,数据库技术已经得到了飞速的发展,并且己经深入到社会生活的各个方面。现在,数据无处不在,可以存放在不同类型的数据库中,数据仓库技术可以将异构的数据库集成起来进行综合管理,从而提供更好的服务。 但是,随着科学技术的进步,新的数据采集和获取技术不断发展,使得数据库中所存储的数据量也随之急剧增长。另一方面,数据处理技术的发展却相对落后,数据库技术仍然停留在相对简单的录入、查询、统计、检索阶段,对数据库中的数据之间存在的关系和规则、数据的群体特征、数据集内部蕴涵的规律和趋势等,却缺少有效的技术手段将其提取出来,从而出现所谓的“被数据淹没,却饥渴于知识”(John Na isbett ,1997)的现象[1]。为了解决这种现象,科学家们于20世纪80年代末期创立了一个新的研究 领域,即数据挖掘(Data M ining ),或称数据挖掘和知识发 现(Data M ining and Know ledge Discovery ,DM KD )。这是在数据库技术、机器学习、人工智能、统计分析等基础上发展起来的一个交叉性的学科。区别于简单地从数据库管理系统检索和查询信息。数据挖掘是指“从数据中发现隐含的、先前不知道的、潜在有用的信息的非平凡过程”(Fra w le y ,1991),其目的是把大量的原始数据转换成有价值的、便于利用的知识。 自从数据挖掘和知识发现的概念于1989年8月首次出现在第11届国际联合人工智能学术会议以来,数据挖掘和知识发现领域的研究和应用均得到了长足的发展,形成了一些行之有效的理论和方法,并逐渐成为计算机信息处理领域的研究热点。 数据挖掘(Data M ining )是一个多学科交叉研究领域,它融合了数据库(Database )技术、人工智能(Artificial Intel -ligenc e )、机器学习(Machine Learning )、统计学(Statistics )、知识工程(Know ledge Engineering )、面向对象方法(Object -Oriented Method )、信息检索(Information Retrieval )、高性能计算(High -Perform ance Computing )以及数据可视化(Data Visualization )等最新技术的研究成果[2,3]。 第16卷 第9期2006年9月 计算机技术与发展COM PUTER TECHNOLOGY AND DEVELOPM ENT Vo l .16 N o .9Sep . 2006

数据挖掘聚类算法课程设计报告

数据挖掘聚类问题(Plants Data Set)实验报告 1.数据源描述 1.1数据特征 本实验用到的是关于植物信息的数据集,其中包含了每一种植物(种类和科属)以及它们生长的地区。数据集中总共有68个地区,主要分布在美国和加拿大。一条数据(对应于文件中的一行)包含一种植物(或者某一科属)及其在上述68个地区中的分布情况。可以这样理解,该数据集中每一条数据包含两部分内容,如下图所示。 图1 数据格式 例如一条数据:abronia fragrans,az,co,ks,mt,ne,nm,nd,ok,sd,tx,ut,wa,wy。其中abronia fragrans是植物名称(abronia是科属,fragrans是名称),从az一直到wy 是该植物的分布区域,采用缩写形式表示,如az代表的是美国Arizona州。植物名称和分布地区用逗号隔开,各地区之间也用逗号隔开。 1.2任务要求 聚类。采用聚类算法根据某种特征对所给数据集进行聚类分析,对于聚类形成的簇要使得簇内数据对象之间的差异尽可能小,簇之间的差距尽可能大。 2.数据预处理 2.1数据清理 所给数据集中包含一些对聚类过程无用的冗余数据。数据集中全部数据的组织结构是:先给出某一科属的植物及其所有分布地区,然后给出该科属下的具体植物及其分布地区。例如: ①abelmoschus,ct,dc,fl,hi,il,ky,la,md,mi,ms,nc,sc,va,pr,vi ②abelmoschus esculentus,ct,dc,fl,il,ky,la,md,mi,ms,nc,sc,va,pr,vi ③abelmoschus moschatus,hi,pr 上述数据中第①行给出了所有属于abelmoschus这一科属的植物的分布地区,接下来的②③两行分别列出了属于abelmoschus科属的两种具体植物及其分布地区。从中可以看出后两行给出的所有地区的并集正是第一行给出的地区集

K - M e a n s 聚 类 算 法

基于K-means聚类算法的入侵检测系统的设计 基于K-means聚类算法的入侵检测系统的设计 今天给大家讲述的是K-means聚类算法在入侵检测系统中的应用首先,介绍一下 聚类算法 将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程的研究,就形成了历史学,有关世界空间地域的研究,则形成了地理学。 又如在生物学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将它们归属于不同的界、门、纲、目、科、属、种之中。 事实上,分门别类地对事物进行研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具有更多的近似特性。 通常,人们可以凭经验和专业知识来实现分类。而聚类分析(cluster analysis)作为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。 (聚类分析我们说得朴实一点叫做多元统计分析,说得时髦一点叫做数据挖掘算法,因为这个算法可以在一堆数据中获取很有用的信息,这就不就是数据挖掘吗,所以大家平时也不要被那些高大上的名词给吓到了,它背后的核心原理大多数我们都是可以略懂一二的,再

比如说现在AI这么火,如果大家还有印象的话,以前我们在大二上学习概率论的时候,我也和大家分享过自然语言处理的数学原理,就是如何让机器人理解我们人类的自然语言,比如说,苹果手机上的Siri系统,当时还让杨帆同学帮我在黑板上写了三句话,其实就是贝叶斯公式+隐含马尔可夫链。估计大家不记得了,扯得有点远了接下来还是回归我们的正题,今天要讨论的聚类算法。) K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,结果稳定,聚类的效果也还不错, 相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。 要用数量化的方法对事物进行分类,就必须用数量化的方法描述事物之间的相似程度。一个事物常常需要用多个特征变量来刻画,就比如说我们举一个例证,就有一项比较神奇的技术叫面部识别技术,其实听起来很高大上,它是如何做到的,提取一个人的面部特征,比如说嘴巴的长度,鼻梁的高度,眼睛中心到鼻子的距离,鼻子到嘴巴的距离,这些指标对应得数值可以组成一个向量作为每一个个体的一个标度变量(),或者说叫做每一个人的一个特征向量。 如果对于一群有待分类的样本点需用p 个特征变量值描述,则每

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

数据挖掘考试题精编版

数据挖掘考试题 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

数据挖掘考试题 一.选择题 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离( ) A.分类 B.聚类 C.关联分析 D.主成分分析 2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A.MIN(单链) B.MAX(全链) C.组平均 D.Ward方法 3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。 A 分类 B 预测 C关联规则分析 D聚类 4.关于K均值和DBSCAN的比较,以下说法不正确的是( ) A.K均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。 B.K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。 C.K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇 D.K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN 会合并有重叠的簇 5.下列关于Ward’s Method说法错误的是:( ) A.对噪声点和离群点敏感度比较小 B.擅长处理球状的簇

C.对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差 D.当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似 6.下列关于层次聚类存在的问题说法正确的是:( ) A.具有全局优化目标函数 B.Group Average擅长处理球状的簇 C.可以处理不同大小簇的能力 D.Max对噪声点和离群点很敏感 7.下列关于凝聚层次聚类的说法中,说法错误的事:( ) A.一旦两个簇合并,该操作就不能撤销 B.算法的终止条件是仅剩下一个簇 C.空间复杂度为()2m O D.具有全局优化目标函数 8.规则{牛奶,尿布}→{啤酒}的支持度和置信度分别为:( ) 9.下列( )是属于分裂层次聚类的方法。 A.Min B.Max C.Group Average D.MST 10.对下图数据进行凝聚聚类操作,簇间相似度使用MAX计算,第二步是哪两个簇合并:( ) A.在{3}和{l,2}合并 B.{3}和{4,5}合并 C.{2,3}和{4,5}合并

聚类分析、数据挖掘、关联规则这几个概念的关系

聚类分析和关联规则属于数据挖掘这个大概念中的两类挖掘问题, 聚类分析是无监督的发现数据间的聚簇效应。 关联规则是从统计上发现数据间的潜在联系。 细分就是 聚类分析与关联规则是数据挖掘中的核心技术; 从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。 从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。 聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。 从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。 关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。 关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。 关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。

数据挖掘聚类算法课程设计报告范本

数据挖掘聚类算法课程设计报告

数据挖掘聚类问题(Plants Data Set)实验报告 1.数据源描述 1.1数据特征 本实验用到的是关于植物信息的数据集,其中包含了每一种植物(种类和科属)以及它们生长的地区。数据集中总共有68个地区,主要分布在美国和加拿大。一条数据(对应于文件中的一行)包含一种植物(或者某一科属)及其在上述68个地区中的分布情况。能够这样理解,该数据集中每一条数据包含两部分内容,如下图所示。 图1 数据格式 例如一条数据:abronia fragrans,az,co,ks,mt,ne,nm,nd,ok,sd,tx,ut,wa,wy。其中abronia fragrans是植物名称(abronia是科属,fragrans是名称),从az一直到wy是该植物的分布区域,采用缩写形式表示,如az代表的是美国Arizona州。植物名称和分布地区用逗号隔开,各地区之间也用逗号隔开。 1.2任务要求 聚类。采用聚类算法根据某种特征对所给数据集进行聚类分析,对于聚类形成的簇要使得簇内数据对象之间的差异尽可能小,簇之间的差距尽可能大。 2.数据预处理

2.1数据清理 所给数据集中包含一些对聚类过程无用的冗余数据。数据集中全部数据的组织结构是:先给出某一科属的植物及其所有分布地区,然后给出该科属下的具体植物及其分布地区。例如:abelmoschus,ct,dc,fl,hi,il,ky,la,md,mi,ms,nc,sc,va,pr,vi abelmoschus esculentus,ct,dc,fl,il,ky,la,md,mi,ms,nc,sc,va,pr,vi abelmoschus moschatus,hi,pr 上述数据中第行给出了所有属于abelmoschus这一科属的植物的分布地区,接下来的两行分别列出了属于abelmoschus 科属的两种具体植物及其分布地区。从中能够看出后两行给出的所有地区的并集正是第一行给出的地区集合。在聚类过程中第行数据是无用的,因此要对其进行清理。 2.2数据变换 本实验是依据植物的分布区域进行聚类,所给数据集中的分布区域是字符串形式,不适合进行聚类,因此将其变换成适合聚类的数值形式。具体思想如下: 数据集中总共包含68个区域,每一种植物的分布区域是这68个区域中的一部分。本实验中将68个区域看成是数据对象的68个属性,这68个属性是二元类型的变量,其值只能去0或者1。步骤如下: 1.把68个区域按一定顺序存放在字符串数组(记为str)中(顺序能够自己定,确定后不能改变)。

数据挖掘实验报告三

实验三 一、实验原理 K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 算法原理: (1) 随机选取k个中心点; (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类; (3) 更新中心点为每类的均值; (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步 数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 二、实验目的: 1、利用R实现数据标准化。 2、利用R实现K-Meams聚类过程。 3、了解K-Means聚类算法在客户价值分析实例中的应用。 三、实验内容 依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。对其进行标准差标准化并保存后,采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。编写R程序,完成客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数

四、实验步骤 1、依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。

2、确定要探索分析的变量 3、利用R实现数据标准化。 4、采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。

五、实验结果 客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数 六、思考与分析 使用不同的预处理对数据进行变化,在使用k-means算法进行聚类,对比聚类的结果。 kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。 这样做的前提是我们已经知道数据集中包含多少个簇. 1.与层次聚类结合 经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果

数据挖掘层次聚类算法研究综述

数据挖掘层次聚类算法研究综述 摘要聚类问题是数据挖掘中的重要问题之一,是一种非监督的学习方法。分层聚类技 术在图像处理、入侵检测和生物信息学等方面有着极为重要的应用,是数据挖掘领域的研究热点之一。本文总结了分层聚类算法技术的研究现状,分析算法性能的主要差异,并指出其今后的发展趋势。 关键词层次聚类,数据挖掘,聚类算法 Review of hierarchical clustering algorithm in Data Mining Abstract Clustering problem of data mining is one of important issues, it is a kind of unsupervised learning methods. Stratified cluster technology in image processing, intrusion detection and bioinformatics has extremely important application and is data mining area of research one of the hotspots. This paper summarizes the layered clustering algorithm technology research, analyzes the main difference arithmetic performance, and pointed out the future development trend. Keywords Hierarchical clustering,Data mining,Clustering algorithm 1引言 随着计算机技术的发展,信息数据越来越多,如何从海量数据中提取对人们有价值的信息已经成为一个非常迫切的问题。由此产生了数据挖掘技术,它是一门新兴的交叉学科,汇集了来自机器学习、模式识别、数据库、统计学、人工智能等各领域的研究成果。聚类分析是数据挖掘中的一个重要研究领域。它在图像处理、入侵检测和生物信息学等方面有着极为重要的应用。数据挖掘是从大量数据中提取出可信、新颖、有效并能被人理解的模式的高级处理过程。其目标是从数据库中发现隐含的、有意义的知识。聚类分析作为一个独立的工具来获得数据分布的情况,是数据挖掘的一个重要研究分支。 在数据挖掘领域,研究工作己经集中在为大型数据库的有效和实际的聚类分析寻找适当的方法。活跃的主题集中在聚类方法的可伸缩性,方法对聚类复杂形状和类型的数据的有效性,高维聚类分析技术,以及针对大型数据库中混合数值和分类数据的聚类方法。迄今为止,人们己经提出了很多聚类算法,它们可以分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法和基于模型的方法,这些算法对于不同的研究对象各有优缺点。在聚类算法当中,划分方法和层次方法是最常见的两类聚类技术,其中划分方法具有较高的执行效率,而层次方法在算法上比较符合数据的特性,所以相对于划分方法聚类的效果比较好。[1] 层次聚类算法和基于划分的K-Means聚类算法是实际应用中聚类分析的支柱,算法简单、快速而且能有效地处理大数据集。层次聚类方法是通过将数据组织为若干组并形成一个相应的树来进行聚类的。根据层是自底而上还是自顶而下形成。一个完全层次聚类的质量由于无法对己经做的合并或分解进行调整而受到影响。但是层次聚类算法没有使用准则函数,它所潜含的对数据结构的假设更少,所以它的通用性更强。 2 基于层次的聚类算法 2.1 凝聚的和分裂的层次聚类 层次聚类是聚类问题研究中一个重要的组成部分。分层聚类的基本原则可以表述为:如

数据挖掘主要算法

朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。 3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。 朴素贝叶斯的优点: 对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点: 对输入数据的表达形式很敏感。 决策树: 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。 信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。 现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。 决策树的优点: 计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征; 缺点: 容易过拟合(后续出现了随机森林,减小了过拟合现象); Logistic回归: Logistic是用来分类的,是一种线性分类器,需要注意的地方有: 1. logistic函数表达式为: 其导数形式为: 2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为: 到整个样本的后验概率:

各种聚类算法的比较

各种聚类算法的比较 聚类的目标是使同一类对象的相似度尽可能地小;不同类对象之间的相似度尽可能地大。目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。摘自数据挖掘中的聚类分析研究综述这篇论文。 1、层次聚类算法 1.1聚合聚类 1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离 1.1.2最具代表性算法 1)CURE算法 特点:固定数目有代表性的点共同代表类 优点:识别形状复杂,大小不一的聚类,过滤孤立点 2)ROCK算法 特点:对CURE算法的改进 优点:同上,并适用于类别属性的数据 3)CHAMELEON算法 特点:利用了动态建模技术 1.2分解聚类 1.3优缺点 优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力 缺点:大大延长了算法的执行时间,不能回溯处理 2、分割聚类算法 2.1基于密度的聚类 2.1.1特点 将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类

1)DBSCAN:不断生长足够高密度的区域 2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合 3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进 2.2基于网格的聚类 2.2.1特点 利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构; 1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据 2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性 2.2.2典型算法 1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率2)STING+:改进STING,用于处理动态进化的空间数据 3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据4)WaveCluster:以信号处理思想为基础 2.3基于图论的聚类 2.3.1特点 转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边 1)优点:不需要进行相似度的计算 2.3.2两个主要的应用形式 1)基于超图的划分 2)基于光谱的图划分 2.4基于平方误差的迭代重分配聚类 2.4.1思想 逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解

数据挖掘第三版第十章课后 习题答案

10.1 简略介绍如下聚类方法:划分方法、层次方法。每种给出两个例子。 (1)划分方法:给定一个有N个对象的集合,划分方法构造数据的K个分区,每一个分区表示一个簇,且K≤N。而且这K个分组满足下列条件:第一,每一个分组至少包含一条记录;第二,每一条记录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);对于给定的K,算法首先给出一个初始的分组方法,以后通过反复迭代的方法改变分组,使得每一次改进之后的分组方案都较前一次好,而所谓好的标准就是:同一分组中的记录越近越好,而不同分组中的记录越远越好。 使用这个基本思想的算法有:K-MEANS 算法、K-MEDOIDS 算法、CLARANS 算法。 (2)层次方法:这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。例如在“自底向上”方案中,初始时每一个数据记录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。 代表算法有:BIRCH 算法、CURE 算法、CHAMELEON 算法等。 10.2 假设数据挖掘的任务是将如下的8个点(用(x, y)代表位置)聚类为3个簇。 A1(2,10), A2(2,5), A3(8,4), B1(5,8), B2(7,5), B3(6,4), C1(1,2), C2(4,9)距离函数是欧氏距离。假设初始我们选择A1、B1和C1分别为每个簇的中心,用k-均值算法给出: (a)在第一轮执行后的3个簇中心。 (b)最后的3个簇。 (a)第一轮后, 三个新的簇为(1){A1} (2){B1,A3,B2,B3,C2} (3){C1,A2} 簇中心分别为(1) (2, 10), (2) (6, 6), (3) (1.5, 3.5).

数据挖掘聚类算法一览

数据挖掘聚类算法一览 聚类分析是数据挖掘中的一个很活跃的研究领域,并提出了许多聚类算法。 这些算法可以被分为划分方法、层次方法、基于密度方法、基于网格方法和 基于模型方法。 1 划分方法(PAM:PArtitioning method) 首先创建k个划分,k为要创建的划分个数;然后利用一个循环 定位技术通过将对象从一个划分移到另一个划分来帮助改善划分质量。典型的划分方法包括: k-means,k-medoids,CLARA(Clustering LARge Application), CLARANS(Clustering Large Application based upon RANdomized Search). FCM, EM(Expectation Maximization):不将对象明显地分到么个簇,而是根据表示隶书可能性的权来分配对象. 2 层次方法(hierarchical method) 创建一个层次以分解给定的数据集。该方法可以分为自上而下(分解)和自下而上(合并)两种操作方式。为弥补分解与合并的不足,层次合 并经常要与其它聚类方法相结合,如循环定位。典型的这类方法包括: 第一个是;BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies) 方法,它首先利用树的结构对对象集进行 划分;然后再利 用其它聚类方法对这些聚类进行优化。 第二个是CURE(Clustering Using REprisentatives) 方法,它利用固定数目代表对象来表示相应聚类;然后对各聚类按照指定 量(向聚类中心)进行收缩。 第三个是ROCK方法,它利用聚类间的连接进行聚类合并。 最后一个CHEMALOEN,它则是在层次聚类时构造动态模型。 3 基于密度方法,根据密度完成对象的聚类。它根据对象周围的密度(如 DBSCAN)不断增长聚类。典型的基于密度方法包括:GDBSCAN,DBCLASD,DENCLUE(DENsity-based CLUstEring) DBSCAN(Densit-based Spatial Clustering of Application with Noise):该算法通过不断生长足够高密 度区域来进行聚类;它能从含有噪声的空间数据库中发现任意形状的聚类。此方法将一个聚类定义 为一组“密度连接”的点集。 OPTICS(Ordering Points To Identify the Clustering Structure):并不明确产生一 个聚类,而是为自动交互的聚类分析计算出一个增强聚类顺序。。 4 基于网格方法,首先将对象空间划分为有限个单元以构成网格结构;然后利 用网格结构完成聚类。

相关主题
文本预览
相关文档 最新文档