当前位置:文档之家› 可调行程的曲柄滑块机构的设计与制作

可调行程的曲柄滑块机构的设计与制作

可调行程的曲柄滑块机构的设计与制作
可调行程的曲柄滑块机构的设计与制作

东南大学

机械工程院

“机械设计与制造综合实践”工作报告可调行程的曲柄滑块机构的设计与制作

项目组成员: 02007635 陈逸民

02007620 龚威豪

日期:2011年1月18日

第1章选题分析 (4)

1.1应用背景: (4)

1.2 预期实现功能: (4)

第2章实现的原理与方案 (4)

2.1 驱动部分 (4)

2.2. 曲柄滑块机构 (4)

2.3 后续分工 (5)

第3章执行系统设计 (5)

3.1 功能要求 (6)

3.2 执行机构的形式设计 (6)

3.3机构的尺度设计 (6)

第5章加工工艺设计与数控加工编程 (7)

5.1加工工艺设计 (7)

5.2对加工的零件进行分类 (8)

5.2.1 连杆的加工路线 (8)

5.2.2 导槽的加工路线 (8)

5.2.3 连接件的加工路线 (8)

5.2.4 底座的加工路线 (8)

5.3 数控加工编程 (8)

5.3.1 数控车床部分 (8)

5.3.2 数控铣床部分 (9)

第6章装配与调试 (10)

参考文献 (14)

附录C:数控加工程序 (24)

摘要:曲柄滑块机构是一种应用非常广泛的机械结构。我们所设计可调行程的曲柄滑块机构在原来的基础上给它增加了一个可调导槽,通过改变该导槽的安装角度,间接地改变连杆的实际长度,从而达到改变滑块行程的目的。我们通过对普通的曲柄滑块机构的分析,了解了其滑块行程的算法,但是由于可变行程的该机构的极限位置是变化的,且我们能力有限,因此须在制造出实物后运行方能给出。在设计的过程中,我们体会到了连杆机构的设计方法,并对制造学有了稍微的了解。

关键字:曲柄滑块机构可调行程

Abstract:Slider-crank mechanism is a very extensive mechanical structure. We are design adjustable trip slider-crank mechanism in the original basis to give it adds an adjustable guide groove, changes in this guide groove installation Angle indirectly change the actual length o f the connecting rod, so as to achieve the purpose of changing the slider trip. We through for ordinary slider-crank mechanism analysis, understand the slider trip, but due to the algorithm of the agency's variable travel limit position is changed and our ability is limited, so must create real after operation can give. In the design process, we realized the linkage mechanism design methods, and learn to have a slightly to manufacture of understanding.

Keywords:Slider-crank mechanism,adjustable itinerary

第1章选题分析

1.1应用背景:

曲柄滑块机构广泛应用于发动机、曲柄压力机中,而这些是利用曲柄滑块的急回特性。我们小组所设计的是针对市场上现有的自动送筷机中的曲柄滑块机构。因为现在的送筷机中曲柄滑块的行程是根据筷子的长度来决定的。若是筷子的长度变化了,那么筷子就不能够伸出到规定的长度,就不能够取出。因此我们改进了其中曲柄滑块机构的组成,让其行程变为可调。那么,送筷机就能够输送不同长度的筷子,扩大了其使用范围。

1.2 预期实现功能:

我们小组所设计的可变行程的曲柄滑块机构预期实现功能:

通过调节活动导槽的安装角度,间接改变连杆的实际长度,从而实现滑块行程的改变

由于送筷机的整体结构比较复杂,在此我们只是设计了其可变行程滑块机构的模型。

第2章实现的原理与方案

2.1 驱动部分

理想中是采用电机驱动,但是由于电机转速过快,若是采用则还要配套的减速机构,因此不予以采用。这里我们用手动驱动,这样就能够看清楚机构的运行过程。

2.2. 曲柄滑块机构

平面四连杆机构满足一定的杆长条件,变时曲柄滑块机构。下面用图详

细说明。

B

1

2

上图所示为四杆机构的简图。1,2杆的杆长分别为a ,b 。当满足条件:

b

e a ≤+且A 、B 为整转副,杆4作为机架时,这是该四连杆机构变成为了曲

柄滑块机构。

由于我们设计的滑块式行程可变的,因此只给出一组杆长数据及其行程。 取e=100,a=240,b=350,根据曲柄1分别位于杆4所在水平线上的两侧,可以画图求得其行程为250(单位均为mm )。

2.3 后续分工

第3章 执行系统设计

执行系统的作用是传递、变换运动与力,即把传动系统传递来的运动与动力进行变换,以满足机械系统的功能。这里的执行系统设计主要考虑到满足下面的一些要求:

(1)实现预定的运动和动作; (2)各构件具有足够的刚度和强度; (3)各执行机构间的动作协调;

4

C

(4)结构合理、造型美观、便于加工与安装;

(5)工作安全可靠,有足够的使用寿命;

3.1 功能要求

根据设计目的,要求滑块能够滑动,导槽能够松紧转动,曲柄能够自由转动。

3.2 执行机构的形式设计

采用连杆连接,整体安装在机架上,连接转动部分用螺栓连接,不拧紧。

3.3机构的尺度设计

连杆的长度只要满足曲柄的杆长条件即可,详细说明请看附录A。

第4章结构设计与图纸绘制

根据前面的方案设计,整体结构的设计和各零部件的设计由此展开。所采用的设计方法是手工设计草图,确认方案后应用SolidWorks软件进行三维实体建模,并在虚拟环境下进行装配,部分零件再从三维实体导出工程图,并标准化图纸。

装配结构主要是连杆与连杆装配,导槽与滑块装配,以及整体在机架上的装配。通过SolidWorks软件和AutoCAD软件同时进行设计模拟修正。

SolidWorks是一款突破了CAD传统观念的设计软件,提出了参数化、特征建模和全相关单一数据库的CAD设计思路,为工程人员提供了非常强大的应用工具,而通过这些工具可以对产品进行设计、工程分析、绘制工程图以及模具设计等操作。在SolidWorks中可以创建由许多零部件所组成的复杂装配体,这些零部件可以是零件或其它装配体。对于大多数的操作,两种零部件的行为方式是相同的。添加零部件到装配体在装配体和零部件之间生成一连接。当SolidWorks 打开装配体时,将查找零部件文件以在装配体中显示。零部件中的更改自动反映在装配体中。在装配图中,零部件之间通过配合来生成几何关系,当添加配合时,可以定义零部件线性或旋转运动所允许的方向,并可在其自由度之内移动零部件,从而直观化装配体的行为。

根据上面的三维装配图,利用SolidWorks的工程图模块导出三视图,并进行标准化。以下是我们在SolidWorks中设计的部分零件及模拟装配图。

具体图纸请看附录A

第5章加工工艺设计与数控加工编程

首先根据设计图纸,并结合学校工培中心的材料供应情况,确定非标准件的下料要求,下料清单如下表所示。

下料清单

5.1加工工艺设计

待加工的零件有:连杆3根,滑动导槽1个,滑块导轨1个,底座1个,连接件2个,滑块2个。

5.2对加工的零件进行分类

将具有相似的加工方法的零件分为四类,具体分类如下:第一类:连杆;第二类:导槽;第三类:连接件;第四类:底座。滑块采用标准件。

5.2.1 连杆的加工路线

确定加工路线如下:毛坯及其热处理→预加工→粗铣外轮廓→精铣→钻孔→磨削

5.2.2 导槽的加工路线

确定加工路线如下:毛坯及其热处理→预加工→粗铣外轮廓→精铣→钻孔→磨

5.2.3 连接件的加工路线

确定加工路线如下:毛坯及其热处理→预加工→粗车外轮廓→精铣→钻孔→磨削

5.2.4 底座的加工路线

由于底座技术要求不高,采用现成的材料,因此只需在上面钻孔即可。

具体的加工工序参考附录B。

5.3 数控加工编程

以下为加工中所使用到的数控机床的一些简短叙述和说明。

5.3.1 数控车床部分

(1)绝对值编程G90与相对值编程G91

格式:G90

G91

说明:G90:绝对值编程,每个编程坐标轴上的编程值相对于程序原点。

G91:相对值编程,每个编程坐标轴上的编程值相对于前一位置而言,该值等于

沿轴移动的距离。

G90、G91为模态功能,可相互注销,G90为缺省值。

(2)进给控制指令

①快速定位G00

格式:G00 X__Y__Z__

说明:X、Y、Z:快速定位终点,在G90时为终点在工件坐标系中的坐标,在G91时为终点相对于起点的位移量。

G00一般用于加工前快速定位或加工后快速退刀。

G00指令中,刀具相对于工件以机床各轴预先设定的速度,从当前位置快速移动到程序段指定的定位目标点,其速度可由面板上的快速修调旋钮修正,而不能用F来规定。

G00为模态功能,可由G01、G02、G03功能注销。

②线性进给及倒角G01

线性进给(直线插补)

格式:G01 X__Y__Z__F__;

说明:X、Y、Z:线性进给终点,在G90时为终点在工件坐标系中的坐标;在G91时为终点相对于起点的位移量。

G01指令刀具以联动的方式,按F规定的合成进给速度,从当前位置按线性路线(联动直线轴的合成轨迹为直线)移动到程序段指令的终点。

G01是模态代码,可由G00、G02、G03功能注销。

③纵向粗车复合固定循环G71

格式:G71 U__R__P__Q__X__Z__F__

说明:U、R:每一刀的背吃刀量及退刀量:P、Q:循环体开始及结束行的程序段号:X、Z:最后一刀的背吃刀量:F:进给速度。

G71用以在用棒料毛坯加工台阶轴类零件时编程。

5.3.2 数控铣床部分

(1)加工所用指令:

G00快速定位;

G01直线插补;

G02顺时针铣;

G03逆时针铣;

G27返回参考点检查;

G28返回参考点;

G90绝对值编程;

G91增量值编程;

(2)圆弧插补G02 、G03

格式:G02 /G03 X__Y__I__J__F__;

说明:X、Y:圆弧插补终点,在G90时为终点在工件坐标系中的坐标;在G91时为终点相对于起点的位移量;I、J:圆心相对位置;F:进给速度。

在描述整圆时,不能以半径值描述,原因是此时圆心角为0°或360°,不能确定;而是应该以圆心坐标描述。

具体的数控加工程序见附录C。

第6章装配与调试

在装配过程中我们用到的标准件的说明如下表所示。

标准件清单

机器的装配是机器生产过程中的最后一个阶段,通过装配,最终保证产品的质量要求。在整个装配过程中,我们主要的工作有:清洗、连接、校正、调整、配作、验收与试验。

度。因此,必须合理地规定和控制相关零件的制造精度,使它们在装配时产生的误差累积不超过装配精度的要求。然而由于缺少操作经验,我们加工出来的零件精度很低,这给我们的装配工作带来了很大的困难,所以我们在很多地方使用了就地加工的方法。

修配法的原理是事先将与某项装配精度要求有关的某个待装零件上的某个表面预留一定的余量,其余与装配精度有关零件上的相关尺寸按经济精度加工,装配时用挫、刮、研、磨等方式修去余量,从而达到装配精度要求。因为我们组的各个零件都是单件加工的,在装配时,大量地采用了就地加工的修配法。这是小批量生产的局限。

这里我们用SolidWorks模拟了该机构的装配过程,如下图所示。

基本能够完成预定功能。

工作总结

机械设计与制造综合实践心得

陈逸民

这是第一次经历一个项目,从设计到制作成作品。我的个人体会就是:搞机械设计真是一件令人头痛的事。

首先从设计说起吧。由于大家都是第一次设计自己的作品,都不知道从何入手。所谓一抄二改三创造,于是我们就到处搜资料、专利啊什么的,希望等够找到一些符合自己需要的作品资料。等我们找到了那些资料后,令人头痛的事出现了。设计图中没有任何的尺寸、公差要求。没办法,只能硬着头皮自己去搞。一遍遍计算,通过软件造型模拟,终于确定了图纸中的各个的尺寸要求。Ok,终于可以去加工了…

接着说说加工中的事吧。大家得到的材料都是铝合金吧,比较容易加工。但是,由于自己设计的东西尺寸较小,往往要把一个大的铝块切削成很小的一段。这样就碰到了许多的问题。首先,用铣床铣的时候,很难用夹具把很小的工件夹住。于是,我们只能够加工到一定的程度,然后用锉刀拼命地锉啊锉…还有,设计的时候明明设计的很好,加工的时候才发现,根本难以实现。于是,只能够该改方案。不改则以,一改就发现这个改了那个也得改。么办法,还是只能改啊!!!又是一番设计…终于改好了,加工了。

接下;来就是装配了吧。由于加工过程中的修改,以及在加工的过程中考虑了零件之间的装配关系。当然,最主要的就是我们设计的作品比较简单,所以,装配的过程比较顺利。只有少数零件差那么一点。

最后说说一些收获和意见吧。机械设计大家都学过的吧,但是我觉得又有多少同学能够真真的理解书中所说的东西?机械设计往往离不开自己的阅历,经验的积累固然可以从书本上学到不少,但是事非躬亲很难在脑海中留下深刻的印象,对别人的经验,自己没有一定的基础,要理解吸收真的是一件很不容易的事。对于我们这些机械“菜鸟”而言,头脑中没有很多的经验积累,只有一些基础的理论知识。所以,行动起来有一定的困难。当然,实践过程中,大家一起探讨,找资料,克服了许多的难题。比如,箱体的制作。由于用铝块加工很慢,于是我们想到了用木板。可是学校没有,我们跑到外面找。找到了又不提供制作,我们只好自己锯,自己做。在操作机床的时候,我们也对机床的一些基础操作有了认识。最主要的收获就是了解了一件机械产品从设计,到制作、装配的过程,对其中的一些细节部分也有了一定的认识,对以后的工作可能有所帮助。提些意见:1,材料的话不一定都要用一样的,有的可以用木材代替。2,有些机床学生不能够使用,我觉得老师可以在一旁指导让学生使用。

最后要感谢一下工培中心的老师们,感谢你们为所有的小组提供的帮助。

签名:

实践心得

龚威豪

1、开合门机构的运用前景

本次设计的开合门机构是参照了前人设计的专利,该专利主要是为了节省空间。普通的衣柜门采用的是单自由度的旋转门,其优点是结构简单但是缺点是开关门所需的空间大。在

当下,房价居高不下,房子中家具等空间可谓能节省就节省。于是,开合门机构应运而生。开合门机构其最大的特点就是节省空间。普通门处于开门状态时,通常是和侧壁连成一线,这在无形中增加了柜子占地面积,相当于一个柜子占用了两个柜子的空间。而且这样开门时,只能正对柜子的人才能看到柜子里的东西,处于侧面的人看不到柜子里的东西,这也缩小了使用者的视野。相反的开合门机构很好的解决了上述问题。在当今形势下,开合门机构的广泛运用成为了一种必然。

2、开合门机构的构成

本次实践我们设计的开合门机构主要是四连杆机构。我们知道四连杆机构可以实现板沿着两支点平移。而开合门机构需要的是门板从横着平移到竖着。显然平行四边形的四连杆机构不符合要求。要符合开合门机构的要求,四连杆机构的两根杆长度不能相等。而其具体长度需要我们具体设计。门板和连杆所需的连接件也需要具体设计。我们设计的连接件是类似于“凸”字形的存在。分别连接连杆和门板。门板和柜子总共6块板由木板构成。木板之间用角铁和螺钉连接。

3、开合门机构设计中遇到的问题

在设计时,我们觉得开合门机构也就主要是个四连杆机构,其加工应该很简单,而实际中并非如此简单。首先是材料的选择。门板考虑到其重量和杆的强度要求,我们采用木板。柜子考虑其加工的简易性,我们采用了木板。而连杆和连接件都是选用铝合金。然后需要考虑的是工艺性。木板只需锯子锯即可,而铝合金则需要铣床的铣削,连杆的倒圆角则需要锉刀锉。具体到实际,连杆的铣削中,加工件的固定又是一个大问题。由于我们设计的连杆和连接件都是非标准件,而且尺寸很小,其加工难度很大。有很多零件都是需要锉刀磨,铣削根本达不到要求。

4、开合门机构的体会

经过此次实践,从开合门的设计、制作、改进到完成运作,每步走来都付出了很多。此次实践中的各个零件都是我们小组从购买到制作全程参与完成。我们从殷巷购买了木板和钢铁,后来发现铣床铣削钢铁相当困难,然后我们把钢材换成了铝合金。而木板买到的是一整块,尺寸大约为2000mm*3000mm,这么大的木板不方便携带,于是我们把木板锯成几小块带回去,卖家只提供了大口齿的锯子,锯起来相当困难,但经过熟悉,我们还是克服了难题。连杆的铣削又有很多问题,比如固定。由于设计的连杆尺寸很小,有很多地方,我们采用了锉刀磨的方法解决。经过如此种种,我体会到,从理论到实践其实还是存在很多问题的。只有经过多动手才能发现问题,并及时解决。

签名:

参考文献

附录A:设计图纸

曲柄滑块机构运动分析

曲柄滑块机构运动分析 一、相关参数 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别为mm l 1001=,mm l 3002=,s rad /101=ω,试确定连杆2和滑块3的位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、数学模型的建立 1、位置分析 为了对机构进行运动分析,将各构件表示为矢量,可写出各杆矢所构成的封闭矢量方程。 将各矢量分别向X 轴和Y 轴进行投影,得 0sin sin cos cos 22112211=+=+θθθθl l S l l C (1) 由式(1)得 2、速度分析 将式(1)对时间t 求导,得速度关系 C v l l l l =--=+222111222111sin sin 0 cos cos θωθωθωθω (2) 将(2)式用矩阵形式来表示,如下所示 ??? ???-=??? ?????? ???-1111122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (3) 3、加速度分析 将(2)对时间t 求导,得加速度关系 三、计算程序 1、主程序 %1.输入已知数据 clear; l1=; l2=; e=0; hd=pi/180; du=180/pi; omega1=10; alpha1=0;

%2.曲柄滑块机构运动计算 for n1=1:721 theta1(n1)=(n1-1)*hd; %调用函数slider_crank计算曲柄滑块机构位移、速度、加速度 [theta2(n1),s3(n1),omega2(n1),v3(n1),alpha2(n1),a3(n1)]=slider_crank(theta1(n1),omega1,alpha1,l1,l2,e); end figure(1); n1=0:720; subplot(2,3,1) plot(n1,theta2*du); title('连杆转角位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角位移/\circ'); grid on subplot(2,3,2) plot(n1,omega2); title('连杆角速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角速度/rad\cdots^{-1}'); grid on subplot(2,3,3) plot(n1,alpha2); title('连杆角加速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角加速度/rad\cdots^{-2}'); grid on subplot(2,3,4) plot(n1,s3); title('滑块位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('滑块位移/\m'); grid on

曲柄滑块机构

曲柄滑块机构运动分析

曲柄滑块机构运动分析 一、相关参数 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别为mm l 1001=,mm l 3002=,s rad /101 =ω ,试确定连杆2和滑块3的 位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、数学模型的建立 1、位置分析 为了对机构进行运动分析,将各构件表示为矢量,可写出各杆矢所构成的封闭矢量方程。 C S l l =+21 将各矢量分别向X 轴和Y 轴进行投影,得 sin sin cos cos 22112211=+=+θθθθl l S l l C (1) 由式(1)得 ??? ? ??-=2112sin arcsin l l θθ 2211cos cos θθl l S C += 2、速度分析 将式(1)对时间t 求导,得速度关系

C v l l l l =--=+222111222111sin sin 0 cos cos θωθωθωθω (2) 将(2)式用矩阵形式来表示,如下所示 ??????-=????????????-11 11122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (3) 3、加速度分析 将(2)对时间t 求导,得加速度关系 ??????--=????????????+????????????-11 11111222222222222sin cos 0 sin 0 cos 0 cos 1 sin θωθωωωθωθωαθθl l v l l a l l C C 三、计算程序 1、主程序 %1.输入已知数据 clear; l1=0.1; l2=0.3; e=0; hd=pi/180; du=180/pi; omega1=10; alpha1=0; %2.曲柄滑块机构运动计算 for n1=1:721

偏置曲柄滑块机构计算

具有最优传力性能的曲柄滑块机构的设计 宁海霞1董萍 摘要:在曲柄滑块机构的设计中,将x作为设计变量,求出已知滑块行程H,行程速比系数K时机构传力性能最优的x值,使得最小传动角γ 为最大,从 min 而设计出此机构。 关键词:最优传力性能;曲柄滑块机构;行程速比系数;最小传动角机器种类很多,但它们都是由各种机构组成的,曲柄滑块机构就是常用机构之一。它有一个重要特点是具有急回特性。故按行程速比系数K设计具有最优传力性能的曲柄滑块机构是设计中常遇到的问题。本文将x作为设计变量,给出了解决问题的方法。

在曲柄与滑块导路垂直的位置,其值为: )(cos 1min b e a +=-γ (1) 2.X 和最小传动角γmin 的关系 设计一曲柄滑块机构,已知:滑块行程H ,行程速比系数K ,待定设计参数 为a 、b 和e 。 e 也就确定。下 在△AC 1C 2中 θcos ))((2)()(222a b a b a b a b H +--++-= 因为 x a b =- 所以 θcos )2(2)2(222a x x a x x H +-++=

2sin )1(cos 222θ θx H x a -+-= (2) 又因为 x e a x C AC b a H /2)sin(sin 21+= ∠+=θ 所以 H a x e /)2(sin 22+=θ (3) 将 a x b += 代入 (1) )( cos 1min a x a e ++=-γ (4) 将式(2)、(3)代入式(4),γmin 仅为 x 的函数,则可求得γ min 的值。 二、设计最优传力性能的曲柄滑块机构 设计变量 x 的取值范围。 寻优区间起点在C 1处: x min =0 寻优区间终点在M 点: θ tg H x = max 在 x 的取值范围内根据式(2)、(3)和(4)可求得x 一一对应的γmin 值。 利用一维寻优最优化技术黄金分割法,来求γmin 取极大值时的x 值。 将γ min 最大时的x 值代入(2)、(3)求出a 、e ,由b=x+a 求出b 值。 三、设计实例 试设计一曲柄滑块机构,已知滑块行程H=50mm ,行程速比系数K=1.5。求传力性能最优的曲柄滑块机构。 x 的取值范围为0~68.819mm ,x=19.104mm 时,γmin 的最大值为 27.458°。 曲柄a=22.537mm 连杆 b=41.641mm 偏心距 e=14.413 四、结论 本文结合图解法和解析法把x 作为设计变量,给出了根据行程速比系数K

对心曲柄滑块机构计算

1、对心曲柄滑块机构运动分析 由图可得任意时刻滑块运行距离: )cos 1()cos 1(cos cos βαβα-+-=--+=L R L R L R S 且 αβsin sin R L = 所以 αλαβsin sin sin ==L R )(λ=L R 所以 αλββ222sin 1sin 1cos -=-= αλ22sin 211-≈ ))sin 211(sin 1sin 41(2222244αλαλαλ--内,分解为几乎为零,可带入因 且

)2cos 1(21sin 2 αα-= 所以 )2cos 1(411cos 2αλβ--= 所以有滑块运行距离: ??????-+-=?? ????-+-=-+-=)2cos 1(41)cos 1()2cos 1(41)cos 1()2cos 1(4 1)cos 1(2αλααλλααλαR R L R L R S 滑块速度V 为: ??????+=??????+=?? ?????+=?==t 2sin 21t sin 2sin 21sin 2sin 241sin ωωωαλαωαλαωααL R R R R dt d d dS dt dS V 滑块加速度为: )t cos t (cos )2cos (cos 22ωωωαλαωααL R R R dt d d dV dt dV a +=+=?==

二、曲轴扭矩理论计算 对曲柄滑块机构做受力分析,在任一时刻滑块、压杆受力情况如下图所示 对滑块做力平衡分析有 βcos P P AB = 曲柄处转矩为 11m P M AB ?= 其中力臂 ()βα+=sin 1R m )sin(1βα+=R P M AB 所以得 又 ) 2sin 2(sin cos sin sin 1sin sin cos cos sin )sin(22αλ αααλαλαβαβαβα+≈+-=+=+

曲柄滑块机构的运动分析及应用

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:泽陆(11071182) 柯宇 (11071177) 熊宇飞(11071174) 保开 (11071183) 班级: 110717 2013年6月10日

摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9) 曲柄滑块的动力学特性 (10) 曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15)

摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

可调行程的曲柄滑块机构的设计与制作

东南大学 机械工程院 “机械设计与制造综合实践”工作报告可调行程的曲柄滑块机构的设计与制作 项目组成员: 02007635 陈逸民 02007620 龚威豪 日期:2011年1月18日

第1章选题分析 (4) 1.1应用背景: (4) 1.2 预期实现功能: (4) 第2章实现的原理与方案 (4) 2.1 驱动部分 (4) 2.2. 曲柄滑块机构 (4) 2.3 后续分工 (5) 第3章执行系统设计 (5) 3.1 功能要求 (6) 3.2 执行机构的形式设计 (6) 3.3机构的尺度设计 (6) 第5章加工工艺设计与数控加工编程 (7) 5.1加工工艺设计 (7) 5.2对加工的零件进行分类 (8) 5.2.1 连杆的加工路线 (8) 5.2.2 导槽的加工路线 (8) 5.2.3 连接件的加工路线 (8) 5.2.4 底座的加工路线 (8) 5.3 数控加工编程 (8) 5.3.1 数控车床部分 (8) 5.3.2 数控铣床部分 (9) 第6章装配与调试 (10) 参考文献 (14) 附录C:数控加工程序 (24)

摘要:曲柄滑块机构是一种应用非常广泛的机械结构。我们所设计可调行程的曲柄滑块机构在原来的基础上给它增加了一个可调导槽,通过改变该导槽的安装角度,间接地改变连杆的实际长度,从而达到改变滑块行程的目的。我们通过对普通的曲柄滑块机构的分析,了解了其滑块行程的算法,但是由于可变行程的该机构的极限位置是变化的,且我们能力有限,因此须在制造出实物后运行方能给出。在设计的过程中,我们体会到了连杆机构的设计方法,并对制造学有了稍微的了解。 关键字:曲柄滑块机构可调行程 Abstract:Slider-crank mechanism is a very extensive mechanical structure. We are design adjustable trip slider-crank mechanism in the original basis to give it adds an adjustable guide groove, changes in this guide groove installation Angle indirectly change the actual length o f the connecting rod, so as to achieve the purpose of changing the slider trip. We through for ordinary slider-crank mechanism analysis, understand the slider trip, but due to the algorithm of the agency's variable travel limit position is changed and our ability is limited, so must create real after operation can give. In the design process, we realized the linkage mechanism design methods, and learn to have a slightly to manufacture of understanding. Keywords:Slider-crank mechanism,adjustable itinerary

实用文档之对心曲柄滑块机构计算

实用文档之"1、对心曲柄滑块机构运动分析" 由图可得任意时刻滑块运行距离: )cos 1()cos 1(cos cos βαβα-+-=--+=L R L R L R S 且 αβsin sin R L = 所以 αλαβsin sin sin ==L R )(λ=L R 所以 αλββ222sin 1sin 1cos -=-= αλ22sin 211-≈

))sin 211(sin 1sin 41(2222244αλαλαλ--内,分解为几乎为零,可带入因 且 )2cos 1(21sin 2 αα-= 所以 )2cos 1(411cos 2αλβ--= 所以有滑块运行距离: ??????-+-=?? ????-+-=-+-=)2cos 1(41)cos 1()2cos 1(41)cos 1()2cos 1(4 1)cos 1(2αλααλλααλαR R L R L R S 滑块速度V 为: ??????+=??????+=?? ?????+=?==t 2sin 21t sin 2sin 21sin 2sin 241sin ωωωαλαωαλαωααL R R R R dt d d dS dt dS V 滑块加速度为: )t cos t (cos )2cos (cos 22ωωωαλαωααL R R R dt d d dV dt dV a +=+=?==

二、曲轴扭矩理论计算 对曲柄滑块机构做受力分析,在任一时刻滑块、压杆受力情况如下图所示 对滑块做力平衡分析有 β cos P P AB = 曲柄处转矩为 11m P M AB ?= 其中力臂 ()βα+=sin 1R m )sin(1βα+=R P M AB 所以得 又

曲柄滑块机构的运动分析及应用修订版

曲柄滑块机构的运动分析及应用修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:刘泽陆(11071182) 陈柯宇 (11071177) 熊宇飞(11071174) 张保开 (11071183) 班级: 110717 2013年6月10日 摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9)

曲柄滑块的动力学特性 (10) 曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15) 摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

曲柄滑块机构的设计页完整版

曲柄滑块机构的设计页 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A 所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线 先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。 (2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。

从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

对心曲柄滑块机构计算审批稿

对心曲柄滑块机构计算 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

1、对心曲柄滑块机构运动分析 由图可得任意时刻滑块运行距离: )cos 1()cos 1(cos cos βαβα-+-=--+=L R L R L R S 且 αβsin sin R L = 所以 αλαβsin sin sin ==L R )(λ=L R 所以 αλββ222sin 1sin 1cos -=-= αλ22sin 211-≈ ))sin 211(sin 1sin 41(2222244αλαλαλ--内,分解为几乎为零,可带入因 且

)2cos 1(21sin 2 αα-= 所以 )2cos 1(411cos 2αλβ--= 所以有滑块运行距离: ??????-+-=?? ????-+-=-+-=)2cos 1(41)cos 1()2cos 1(41)cos 1()2cos 1(4 1)cos 1(2αλααλλααλαR R L R L R S 滑块速度V 为: ??????+=??????+=?? ?????+=?==t 2sin 21t sin 2sin 21sin 2sin 241sin ωωωαλαωαλαωααL R R R R dt d d dS dt dS V 滑块加速度为: )t cos t (cos )2cos (cos 22ωωωαλαωααL R R R dt d d dV dt dV a +=+=?==

二、曲轴扭矩理论计算 对曲柄滑块机构做受力分析,在任一时刻滑块、压杆受力情况如下图所示 对滑块做力平衡分析有 βcos P P AB = 曲柄处转矩为 11m P M AB ?= 其中力臂 ()βα+=sin 1R m )sin(1βα+=R P M AB 所以得 又 )2sin 2(sin cos sin sin 1sin sin cos cos sin )sin(22αλαααλαλαβαβαβα+ ≈+-=+=+

对心曲柄滑块机构计算

S 二 R L - Rcos - L cos 二 R(V cos ) L(V cos ) 且 Lsin 二 Rsin : 所以 sin : =R sin : = sin : (R =) L L 所以 cos = \ V sin? = ^ - 2 sin 2: 彳 1 2 -2 T _ sin : 2 (因fk 4s in 4 □几乎为零,可带入 J i -丸2si n 2。内,分解为j (1-*人2 s 由图可得任意时刻滑块运行距离: 1对心曲柄滑块机构运动分析

in2。)2)

2 1 sin (1 - cos2 ) 2 所以 n 1 2 cos ——1 (1 - cos 2:) 4 所以有滑块运行距离: 1 2 S = R(1 - cos : ) L (1 - cos2 ) 4 - L 、1、 1 =R (1 - cos 、,-) (1 - cos2';) 1 R 4 」 =R (1 - cos :) 滑块速度V 为: 滑块加速度为: 2 2 R R(cos : cosZ ) R(cos t cos t) 1 (1 -cos2:) 4 ' dS d : d : dt 二 R sin : 1 2sin2: 1 4 」 -Rsin : 1 si n2 = R si n t 1 R 2 l^sinZt 2 L dV dV d : a = dt d : dt

、曲轴扭矩理论计算 对曲柄滑块机构做受力分析,在任一时刻滑块、压杆受力情况如下图所示 对滑块做力平衡分析有 曲柄处转矩为 M 1 - P AB m 1 其中力臂 mi = Rsin : 又 sinG = sin : cos : cos : sin (sin sin 2 ) 2 2 . 2 . =sin : " - sin : sin : cos : P AB = P COS 所以得M , P AB R S Z ) (1 11

机械设计基础第三章习题

一.判断题(认为正确的,在括号内画√,反之画X) 1.根据铰链四杆机构各杆长度,即可判断其类型。()2.四杆机构中,传动角越大,机构的传力性能越好。()3.极位夹角是反映机构力学性能的参数。()4.曲柄为主动件的摆动倒杆机构一定具有急回特性。()5.曲柄为主动件的曲柄滑块机构一定具有急回特性。()6.曲柄为主动件的曲柄摇杆机构一定具有急回特性。()7.曲柄为主动件的曲柄摇杆机构,其最小传动角的位置在曲柄与连杆共线的两位置之一() 8.曲柄为主动件的曲柄滑块机构,其最小传动角的位置在曲柄与导路垂直的位置。() 9.四杆机构有无止点位置,与何构件为主动件无关。()10.极位夹角是从动件两极限位置之间的夹角。()二.选择题(将正确的答案的序号字母填入括号内) 1.曲柄滑块机构有止点时,其主动件为何构件?()A.曲柄B.滑块C.曲柄滑块均可 2.四杆长度不等的双曲柄机构,若主动曲柄作连续匀速转动,则从动曲柄怎样运动?()A.匀速转动B.间歇转动C.变速转动 3.杆长不等的铰链四杆机构,若以最短杆为机架,则是什麽机构?() A.双曲柄机构 B. 双摇杆机构 C.双曲柄机构或双摇杆机构 4.一对心曲柄滑块机构,曲柄长度为100mm,则滑块的行程是多少?() A.50mm B.100mm C. 200mm 5.有急回特性的平面连杆机构的行程速比系数K是什麽值? A.K=1 B.K>1 C.K>0 6.对心曲柄滑块机构的曲柄为主动件时,机构有无急回特性和止点位置? ( ) A.有急回特性,无止点位置 B.无急回特性,无止点位置 C.有急回特性,有止点位置 7.铰链四杆机构ABCD各杆长分别为L ab=40mm,L bc=90mm,L cd=55mm,L ad=100mm,若取AB为机架,则为何机架?() A.双摇杆机构 B.曲柄摇杆机构 C.双曲柄机构 8.当曲柄为主动件时,下述哪种机构具有急回特性?() A.平行双曲柄机构 B.对心曲柄滑块机构 C.摆动导杆机构 三.设计计算题 1.一铰链四杆机构,已知L bc=50mm,L cd=35mm,L ad=30mm,ad杆为机架,试分析: 1)若此机构为曲柄摇杆机构时,L ab的取值范围。 2)若此机构为双曲柄机构时,L ab的取值范围。 3)若此机构为双曲柄机构时,L ab的取值范围。 2.已知,图3-42所示各四杆机构,1为主动件,3为从动件 1)作各机构的极限位置,并量出从动件的行程S或摆角ψ. 2)计算各机构行程速比系数k. 3) 作出个机构出现最小传动角γmin(或最大压力角αmax)时的位置图,并量出其大小。 3. 若上题各四杆机构中,构件3为主动件,构件1位从动件,试做各机构的止点位置。 4.图3-43所示为用四杆机构控制的加热炉炉门的启闭机构。工作要求,加热时炉门能

曲柄滑块机构运动分析

曲柄滑块机构运动分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

曲柄滑块机构运动分析 一、相关参数 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别为 mm l 1001=,mm l 3002=,s rad /101=ω,试确定连杆2和滑块3的位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、数学模型的建立 1、位置分析 为了对机构进行运动分析,将各构件表示为矢量,可写出各杆矢所构成的封闭矢量方程。 将各矢量分别向X 轴和Y 轴进行投影,得 0sin sin cos cos 22112211=+=+θθθθl l S l l C (1) 由式(1)得 2、速度分析 将式(1)对时间t 求导,得速度关系 C v l l l l =--=+222111222111sin sin 0 cos cos θωθωθωθω (2) 将(2)式用矩阵形式来表示,如下所示 ??????-=????????????-11 11122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (3) 3、加速度分析 将(2)对时间t 求导,得加速度关系 三、计算程序 1、主程序 %1.输入已知数据 clear;

l1=; l2=; e=0; hd=pi/180; du=180/pi; omega1=10; alpha1=0; %2.曲柄滑块机构运动计算 for n1=1:721 theta1(n1)=(n1-1)*hd; %调用函数slider_crank计算曲柄滑块机构位移、速度、加速度 [theta2(n1),s3(n1),omega2(n1),v3(n1),alpha2(n1),a3(n1)]=slider_crank(theta1(n1),omega1,alpha1 ,l1,l2,e); end figure(1); n1=0:720; subplot(2,3,1) plot(n1,theta2*du); title('连杆转角位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角位移/\circ'); grid on subplot(2,3,2) plot(n1,omega2); title('连杆角速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角速度/rad\cdots^{-1}'); grid on

曲柄滑块机构设计

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为1.5,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A 在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线

先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。(2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。 从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

平面连杆机构及其方案与分析

第二章平面连杆机构及其设计与分析 §2-1 概述 平面连杆机构<全低副机构):若干刚性构件由平面低副联结而成的机构。 优点: (1)低副,面接触,压强小,磨损少。 (2)结构简单,易加工制造。 (3)运动多样性,应用广泛。 曲柄滑块机构:转动-移动 曲柄摇杆机构:转动-摆动 双曲柄机构:转动-转动 双摇杆机构:摆动-摆动 (4)杆状构件可延伸到较远的地方工作<机械手) (5)能起增力作用<压力机) 缺点: <1)主动件匀速,从动件速度变化大,加速度大,惯性力大,运动副动反力增加,机械振动,宜于低速。 <2)在某些条件下,设计困难。 §2-2平面连杆机构的基本结构与分类 一、平面连杆机构的基本运动学结构 铰链四杆机构的基本结构 1.铰链四杆机构 所有运动副全为回转副的四杆机构。 BC-连杆 AB、CD-连架杆 连架杆:整周回转-曲柄 往复摆动-摇杆 2.三种基本型式

(1)曲柄摇杆机构 定义:两连架杆一为曲柄,另一为摇杆的铰链四杆机构。 特点:、 0~360°, 、<360° 应用:鳄式破碎机缝纫机踏板机构揉面机 (2)双曲柄机构 定义:两连架杆均作整周转动的铰链四杆机构。 由来:将曲柄摇杆机构中曲柄固定为机架而得。 应用特例:双平行四边形机构

matlab曲柄连杆机构分析讲课讲稿

m a t l a b曲柄连杆机构 分析

clear;clc; n=750;l=0.975;R=0.0381;h=0.2;omiga=n.*pi/30;tmax=2.*pi/omiga; t=0:0.001:tmax; %计算曲柄转一圈的总t值 alpha1=atan((h+R.*sin(omiga.*t))./sqrt(l.*l-(h+R.*sin(omiga.*t))))+pi; alpha1p=-(R.*omiga.*cos(omiga.*t))./(l.*cos(alpha1)); vb=-R.*omiga.*sin(omiga.*t)+R.*omiga.*cos(omiga.*t).*tan(alpha1); ab=-R.*omiga.^2.*cos(omiga.*t)- (R.*omiga.*cos(omiga.*t)).^2./(l.*(cos(alpha1)).^3) -R.*omiga.^2.*sin(omiga.*t).*tan(alpha1); subplot(1,2,1);plot(t,vb);title('曲柄滑块机构的滑块v-t图'); xlabel('时间t(曲柄旋转一周)');ylabel('滑块速度v');grid on; subplot(1,2,2);plot(t,ab);title('曲柄滑块机构的滑块a-t图'); xlabel('时间t(曲柄旋转一周)');ylabel('滑块加速度a');grid on; %下面黄金分割法求滑块的速度与加速度最大值 epsilon=input('根据曲线初始区间已确定,请输入计算精度epsilon(如输入 0.001):'); a=0;b=0.04; %初始区间 n1=0; %n1用于计算次数 a1=b-0.618*(b-a);y1=-R.*omiga.*sin(omiga.*a1) +R.*omiga.*cos(omiga.*a1).*tan(alpha1); a2=a+0.618*(b-a);y2=-R.*omiga.*sin(omiga.*a2) +R.*omiga.*cos(omiga.*a2).*tan(alpha1); while abs(a-b)>=epsilon if y1<=y2

曲柄滑块机构分析

机械工程郑佳文学号:1508520102 任务:根据杆长判断机构类型,模拟仿真曲柄滑块机构运动,并绘制滑块速度及加速度图像。 源代码: clear all clc l1=4,l2=10,e=0,w1=10; if(e==0) & (l1>l2) % load handel % sound(y,Fs) disp('当e=0时,l1需小于l2。不满足杆长条件,请重新输入l1,l2,e的值') elseif((e~=0)&(l1+e>l2)) % load handel % sound(y,Fs) disp('当e~=0时,l1+e需小于l2。不满足杆长条件,请重新输入l1,l2,e的值') else end fai=linspace(0,2*pi); for i=1:10:length(fai) JGT2(fai(i),l1,l2,e,w1) end %%%%%%%%%%%计算滑块速度并绘制图像 figure (2) fai=0:0.01:2*pi; v=-l1.*sin(fai).*w1-(l2^2-(l1.*sin(fai)-e). ^2).^(-0.5)*(l1^2).*(l1.*sin(fai)-e).*sin(f ai).*cos(fai).*w1; plot(fai,v,'-b') title('滑块角度-速度图像') xlabel('角度\phi/°') ylabel('速度/m/s') figure (3) A=- l1.*cos(fai) - (l1^2.*cos(fai).^2)./(l2^2 - (e - l1.*sin(fai)).^2).^(1/2) - (l1.*sin(fai).*(e - l1.*sin(fai)))./(l2^2 - (e - l1.*sin(fai)).^2).^(1/2) ... - (l1^2.*cos(fai).^2.*(e - l1.*sin(fai)).^2)./(l2^2 - (e - l1.*sin(fai)).^2).^(3/2);

附录3(曲柄滑块机构设计,例4-1程序设计,定稿)

附录3 例4-1程序设计如下: 1.标识符说明 有关控件名称及相关变量说明如下表。 有关控件名称及相关变量说明 2.程序设计 (1)变量声明 Option Explicit Public Const pi As Double = 3.1415926 'pi- 圆周率 Public Const rr As Double = pi / 180 'rr-度转换成弧度的系数 Public Const rr2 As Double = 180 / pi 'rr2-弧度转换成度的系数 Public sca As Double 'sca-绘图比例系数 Public ii As Integer, jj As Integer 'ii,jj-循环变量 Public q As Integer 'q-转向系数 Public e As Double 'w-偏距 Public p As Integer 'p-主动件转速 Public lab As Double 'lab-曲柄的长度 Public la0a As Double 'la0a-曲柄或主动连架杆的长度 Public lb0b As Double 'lb0b-从动连架杆的长度 Public la0b0 As Double 'la0b0-机架的长度 Public a0x As Double, a0y As Double 'a0x,a0y-主动连架杆与机架的铰链 Public a1x As Double, a1y As Double 'a1x,a1y-主动连架杆和连杆的铰链 Public b1x As Double, b1y As Double 'b1x,b1y-从动连架杆和连杆的铰链

曲柄滑块机构的运动分析及应用

曲柄滑块机构的运动分析及应用

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:刘泽陆(11071182) 陈柯宇(11071177) 熊宇飞(11071174) 张保开(11071183) 班级:110717 2013年6月10日

摘要 (4) 曲柄滑块机构简介 (5) 曲柄滑块机构定义 (5) 曲柄滑块机构的特性及应用 (5) 曲柄滑块机构的分类 (9) 偏心轮机构简介 (10) 曲柄滑块的动力学特性 (11) 曲柄滑块的运动学特性 (13) 曲柄滑块机构运行中的振动与平衡 (16) 参考文献 (17) 组员分工 (17)

摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

相关主题
文本预览
相关文档 最新文档