当前位置:文档之家› 聚氨酯增塑剂的应用

聚氨酯增塑剂的应用

聚氨酯增塑剂的应用
聚氨酯增塑剂的应用

聚氨酯增塑剂的应用

聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。

为了增强聚氨酯弹性的抗拉强度、抗撕裂强度、耐冲击性、耐磨性、耐候性、耐水解性等优点,需要在聚氨酯弹性体加工时加入增塑剂,这种聚氨酯用增塑剂也叫PU增塑剂,它的具体的应用奥瑞拉化工总结如下:

1、在双组分浇注聚氨酯弹性体中的应用

将PU增塑剂用于双组分浇注聚氨酯弹性体(CPU)具有如下优点:

其一,PU增塑剂能方便地加入到多元醇组分或异氰酸酯组分,易于调节二者混合比例,同时还可以方便地调节组分的粘度,使2个组分的粘度尽可能地接近,便于混合均匀;

其二,PU增塑剂能与聚氨酯弹性体溶为一体,并且不会发生迁移,因此对CPU性能的负面影响很小。有文献报道,使用PU增塑剂时,制品中增塑剂的二甲苯萃取率远比使用DOP低,显示出PU增塑剂的难迁移性。

2、在聚氨酯密封剂中的应用

聚氨酯密封剂被广泛的应用于建筑和汽车等行业。工程中对这些产品的弹性,粘接性和固化速率都有严格的要求。

为了改善产品的弹性,柔软性和施工性能,配方中常常加入增塑剂。普通的增塑剂由于随着时间的推移会发生迁移,因此影响密封胶的粘接性能和外观,PU 增塑剂则能克服普通增塑剂的弊端。

3、在火箭固体推进剂中的应用

火箭固体推进剂通常由氧化剂、树脂及燃料组成。配方中通常含有燃烧速率调节剂,润湿剂,抑泡剂,增塑剂等组分。

固体推进剂配方中使用增塑剂主要是为了改善推进剂的填柱性能,改进树脂燃料的低温柔韧性,机械性能以及火箭的弹道特性。

传统的固体推进剂配方中采用邻苯二甲酸二丁酯和己二酸二辛酯或聚丁二烯作为增塑剂。但是这些增塑剂在火箭储存过程中会发生迁移,影响推进剂的品质,有时这些增塑剂会迁移到火箭发动机内衬上,造成火箭储存期缩短。

美国军方在开发固态火箭推进剂的配方中,采用了PU增塑剂,解决了火箭武器的贮存问题。

4、在聚碳酸酯制品中的应用

聚碳酸酯(PC)是一种优良的工程塑料。但是,熔融态的聚碳酸酯粘度很高,不利于制品成型。用于降低热塑性塑料熔融粘度的助剂,并不适合于PC,其原因是PC熔点高,在PC熔点温度下,很多降粘物质会发生分解或汽化。

通过研究发现,在PC中加入少量PU增塑剂,可以降低其熔融粘度,改善其加工性能,但不影响PC的高抗冲击性能。

反应型聚氨酯热熔胶

反应型聚氨酯热熔胶的研究现状和发展趋势 余声平 摘要:本文主要介绍了反应型聚氨酯热熔胶的类型、应用、研究现状以及发展趋势。关键词:聚氨酯;反应型热熔胶;类型;应用;发展趋势 前言 聚氨酯在胶粘剂方面的应用已有几十年的历史。发展了多异氰酸酯胶粘剂、双组分聚氨酯胶粘剂、热塑性聚氨酯热熔胶、聚氨酯压敏胶,汽车用双组分聚氨酯结构胶等。至1984年开始出现反应型聚氨酯热熔胶[Julie B Samms.TPUs for use in nonsolvent-based adhesive technologies[J].Adhesives Age,1998,41(7):18-21.],反应型聚氨酯热熔胶迅速发展,并得到越来越广泛的应用。 1反应型聚氨酯热熔胶的特点 反应型聚氨酯热熔胶的主要特点[Paul Waties.Moisture-curing reactive polyurethane hot-melt adhesives[J].Pigment&Resin Technology,1997,26(5):300.,Jack Chambers.Fully reactive PU hot melts offer performance advantages[J].Adhesives Age,1998,41(8):24-27.]有: 1)反应型聚氨酯热熔胶属单组分包装,不需组配,无计量失误之虞,可确保施工质量; 2)不含任何有机溶剂,不造成环境污染,为环境友好材料; 3)快速粘接,粘接时无须胶带或夹具固定,简化了操作,加热后冷凝硬化即可达到一般热塑性热熔胶的物理粘接强度,常温下后续反应交联固化,粘接强度大幅度提高; 4)优良的耐水、耐溶剂及耐低温性能。 2反应型聚氨酯热熔胶类型 2.1含端—NCO基湿固化型聚氨酯热熔胶 这类胶为端—NCO基预聚体,粘接时可与空气中所含水分及基材表面的吸附水发生化学反应形成脲键而交联固化。 该胶固化时要求空气湿度在40%以上,提高固化温度,有利于水分参加固化反应,缩短固化时间。当被粘接基材的含水量较高,空气湿度较大,胶料的NCO基团含量较高,固化温度较高时,固化速度较快,这种情况下易产生较多的CO2气体。CO2逸出时使胶接层形成无规则的孔穴,导致粘接强度下降。为克服此缺点,一般应加入适量炭黑、硅胶等气体吸附剂及氧化钙、氢氧化钙等化学吸收剂。此外,必要时还可在胶中配入偶联剂、增塑剂、增粘剂、紫外吸收剂、抗氧剂、抗流挂剂及填料等。 傅玉英等[傅玉英.鞋用单组分湿固化聚氨酯反应型热熔胶的研制[J].中国胶粘剂,1991,1(4):7-10.]以聚酯、二异氰酸酯、含4~14个硫原子的脂肪族分子量调节剂、催化剂、阻聚剂等,制得了剥离强度为100N/cm,软化点40~70℃,硬化时间2~20min的鞋用单组分湿固化聚氨酯热熔胶。 Shang Lee等报导了适用于压制装饰性硬木胶合板和硬木地板的湿固化单组分聚氨酯热熔胶[Shang Lee.Moisture curable 100% solids one component polywood adhesives[P].USP

聚氨酯增塑剂的应用

聚氨酯增塑剂的应用 聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。 为了增强聚氨酯弹性的抗拉强度、抗撕裂强度、耐冲击性、耐磨性、耐候性、耐水解性等优点,需要在聚氨酯弹性体加工时加入增塑剂,这种聚氨酯用增塑剂也叫PU增塑剂,它的具体的应用奥瑞拉化工总结如下: 1、在双组分浇注聚氨酯弹性体中的应用 将PU增塑剂用于双组分浇注聚氨酯弹性体(CPU)具有如下优点: 其一,PU增塑剂能方便地加入到多元醇组分或异氰酸酯组分,易于调节二者混合比例,同时还可以方便地调节组分的粘度,使2个组分的粘度尽可能地接近,便于混合均匀; 其二,PU增塑剂能与聚氨酯弹性体溶为一体,并且不会发生迁移,因此对CPU性能的负面影响很小。有文献报道,使用PU增塑剂时,制品中增塑剂的二甲苯萃取率远比使用DOP低,显示出PU增塑剂的难迁移性。 2、在聚氨酯密封剂中的应用 聚氨酯密封剂被广泛的应用于建筑和汽车等行业。工程中对这些产品的弹性,粘接性和固化速率都有严格的要求。 为了改善产品的弹性,柔软性和施工性能,配方中常常加入增塑剂。普通的增塑剂由于随着时间的推移会发生迁移,因此影响密封胶的粘接性能和外观,PU 增塑剂则能克服普通增塑剂的弊端。 3、在火箭固体推进剂中的应用 火箭固体推进剂通常由氧化剂、树脂及燃料组成。配方中通常含有燃烧速率调节剂,润湿剂,抑泡剂,增塑剂等组分。 固体推进剂配方中使用增塑剂主要是为了改善推进剂的填柱性能,改进树脂燃料的低温柔韧性,机械性能以及火箭的弹道特性。 传统的固体推进剂配方中采用邻苯二甲酸二丁酯和己二酸二辛酯或聚丁二烯作为增塑剂。但是这些增塑剂在火箭储存过程中会发生迁移,影响推进剂的品质,有时这些增塑剂会迁移到火箭发动机内衬上,造成火箭储存期缩短。 美国军方在开发固态火箭推进剂的配方中,采用了PU增塑剂,解决了火箭武器的贮存问题。 4、在聚碳酸酯制品中的应用 聚碳酸酯(PC)是一种优良的工程塑料。但是,熔融态的聚碳酸酯粘度很高,不利于制品成型。用于降低热塑性塑料熔融粘度的助剂,并不适合于PC,其原因是PC熔点高,在PC熔点温度下,很多降粘物质会发生分解或汽化。 通过研究发现,在PC中加入少量PU增塑剂,可以降低其熔融粘度,改善其加工性能,但不影响PC的高抗冲击性能。

胶粘剂的基础知识

胶粘剂的定义和历史 定义:胶粘剂又称粘合剂,简称胶(bonding agent, adhesive),是使物体与另一物体紧密连接为一体的非金属媒介材料。在两个被粘物面之间胶粘剂只占很薄的一层体积,但使用胶粘剂完成胶接施工之后,所得胶接件在机械性能和物理化学性能方面,能满足实际需要的各项要求。能有效的将物料粘结在一起。 历史:考古学证据显示粘合剂的应用历史已经超过6000多年,我们可以看到在博物馆里展出的许多物体在经 过3000多年后依然由粘合剂固定在一起。进入20世纪,人类发明了应用高分子化学和石油化学制造的“合成粘结剂”,其种类繁多,粘结力强。产量也有了飞跃发展。 胶粘剂的应用和分类 应用:电子,汽车,工业,化工,建筑业等各个领域都有用到胶粘剂。 分类:胶粘剂种类繁多,组分各异,有不同的分类方法。 1 按化学类型分类 无机胶粘剂(sauereisen的高温水泥) 有机胶粘剂:分为天然胶粘剂和合成胶粘剂 合成胶粘剂按化学成分主要分为:Epoxy, PU, Silicone, Acrylic, etc. 2 按物理形态分类 水基型:基料分散于水中形成水溶液或乳液,水挥发而固化。 溶液型:基料在可挥发溶剂中配成一定黏度的溶液,靠溶剂挥发而固化。 膏状和糊状:基料在可挥发溶剂中配成高黏度的胶粘剂,用于密封和嵌缝。 固体型:把热塑性合成树脂制成粒状或块状,加热熔融,冷却时固化。 膜状:将胶粘剂涂于基材上,呈薄膜状胶带 3 按固化方式分类 热固化:通过加热的方式使粘合剂发生聚合反应而固化,温度和时间根据不同的产品有很大区别。 湿气固化:与空气中的水汽发生聚合反应达到固化。 UV固化:光引发剂紫外光照射下,形成自由基或阳离子从而引发粘合剂的聚合反应而固化。厌氧固化:在隔绝空气的条件下,发生自由基聚合反应,空气存在会阻碍聚合反应。 催化固化:在催化剂作用下使粘合剂发生聚合反应达到固化。 4 按工艺分类 粘合剂(Adhesive):特殊有导电胶,导热胶,芯片的粘结。 密封剂(Sealant) 灌封胶(Potting & Encapsulation) 敷形涂敷(Conformal Coating) 底部填充胶(Underfill) 顶部包封(Glob Top) 5 按受力情况 (1)结构胶(2)非结构胶 常见胶粘剂的固化机理 1 环氧树脂(Epoxy) 固化机理:固化剂分两类:胺类及其衍生物,和酸酐类。 其中胺类固化剂是与高分子链中的环氧基发生开还聚合反应,酸酐类固化剂是与高分子链上的羟基发生酯化反应,最终都是形成三维网状结构。 常见的环氧树脂是:双酚A型最典型,线型甲酚型,酚醛环氧树脂等。

水性聚氨酯合成、改性及应用前景

水性聚氨酯合成、改性及应用前景 摘要:随着水性聚氨酯合成与改性工艺的不断进步,水性聚氨酯的应用也得到了极大地提升,反过来由于水性聚氨酯涂料的优异性能以及其极好的应用前景近些年来有关于水性聚氨酯的合成与改性研究也是如火如荼。本文主要介绍了水性聚氨酯涂料的合成方法,综述了水性聚氨酯的改性方法,包括丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性,并对水性聚氨酯涂料的发展进行了展望。 关键字:水性聚氨酯;合成;改性;丙烯酸酯;有机硅。 水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,也称水分散聚氨酯、水系聚氨酯或水基聚氨酯。水性聚氨酯以水为溶剂,无污染、安全可靠、机械性能优良、相容性好、易于改性等优点。水性聚氨酯可广泛应用于涂料、胶粘剂、织物涂层与整理剂、皮革涂饰剂、纸张表面处理剂和纤维表面处理剂。水性聚氨酯虽然具有很多优良的性能,但是仍然有许多不足之处。如耐水性差、耐溶剂性不良、硬度低、表面光泽差等缺点,由于水性聚氨酯的这些缺点,我们需要对其进行改性,目前常见的改性方法有丙烯酸酯改性、环氧树脂改性、有机硅改性、纳米材料改性和复合改性等,本文将对水性聚氨酯的合成与改性进行阐述。 一、水性聚氨酯的合成 水性聚氨酯的制备可采用外乳化法和自乳化法。目前水性聚氨酯的制备和研究主要以自乳化法为主。自乳化型水性聚氨酯的常规合成工艺包括溶剂法(丙酮法)、预聚体法、熔融分散法、酮亚胺等。丙酮法是先制得含端基的高粘度预聚体,加入丙酮、丁酮或四氢呋喃等低沸点、与水互溶、易于回收的溶剂,以降低粘度,增加分散性,同时充当油性基和水性基的媒介。反应过程可根据情况来确定加入溶剂的量,然后用亲水单体进行扩链,在高速搅拌下加入水中,通过强力剪切作用使之分散于水中,乳化后减压蒸馏回收溶剂,即可制得PU 水分散体系。

增塑剂用量与涂层性能的美系

万方数据

?试验研究? 于温度升高所提供的能量不仅使分子振动,也使高分子链段开始运动。链段构象的变化使自由体积膨胀,体积膨胀系数明显增大。w.L.F从很多聚合物的实验中得出[“,Tg时的自由体积分数为一常数,即:‘=Vcg)/V(g)=o.025(2)低分子量增塑剂的自由体积比高聚物的白由体积大,如果增塑体系的自由体积有加和性,则增塑高聚物的自由体积比纯高聚物的自由体积大。因此,只有使增塑的高聚物冷却到更低的温度,才能使它的自由体积分数达到玻璃化温度时的0.025。由此说明了加入增塑剂使聚合物体系h下降的原因。 涂层的成膜物必须具有符合要求的强。很多研究表明【3,4J,当使用温度处于玻璃化转变区的温度范围时,涂层具有良好的力学性能和其他物理性能。在室温下使用的涂层,应当使增塑体系的T异在室温附近。增塑体系的T异与增塑剂用量密切相关。 本文的目的在于从聚合物的h直接估算出使涂层具有最佳力学性能的增塑剂用量,也就是说只要知道了一种成膜聚合物的强,根据简单公式就可很快估算出增塑剂的用量。 2实验部分 2.1原材料及涂膜制备 研究了两种共聚物体系(A)和(B)。 (A)甲基丙烯酸酯共聚物体系:甲基丙烯酸甲酯和甲基丙烯酸正丁酯的共聚物,ICI公司产品,两种单体的摩尔比为12:11,玻璃化温度Tg一50℃,密度D=1.127g/era3;邻苯二甲酸正辛酯(DOP),北京有机化工厂产品;邻苯二甲酸正丁酯(DBP),北京求贤化工试剂厂产品。 将上述甲基丙烯酸醋共聚物、增塑剂用甲苯配成质量分数30%的溶液,充分溶解后制成清漆。将清漆按GB1728—79规定,涂覆在标准马口铁板上,实干后,测定涂层(室温25℃下)性能。 (B)氯乙烯一乙烯异丁基醚共聚物体系:氯乙烯一乙烯异丁基醚共聚物,BASF公司产品,Tg一40℃,密度p=1.25∥cm3;氯化石蜡,p=1.2g/Ⅲ3;邻苯二甲酸正辛酯(DOP),北京有机化工厂产品。 将上述共聚物用甲苯和120’溶剂油溶解,制成性能。 2.2涂层性能测定 附着力按GB/T1720--79(89)(漆膜附着力测定法)(划圈法)测定,测定温度为25℃。耐冲击性按GB/T1732—93<漆膜耐冲击测定法>测定,测定温度为25℃。柔韧性按GB/T173l—93‘漆膜柔韧性测定法>测定,测定温度为25℃。玻璃化温度采用差示扫描量热法(DSC)测定,仪器型号为DSC一2C,升温速度为lO℃/rain。 3结果与讨论 3.1增塑剂用量与涂层性能的关系 3.1,1甲基丙烯酸酯共聚枷体系 增塑剂DOP和DBP分别加到甲基丙烯酸酯共聚物体系中后,其用量与涂层性能的关系见表1和表2。在下面的讨论中,增塑剂用量以其体积分数(如)表示: 成膜物中堂塑剂的体丞一一成膜物中聚合物体积+成膜物中增塑剂体积裹1BOP用■与聚甲基丙撕酸曹潦层性能的关系 裹2DBP用■与聚甲基丙爝■膏涂晨性能的关系 —丁———————●≯——一一T1日r一—— 万方数据

增塑剂的定义和分类(精)

一、增塑剂的定义和分类 凡是添加到聚合物体系中,能增加聚合物塑性、柔韧性或膨胀性的物质叫做增塑剂。一般均为高沸点液体或低熔点固体,主要为前者。增塑剂分类的方法很多,可以从不同的角度对增塑剂进行分类。 1、按化学结构分类 增塑剂可分为邻苯二甲酸酯类、脂肪族二元酸酯类、磷酸酯类、环氧化合物类、聚酯类、烷基苯磺酸酯类、含氯增塑剂类、以及其他类。 2、按相容性分类 分为主增塑剂和辅助增塑剂。凡能和树脂充分高度相容的增塑剂称为主增塑剂,或称溶剂型增塑剂。它的分子不仅能进入树脂分子链的无定形区;也能插入分子链的结晶区。因此它不会渗出而形成液滴、液膜,也不会喷霜而形成表面结晶。这种主增塑剂可以单独应用。而辅助增塑剂一般只能进入树脂无定形区域而不能进入分子链的结晶区,也叫做非溶剂性增塑剂,它必须与主增塑剂配合使用,否则会出现渗出或喷霜现象。 3、按分子结构分类 按分子结构来分类,增塑剂可分为单体型和聚合型两大类。单体增塑剂有固定的组成,绝大部分的增塑剂都属于此类。其相对分子量在300~500之间。聚合型相对分子质量一般在1000~6000之间。只有聚酯型和聚氨酯型等少量增塑剂为聚合型增塑剂。 4、按作用方式分类 可以分为内增塑剂和外增塑剂。内增塑剂是在聚合过程中加入第二单体,能进行共聚,对聚合进行改性。因此内增塑剂实际上是聚合物分子的一部分;另一种情况是在聚合物分子链上引入支链,由于支链在分子结构中的存在,降低了聚合物链与链之间的作用力,也降低了分子链的规整性,从而使分子链之间互相移动的可能性增加,即增加了聚合物的塑性。 外增塑剂一般为低分子量的化合物或聚合物。将其添加到需要增塑的聚合物中,可增加聚合物的塑性。外增塑剂通常是高沸点、难挥发的液体或低熔点固体,不与聚合物起化学反应。和聚合物的相互作用主要是在升高温度时的溶胀作用,与聚合物形成一种固体溶液。外增塑剂性能全面,生产和使用比较方便。本模块讨论的增塑剂是指外增塑剂。 5、按工作特性来分类 增塑剂可分为通用型和特殊型两种。可以普遍采用,但无特殊性能的增塑剂就是通用增塑剂;除增塑剂作用外还有其他功能的增塑剂称为特殊增塑剂,如耐寒增塑剂脂肪族二元酸酯、阻燃增塑剂磷酸酯等。

聚氨酯

聚氨酯 聚氨酯的工业生产主要是由多元有机异氰酸酯和各中氢给予体化合物(通常如含端羟基的多元醇化合物)反应制备。选择不同数目的官能基团和不同类型的官能基,采用不同的合成工艺,能制备出性能各异、表现形式各种各样的聚氨酯产品:泡沫塑料,弹性橡胶,油漆、涂料,合成纤维、合成皮革、胶黏剂等。应用范围从航空飞行器到工农业生产,从文体娱乐器械到人们日常的衣食住行。 聚氨酯化学中的最基本反应:含活泼氢的醇类化合物所含的羟基与异氰酸酯进行亲核加成反应,生成氨基甲酸酯基团。 异氰酸酯 氨基甲酸酯基团是内聚能较大的特性基团,空间体积较大,在聚合物中具有硬链段特征。而聚氨酯实际上就是由刚性基团(链段)和软链段构成的嵌段共聚物。 异氰酸酯中常见的R基的吸电子能力的基本顺序为:硝基苯基>苯基>甲苯基>苯亚甲基>烷基。 异氰酸酯与聚醇低聚物反应:1 异氰酸基>羟基,端基为异氰酸基,主要用于PU弹性体、黏合剂、涂料以及二步法合成PU泡沫塑料等; 2 异氰酸基=羟基,主要用于泡沫塑料和热塑性聚氨酯材料制备; 3 异氰酸基<羟基,端基为羟基,使用情况较少,主要用于便于贮存的生胶、黏合剂和某些中间体的制备。 小分子醇类主要用作扩链剂、反应润滑剂等参与反应并生成氨基甲酸酯基团。 异氰酸酯与苯酚反应的过程可逆,利用这种可逆反应制备封闭型异氰酸酯衍生物从而应用于单组份聚氨酯黏合剂、涂料、弹性体等产品的合成中。 异氰酸酯与水反应可生成二氧化碳,水因此被用作为最廉价的化学发泡剂,但该反应放热量大且会产生脲基。 异氰酸酯与羧酸反应的反应活性较低,远低于伯醇或水与异氰酸酯间的反应活性,在正常的生产条件下很少能参与反应。 异氰酸酯与胺的反应,胺类化合物大多都呈现一定的碱性,反应速度远快于异氰酸基与羟基的反应速度,即胺类化合物与异氰酸酯的反应速度要比其他含活泼氢化合物高得多。 异氰酸酯与脲基、胺酯基等的反应,能在生成的聚合物中提供一定支链结构,改善了聚氨酯制品的力学性能。 异氰酸酯的自聚反应,异氰酸酯二聚体的生成反应仅局限于芳香族异氰酸酯,而异氰酸酯三聚体在芳香族和脂肪族异氰酸酯中都可以由反应制备。三聚体的碳氮原子六节环结构热稳定性好,使得聚氨酯具备更好的耐热性能,可用于硬质泡沫塑料的制备。 异氰酸酯的自缩聚反应,二异氰酸酯在加热和有机磷催化剂的存在下发生自缩聚反应生成碳化二亚胺,可用于制备抗水解稳定剂;制备液化MDI;提高聚氨酯材料的耐水解能力。 在聚氨酯工业中主要使用的是含有两个或两个以上异氰酸基的有机二异氰酸酯和有机多异氰酸酯。按分子结构:芳香族异氰酸酯、脂肪族异氰酸酯和脂环族多异氰酸酯。按功能特点:通用型多异氰酸酯、非黄变型多异氰酸酯、“无机”元素型多异氰酸酯及异氰酸酯三聚体衍生物、屏蔽型异氰酸酯衍生物等。 通用型有机异氰酸酯主要有TDI、MDI和多苯基甲烷多异氰酸酯(PAPI)等,制备工艺成熟,但存在光照黄变的缺点。 聚氨酯黄变机理:芳香族异氰酸酯形成的芳香族胺酯键受紫外线照射后分解生成芳胺并与苯环产生共振重排,生成共轭醌式结构的生色团。

增塑剂优缺点的比较

几种常见增塑剂优缺点的比较 合成植物脂 优点:1.价格低,降低大量的生产成本;2.没有味道;3.不需要改变原有的工艺和配方,提高产品的增塑效果;4与PVC分子相容较好,有效抑制冒油;5增加产品的抗寒性,冬天正常使用;6.电绝缘性能较好。7.环保无毒!(通过SGS 机构REACH 标准138项认证) 缺点:1.比重大;2.颜色发黄。 二辛脂(DOP) 优点具有良好的综合性能,混合性能好,增塑效率高,所加工的塑料耐热和耐候性好,挥发性低,电绝缘性能好。 缺点:1.不环保;2.价格高。 二丁酯(DBP) 优点:相溶性好,柔软性好。 缺点:1.挥发性及水中溶解度较大;2.耐久性差;3.不环保。 环氧大豆油 优点:环境友好,热稳定性,光稳定性,耐溶剂性好,挥发性低。 缺点:容易冒油,在5度的时候容易凝固。 环氧脂肪酸甲酯 优点:提高制品的物理性能和延长老化时间,相溶性和分散性好,环保。 缺点:5度的时候会凝固,容易迁移。 乙酰柠檬酸三丁酯(ATBC) 优点:耐寒性和耐光性、耐水性好,无毒环保;耐久性和耐污染型号。 缺点:耐寒性不好,容易结晶;不易保存;价格昂贵。 氯化石蜡 优点:低挥发性,阻燃电绝缘性好。 缺点:不环保。 对苯二甲酸二辛脂(DOTP) 优点:具有耐热耐寒,难挥发,柔软性和电绝缘性能好,环保。 缺点:耐热老化性差,低温时变脆,耐磨性差,易老化。 邻苯二甲酸二异壬酯(DINP) 优点:与PVC相容性较好,即使大量使用也不户析出,,挥发性和迁移性均优于DOP,耐光、耐热、耐老化和电绝缘性能好。 DOP、ATBC替代品 品名:合成植物酯(可替代DOP、DBP、ATBC、DOTP等) 优势:价格低,增塑效果优异,不冒油,绝对环保! (通过SGS机构REACH 标准138项认证) 1.概述:

聚氨酯概况综述

聚氨酯概况 一、聚氨酯定义 聚氨酯:凡是在大分子主链中含有氨基甲酸酯基的聚合物称为聚氨基甲酸酯,简称聚氨酯。 分类:聚酯型聚氨酯; 聚醚型聚氨酯。 聚酯型聚氨酯:以异氰酸酯和端羟基聚酯为原料制备的聚酯称为聚酯型聚氨酯。 聚醚型聚氨酯:以异氰酸酯和端羟基聚醚为原料制备的聚氨酯。 二、聚氨酯生产常用原料简介 己二酸(AA) 1、物理性质: 白色晶体或结晶粉末,略有酸味,微溶于水、环己烷,溶于丙酮、乙醇、乙醚。不溶于苯、石油醚。熔点152℃,沸点330.5℃(760mmHg),比重1.360(20/4℃),闪点196℃。 2、用途: AA主要用于生产尼龙(纤维和树脂),约占总生量的70%以上,聚氨酯行业中AA 的用量只约 20%,余下的用于增塑剂、造纸、药物等方面生产。 在PU行业中,AA用于生产PU革用树脂、鞋底原液、弹性体、胶粘剂和油漆等方面。 二苯基甲烷-4,4’-二异氰酸酯(MDI) 1、物理性质: 白色到微黄色结晶体(或粉末)。溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.197(70℃),凝固点38-39℃,沸点190℃(5mmHg)。 2、用途: MDI只用于聚氨酯行业中,其应用范围是:弹性体、纤维、革用树脂、鞋底原液、胶粘剂和油漆等方面。 多亚甲基多苯基多异氰酸酯(PAPI) 1、物理性质: 棕色粘稠液体,溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.23(25℃)。 2、用途: 在PU行业中,PAPI主要用于生产硬泡,此外还可用于胶粘剂、铺装材料等。

甲苯二异氰酸酯(TDI) 1、物理性质 无色至淡黄色液体,有强烈刺激性气味。可溶于醚、丙酮、苯、四氯化碳、氯等。与水、醇及胺等反应,比重 1.2244(20/4℃),熔点19.5-21.5℃,沸点251℃(760mmHg)。 2、用途: TDI的主要用途是生产PU泡沫,约占TDI总量的80%以上。此外还用于胶粘剂、弹性体、油漆、固化剂等方面。 N,N-二甲基甲酰胺(DMF) 1、物理性质: 无色透明液体,有氨气味,溶于水、乙醇、乙醚、氯仿等大多数有机溶剂,微溶于苯。溶解能力强,被称为万能有机溶剂。比重0.9445g/cm3(25/4℃),熔点-61℃,沸点153℃,折射率为1.4269。 2、用途: DMF主要用于革用树脂的合成和PU皮革生产加工方面,约占总量的90%以上,余下的用于医药和分析方面。 1,4—丁二醇(BDO) 1、物理性质: 无色粘稠油状液体,味苦,有吸湿性,无气味。可溶于水、甲醇、乙醇和丙酮,微溶于乙醚,不易挥发。比重为1.016g/cm3(20/4℃),凝固点为20.9℃,沸点为228℃,折射率为1.4446(25℃)。 2、用途: 用于制造聚酯多元醇、不饱和树脂、药物、染料、化妆品及油漆等。 多元醇 一):聚酯多元醇 1、分类: 聚酯多元醇的种类繁多,根据其结构来分可分为三大类:聚酯多元醇类(主要是己二酸系列),聚ε—己内酯类,聚碳酸酯类。 聚酯多元醇是由二元酸与二元醇或三元醇经酯化、缩聚成一定分子量的端羟基高聚物。 聚ε—己内酯类是ε—己内酯在催化剂(有机钛类、辛酸亚锡)存在下,由起始剂(二醇或二胺)开环聚合成线性的端羟基或端胺基高聚物。 聚碳酸酯类是1,6—己二醇与二苯基碳酸酯经酯交换、缩聚而成的聚碳酸己二醇酯二醇。 2

水性聚氨酯简介

聚氨酯涂料在建筑领域有着广泛的应用和研究,随着各国对环保和节能的日益重视,其发展从最初的溶剂型到现在的水性化。与溶剂型聚氨酯涂料相比,水性聚氨酯(WPU)涂料具有无毒、不污染环境、节省能源和资源等优点,属于当今的绿色高分子材料。近年来,由于社会经济快速增长,建筑行业不断发展,建筑涂料日益受到人们的重视,已经成为涂料工业中增长最快的涂料品种;WPU涂料将聚氨酯树脂所固有的强附着力、耐磨蚀、耐溶剂性好等优点与水性涂料低的VOC含量相结合,在建筑市场发挥着举足轻重的作用。 1·水性聚氨酯涂料在建筑领域的应用 建筑涂料广泛应用于建筑物的装饰和保护,要求是能抵御外界环境对建筑物的破坏,能对建筑物的防霉、防火、防水、防污、保温、防腐蚀等起保护功能;更重要的是低毒或者无毒、不易燃,对人类来说有足够的安全性。WPU涂料所具备光泽性、柔韧性、耐候性、耐溶剂等优异性能以及无毒、环保的优点,使其在建筑领域大放异彩。 1.1地坪涂料 地坪涂料是一类应用于水泥基层的涂料,要求具备耐磨、防滑、耐腐蚀、耐沾污等性能。WPU涂料所具备的柔韧可调整和环保等优势,在地坪领域所占的份额越来越大。对于单组分WPU,需要通过交联改性来获得优异的力学性能、耐水性、耐溶剂性以及耐老化性,从而满足地坪涂料的要求。而双组分WPU自身所具有的易清洗、耐磨性、耐刮擦性、耐化学品等优异的性能,在地坪领域应用十分广泛。陈凯研究一种双组分WPU地坪涂料,是由硅丙水分散体的OH基团和多异氰酸酯NCO基团两组分配制而成。结果发现,有机硅氧烷单体加入量、羟基含量、酸值、固化剂的选择等对涂膜性能均有显著的影响。当硅氧烷单体质量分数为5%~10%、羟基量为2.8%~3.0%、酸值在25~36mgKOH/g、玻璃化转变温度为40~58℃条件下合成高性能含羟基硅丙树脂,将其与固化剂配制的地坪涂料涂膜性能最佳;其涂膜坚硬、耐久,具有很好的耐水性、耐蚀性、耐划伤性和耐擦洗性。沈剑平等研究发现,只要选材得当,双组分WPU涂料可以实现非常优异的综合性能。用基于多元醇分散体BayhydrolAXP2695和多异氰酸酯BayhydurXP2487/1研发的白漆,以60kg的压力将40mm×40mm的冬季防滑胎压放在涂料样板上,常温压放1d后,在50℃下压放3d,发现其漆膜表面仅留下轻微的印痕,并且可以用乙醇轻易地擦拭干净。最新的研究表明,某些高交联密度的双组分WPU地坪涂料具有优异的抗热胎痕的性能。 1.2建筑防水涂料 目前在建筑防水领域,溶剂型聚氨酯涂料应用比较广泛;但随着环保的力度的加大,涂料势必要向无溶剂、水性化方向发展。WPU由于引入亲水集团,涂料的耐水性不佳,无法满足建筑防水涂料的需求,所以可以通过改性来提高和改善相应性能。罗春晖等采用氮丙啶对阴离子WPU分散体(PUD)进行交联改性,结果表明,室温下氮丙啶可与PUD链上的羧基反应,其加入可以显著改善涂膜的耐水性、耐溶剂性及耐沾污性。沈一丁等以异佛尔酮二异氰酸酯、聚醚二元醇(PTMG)以及二羟甲基丙酸为主要原料合成聚氨酯预聚体,并引入含酮羰基的双羟基化合物(DDP)与预聚体进行交联,再加入3-氨丙基三乙氧基硅烷(KH550)改性,合成了稳定高交联度脂肪族WPU,研究结果表明,KH550能显著改善水性聚氨酯的力学性能及耐介质性。当KH550质量分数由0增加至10%时,乳胶膜的拉伸强度由20MPa 增加至27MPa,吸水率由43.2%降低至21.3%,吸丙酮率亦由47.5%降低至26.2%。TG 分析表明,随着KH550含量的增大,聚氨酯涂膜的热稳定性明显提高。郭松等采用蓖麻油为内交联剂合成防水性能较好的WPU成膜剂,以表面能、吸水率、接触角等指标分别考察蓖麻油的不同用量对WPU防水性的影响。结果表明,当蓖麻油最佳质量分数为4%时,其表面能仅为26.3mN/m,水接触角可达106.8°,吸水率为8.7%,其拉伸强度达22.77MPa,断裂伸长率达到了489.83%,开始分解温度提高到173℃,制得的WPU膜有良好的防水性能和一定的力学性能。以上品种均可以用于建筑防水。

稳定剂对反应型聚氨酯热熔胶性能的影响

2018年第33卷第2期2018.V〇1.33No.2 聚氨酯工业 POLYURETHANE INDUSTRY ?37? 稳定剂对反应型聚氨酯热熔胶性能的影响 陈精华石俊杰张健臻陈建军黄恒超 (广州市白云化工实业有限公司广州510540) 摘要:以聚酯多元醇、多异氰酸酯、松香类增粘树脂、催化剂、黏度稳定剂和水解稳定剂等为原 料,制备了反应型聚氨酯热炫肢(PUR)。考察了黏度稳定剂、水解稳定剂对PUR性能的影响。结果表明,当选用多聚嶙酸为黏度稳定剂,用量为80 mg/kg时制备的热嫁胶黏度稳定性最好,在120 T;加热8 h后,熔融黏度较初始值仅增加6.4%;环氧化合物GE500的抗水解效果比碳化二亚胺低 聚物P200的好,水解稳定剂GE500质量分数为2.0%时,PUR粘接试件在100丈、相对湿度95%的老化箱中放置7 d后,粘接强度保持率仍可达52%。 关键词:反应型聚氨酯热炫胶;黏度稳定剂;水解稳定剂 中图分类号:T Q436+. 4、TQ 323. 8 文献标识码:A文章编号:1005-1902(2018)02-0037-03 反应型聚氨酯热熔胶(PUR)—般以聚酯多元 醇和多异氰酸醋反应的聚氨酯预聚体作为基料,配 以增粘树脂、稳定剂、抗氧剂、催化剂、填料等制备而 成[1]。PUR中的稳定剂主要有黏度稳定剂和水解 稳定剂。黏度稳定剂通常为无机酸、有机酸、酰氯 等[2],其作用是保证PUR在制备、储存及应用时黏 度保持稳定。在PUR体系中,黏度稳定剂对氨基甲 酸醋及脲基甲酸酯生成反应影响不大,但能抑制缩 二脲等交联产物的生成反应,从而保证PUR具有较 好的黏度稳定性。水解稳定剂通常为碳化二亚胺和 环氧类化合物[3_4],其作用是减缓或阻止PUR固化 物在潮湿环境下发生水解,延长产品的使用寿命,扩 大产品的使用范围。 本工作考察了不同种类及用量的黏度稳定剂、7JC解稳定剂对PUR性能的影响。 1主要部分 1.1实验原料 结晶性聚酷多元醇Dynacoll 7360、液体聚酯多 兀醇Dynacoll7250,德国赢创特种化学有限公司;液 化MDI,牌号D esm odur CD-C,德国拜耳化工有限公 司;松香树脂,牌号Sylvalite RE 100L,美国亚利桑那 化学公司;二吗啉基二乙基醚(DMDEE),上海雨田 化工有限公司;抗氧剂1010,上海井宏化工科技有 限公司;环氧化合物GE500,德国拉西格公司;碳化 *二亚胺低聚物Stabaxol P200,德国莱茵化学公司;消 泡剂BYK-A535,德国毕克化学有限公司。以上均 为工业级。苯甲酸、多聚磷酸、壬酸,分析纯,上海国 药集团公司。 1.2反应型聚氨酯热溶胶的制备 将 50 份 D ynacoll 7360、90 份 Dynacoll 7250、20 份Sylvalite RE 100L投人反应釜,加热至120 t使 其完全熔化,在搅拌条件下真空脱水至水分低于0.02%,利用干燥氮气消真空后,将20. 5份的液化 MDI投入反应釜内,在氮气保护下,搅拌反应2 h,然 后依次投入0.5份BYK-A 535、0.2份催化剂D M-DEE、0.3份抗氧剂1010、适量的黏度稳定剂和水解 稳定剂,搅拌反应0.5 h,最后在匀速搅拌条件下脱 泡,出料得到PUR,密封保存备用。 1.3粘接试件的制备 将两块标准粘接基材进行除尘、除油处理后,用 溶融的PUR进行水平粘接,粘接面积为12. 5 mmX 25 mm,施胶厚度为2 mm,粘接完成后,在25 T、50%RH固化,为保证完全固化,放置7 d后测试。1.4性能测试 熔融黏度参照标准HG/T 3660—1999,采用美 国Brookfield公司RVDV-S数显旋转黏度计(带 Thermosel加热器)测定120丈的黏度;粘接强度(拉 伸剪切强度)参照标准GB/T7124—2008,采用深圳 市新三思计量技术有限公司C M T4303型微机控制 *基金项目:广州市产学研协同创新重大专项(201604010060)。

聚氨酯胶黏剂总结

聚氨酯胶黏剂 一、聚氨酯胶黏剂的特性【26】 1、聚氨酯胶粘剂中含有强极性和化学活泼性的异氰酸酯基(-NCO)和氨酯基(-NHCOO-),与含有活泼氢的材料,如泡沫塑料、木材、皮革、织物、纸张、陶瓷等多孔材料和金属、玻璃、橡胶、塑料等表面光洁的材料都有优良的化学粘合力。而聚氨酯与被粘合材料之间产生的氢键作用使分子内力增强,会使粘合更加牢固。 2、调节聚氨酯树脂的配方可控制分子链中软段与硬段的比例以及结构,制成不同硬度和伸长率的胶粘剂。其粘合层从柔性到刚性可任意调节,从而满足不同材料的粘接。 3、聚氨酯胶粘剂可加热固化也可室温固化。粘合工艺简便,操作性能良好。 4、聚氨酯胶粘剂固化时一般没副反应产生,因此不易使粘合层产生缺陷。 5、多异氰酸酯胶粘剂能溶于几乎所有有机溶剂中,而且异氰酸酯的分子体积小,易扩散,因此多异氰酸酯胶粘剂能渗入被粘材料中,从而提高粘附力。 6、多异氰酸酯胶粘剂粘接橡胶和金属时,不但粘合牢固而且能使橡胶和金属之间形成软硬过渡层,因此这种粘合应力小,能产生更优良的耐疲劳性。 7、聚氨酯胶粘剂的低温和超低温性能超过所有其他类型的胶粘剂。其粘合层可在-196℃(液氮温度),甚至在-253℃(液氢温度)下使用。 8、聚氨酯胶粘剂具有良好的耐磨、耐水、耐油、耐溶剂、耐化学药品、耐臭氧以及耐细菌等性能。 然而,聚氨酯胶粘剂也有缺点,在高温高湿下易水解而降低粘合强度。 二、聚氨酯的结构 目前复合薄膜用胶粘剂用量最大的是聚氨酯胶粘剂,90%以上的软包装袋用复合膜采用了聚氨酯胶粘剂【3】。 聚氨酯(PU)胶黏剂是指在分子链中含有氨基甲酸酯基团(—NHCOO—)或异氰酸酯基(—NCO)的胶黏剂【1】。与含有活泼氢的材料,如泡沫塑料、木材、皮革、织物、纸张、陶瓷等多孔材料和金属、玻璃、橡胶、塑料等表面光洁的材料都有着优良的化学黏合力【2】。 聚氨酯树脂的结构对其性能起决定性作用。聚氨酯是一种由软硬段镶嵌而成的线性有机聚合物,其结构如下所示【3】: ~软段~硬段~软段~硬段~软段~ 聚氨酯树脂的软段由一般由聚醚、聚酯等低聚物多元醇构成,这类多元醇的分子量通常约为600~3000。一般来说,用于制备胶粘剂的聚氨酯树脂的硬/软段比例都较低,其性能也主要由软段决定。聚氨酯的硬段由多异氰酸酯和小分子扩链剂生成的异氰酸酯基、氨基甲酸酯基,及异氰酸酯与水或胺类扩链剂产生的脲基【4】,对材料的力学性能有重要影响,尤其是拉伸强度、硬度和抗撕裂强度等性能。结构如下图所示。

浇注型聚氨酯..

浇注型聚氨酯 1概述 聚氨酯弹性体(PUE,PolyurethaneElastomer)是一类综合性能优良的高分子合成材料,包含有浇注型聚氨酯弹性体(CPU)、热塑型聚氨酯弹性体(TPU)和混炼型聚氨酯弹性体(MPU),微孔聚氨酯弹性体、聚氨酯防水材料、鞋底材料、铺装材料等。 CPU 在加工前成型前为粘性液体,故有“液体橡胶”之称,它是以液态低聚物多元醇、异氰酸酯和小分子扩链剂为原料,使用液体混合浇注的加工成型方法,经扩链交联反应得到固化交联的高弹性产物。CPU 成型工艺简单,形成的弹性体分子完整程度高,最大限度发挥了聚氨酯弹性体的特点,综合性能也优于 MPU 和 TPU,因而成为聚氨酯弹性体中产量最大、应用范围最广的品种。在许多工业领域中,CPU 正在逐步地取代传统金属和硫化橡胶,取得越来越广泛的应用。浇注法也是本课题制备聚氨酯弹性体采用的方法。MPU 加工的第一步是合成高粘度、储存稳定、可以混炼加工的聚氨酯生胶(线性分子,分子量为 20 000~30 000),然后在开炼机或密炼机中将其与硫化剂、促进剂、补强性填料等相混合,经成型最后硫化成具有弹性体物理化学性能的聚氨酯弹性体,可以看到,MPU 的加工方法和传统橡胶相似,因而是最早获得工业生产和应用的一种聚氨酯弹性体,但 MPU 的性能比 CPU 和 TPU 差,硬度一般在 ShoreA55~A80,工艺复杂,产量较小。TPU 常采用一步法生产,即将聚合物多元醇、二异氰酸酯和小分子扩链剂混合,在双螺杆反应器中反应,然后切粒和干燥,使用塑料挤出、注射成型的加工方法进行生产。TPU 的数均分子量较大,硬度较高。 聚氨酯弹性体是由相对分子质量大的聚醇软段和相对分子质量低的二异氰酸酯与二胺或二醇合成的硬段所构成的弹性体。软段提供弹性体的韧性、弹性和低温性能;硬段贡献弹性体的刚性、强度以及耐热性[1]。 聚氨酯弹性体具有优异的综合性能,因而广泛应用于各种领域。聚氨酯胶辊、胶轮、筛板、密封件等仍然是浇注型聚氨酯弹性体的重要产品,质量在提高、品种在增加、应用领域在扩大是其发展趋势。阻燃、耐热、阻尼、低摩擦型等聚氨酯弹性体具有广阔的市场空间和发展前景,已引起业界的高度重视。 聚氨酯弹性体分子中有大量的极性基团,同时氨基甲酸酯键可以使分子链之间形成较强的氢键交联。有效地防止了应力作用下分子链之间的滑移,使其不仅具有较高的力学性能、突出的耐磨性,还具有耐油、耐水、耐臭氧、耐辐射、耐低温、气密性 1

胶粘剂基本知识

一,胶粘剂得分类 1、按基体材料分:合成胶粘剂热固性树脂胶粘剂:环氧树脂胶,酚醛树脂胶,聚氨酯胶,氨基树脂胶,不饱与聚酯胶,有机硅树脂胶,杂环聚合物胶 热塑性树脂胶粘剂:丙烯酸酯胶,聚醋酸乙酯胶,聚乙烯醇胶 橡胶胶粘剂:氯丁橡胶,丁腈橡胶,聚硫橡胶,硅橡胶,丁苯橡胶特种胶粘剂:热熔胶,密封胶,压敏胶,导电胶等 无机胶粘剂:磷酸盐胶粘剂,硅酸盐胶粘剂 天然胶粘剂:植物胶:淀粉胶、糊精胶、阿拉伯树胶与松香胶 动物胶:虫胶与皮骨胶 矿物胶:沥青胶、地蜡胶与硫磺胶 2、按应用分:结构胶、非结构胶与特种胶,其中,结构胶要求受力部件得胶接头承受应力与被粘物相当或接近。 二,胶粘剂得组成 1、胶粘剂:又称粘合剂、接着剂,将经过表面处理得两个或两个以上胶粘材料牢固地连接在一起,并且具有一定力学强度得化学性质。例如,环氧树脂、磷酸一氧化铜、白乳胶等。 2、固体材料(基料):决定胶接头得主要物理化学力学性能。例如,环氧树脂与酚醛树脂等。 3、固化剂: a)固化:液体得胶粘剂通过物理化学方法变成固体得过程。物理方法有溶解挥发、乳液凝聚、熔融体冷却;化学方法使胶粘剂聚合成高分子物质。 b)固化剂:固化过程所使用得化学物质。

4、固化促进剂:能促进固化反应速度,缩短反应时间得化学物质,又称催化剂。 5、增韧剂:能提高胶粘剂固化物得韧性,主要就是酯类与弹性化合物。 6、填料:能提高接头得力学强度。 7、其它辅助材料:着色剂、溶剂(稀释剂)、防老剂与偶联剂等。 三,胶粘剂得选择 1、选择胶粘剂得原则 (1)考虑胶接材料得种类性质大小与硬度; (2)考虑胶接材料得形状结构与工艺条件; (3)、考虑胶接部位承受得负荷与形式(拉力、剪切力、剥离力等);(4)考虑材料得特殊要求如导电导热耐高温与耐低温。 2、胶接材料得性质 (1)金属:金属表面得氧化膜经表面处理后,容易胶接;由于胶粘剂粘接金属得两相线膨胀系数相差太大,胶层容易产生内应力;另外金属胶接部位因水作用易产生电化学腐蚀。 (2)橡胶:橡胶得极性越大,胶接效果越好。其中丁腈氯丁橡胶极性大,胶接强度大;天然橡胶、硅橡胶与异丁橡胶极性小,粘接力较弱。另外橡胶表面往往有脱模剂或其它游离出得助剂,妨碍胶接效果。 (3)木材:属多孔材料,易吸潮,引起尺寸变化,可能因此产生应力集中。 另外,抛光得材料比表面粗糙得木材胶接性能好。 (4)塑料:极性大得塑料其胶接性能好。 (5)玻璃:玻璃表面从微观角度就是由无数部均匀得凹凸不平得部分组成、使用湿润性好得胶粘剂,防止在凹凸处可能存在气泡影响、另外,玻璃就是以

聚氨酯凝型催化剂

聚氨酯凝胶型催化剂 DABCO 8154 酸封闭的TEDA催化剂,延迟反应凝胶催化剂,可改善泡沫流动性;适用于软泡和硬泡; DABCO 晶体强凝胶催化剂,三乙烯二胺(TEDA); DABCO 33-LV 多用途凝胶催化剂,33%Dabco固体+67%二丙二醇(DPG); DABCO DC-2 复合胺,很强活性的延迟凝胶催化剂,用于喷涂硬泡; DABCO MB20 弱凝胶催化剂,适用于软质块状泡沫、高密度软质泡沫、喷涂泡沫、微孔泡沫以及硬质泡沫体系中的锡金属催化剂; DABCO NMM N-甲基吗啉,中等强度凝胶催化剂,适用于聚酯型聚氨酯软块泡; DABCO NEM N-乙基吗啉,中等强度凝胶催化剂,适用于聚酯型聚氨酯软块泡; DABCO S-25 凝胶催化剂,25%TEDA+75%BDO; DABCO T-12 T-12 二月桂酸二丁基锡,凝胶催化剂,适用于涂料或PU树脂; Polycat 77 双(二甲氨丙基)甲胺,凝胶剂发泡平衡性催化剂,制开孔泡沫,增强模塑泡沫回弹性,用于软泡和硬泡; Polycat DBU 强凝胶催化剂,低气味,适用于整皮泡沫、微孔弹性体、硬泡等; Polycat SA-102 强凝胶催化剂,复合催化剂,适用于整皮泡沫、微孔弹性体、硬泡等; Jeffcat ZR-50 双(二甲氨基丙基)异丙醇胺,反应性凝胶催化剂,低散发性,适用于聚醚型聚氨酯软泡催化剂、微孔弹性体、RIM聚氨酯、硬泡等; Jeffcat DMP 二甲基哌嗪,聚氨酯发泡/凝胶平衡性催化剂,适用于聚氨酯软泡、硬泡、涂料和胶黏剂等; PC CAT NP10 N-(二甲氨丙基)而异丙醇胺,反应性凝胶催化剂,低散发性,适用于聚醚型聚氨酯软泡、微孔弹性体、RIM聚氨酯、硬泡等; 供应商 新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂: 二甲基环己胺(DMCHA):聚氨酯硬泡催化剂

反应型聚氨酯热熔胶

反应型聚氨酯热熔胶

————————————————————————————————作者:————————————————————————————————日期:

反应型聚氨酯热熔胶的研究现状和发展趋势 余声平 摘要:本文主要介绍了反应型聚氨酯热熔胶的类型、应用、研究现状以及发展趋势。关键词:聚氨酯;反应型热熔胶;类型;应用;发展趋势 前言 聚氨酯在胶粘剂方面的应用已有几十年的历史。发展了多异氰酸酯胶粘剂、双组分聚氨酯胶粘剂、热塑性聚氨酯热熔胶、聚氨酯压敏胶,汽车用双组分聚氨酯结构胶等。至1984年开始出现反应型聚氨酯热熔胶[JulieBSamms.TPUs for use in nonsolvent-based adhesivetechnologies[J].Adhesives Age,1998,41(7):18-21.],反应型聚氨酯热熔胶迅速发展,并得到越来越广泛的应用。 1 反应型聚氨酯热熔胶的特点 反应型聚氨酯热熔胶的主要特点[Paul Waties.Moisture-curing reactive polyurethane hot-melt adhesives[J].Pigment&Resin Technology,1997,26(5):300.,JackChambers.Fully reactive PU hot meltsofferperformanceadvantages[J].AdhesivesAge,1998,41(8):24-27.]有:1)反应型聚氨酯热熔胶属单组分包装,不需组配,无计量失误之虞,可确保施工质量; 2)不含任何有机溶剂,不造成环境污染,为环境友好材料; 3)快速粘接,粘接时无须胶带或夹具固定,简化了操作,加热后冷凝硬化即可达到一般热塑性热熔胶的物理粘接强度,常温下后续反应交联固化,粘接强度大幅度提高; 4)优良的耐水、耐溶剂及耐低温性能。 2 反应型聚氨酯热熔胶类型 2.1 含端—NCO基湿固化型聚氨酯热熔胶 这类胶为端—NCO基预聚体,粘接时可与空气中所含水分及基材表面的吸附水发生化学反应形成脲键而交联固化。 该胶固化时要求空气湿度在40%以上,提高固化温度,有利于水分参加固化反应,缩短固化时间。当被粘接基材的含水量较高,空气湿度较大,胶料的NCO基团含量较高,固化温度较高时,固化速度较快,这种情况下易产生较多的CO2气体。CO2逸出时使胶接层形成无规则的孔穴,导致粘接强度下降。为克服此缺点,一般应加入适量炭黑、硅胶等气体吸附剂及氧化钙、氢氧化钙等化学吸收剂。此外,必要时还可在胶中配入偶联剂、增塑剂、增粘剂、紫外吸收剂、抗氧剂、抗流挂剂及填料等。 傅玉英等[傅玉英.鞋用单组分湿固化聚氨酯反应型热熔胶的研制[J].中国胶粘剂,1991,1(4):7-10.]以聚酯、二异氰酸酯、含4~14个硫原子的脂肪族分子量调节剂、催化剂、阻聚剂等,制得了剥离强度为100N/cm,软化点40~70℃,硬化时间2~20min的鞋用单组分湿固化聚氨酯热熔胶。 Shang Lee等报导了适用于压制装饰性硬木胶合板和硬木地板的湿固化单组分聚氨酯热

相关主题
文本预览
相关文档 最新文档