当前位置:文档之家› 圆周运动的实例分析学案

圆周运动的实例分析学案

圆周运动的实例分析学案
圆周运动的实例分析学案

圆周运动实例分析

一、汽车过拱形桥

1.向心力来源(最高点和最低点):汽车做圆周运动,_____和桥面的_______的合力提供向心力 2.动力学关系

(1)如图2-3-1所示,汽车在凸形桥的最高点时,满足的关系为________=R m 2

ν,N =________,由牛顿第三定律可知汽

车对桥面的压力大小等于支持力,因此汽车在凸形桥上运动时,对桥的压力_____重力.当gR =ν时,其压力为零.

(2)如图2-3-2所示,汽车经过凹形桥的最低点时,满足的关系式为______=R m 2

ν,N =_______,汽车对桥的压力大小

N N ='.汽车过凹形桥时,对桥的压力______重力.

【例1】 如图2-3-8所示,质量m =2.0×104 kg 的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为60 m ,如果桥面承受的压力不得超过3.0×105 N ,则: (1)汽车允许的最大速率是多少?

(2)若以所求速率行驶,汽车对桥面的最小压力是多少?(g 取10 m/s 2

) 【思路点拨】 汽车在拱桥上运动时,对凹形桥的压力大于其重力,而对凸形桥则压力小于重力.由此可知,对凹形桥则存在一个允许最大速率,对凸形桥则有最小压力.可根据圆周运动知识,在最低点和最高点列方程求解.

【精讲精析】 汽车驶至凹面的底部时,合力向上,此时车对桥面压力最大;汽车驶至凸面的顶部时,合力向下,此时车对桥面的压力最小.

(1)汽车在凹形桥面的底部时,由牛顿第三定律可知,桥面对汽车的支持力

1N =3.0×105

N ,根据牛顿第二定律

r

m

mg N 21ν=- 即s m gr s m s m r g m N /610/310/60)1010

0.2100.3()(4

5

1=<

=?-??=-=ν,故汽车在凸形桥最高点上不会脱离桥面,所

以最大速率为s m /310.

(2)汽车在凸形桥面的顶部时,由牛顿第二定律得:r m N m g 2

2

-ν=,

则N N r

g m N 5422100.1)60

300

10(100.2)(?=-

??=-

=ν 由牛顿第三定律得,在凸形桥面顶部汽车对桥面的压力为N 5

100.1?.

2-3-

1 2-3-2

2-3-

8

【方法总结】 (1)过凹形桥最低点时,汽车的加速度方向竖直向上,处于超重状态,为使对桥压力不超出最大承受力,汽车有最大行驶速度限制.

(2)应用牛顿第二定律列方程时,应取加速度方向为正方向. (3)汽车对桥的压力与桥对汽车的支持力是作用力与反作用力.

【变式训练1】当汽车通过桥面粗糙的拱形桥顶点的速度为s m /10时,车对桥顶的压力为车重的3

4,如果要使汽车行驶至该

桥顶时不受摩擦力作用,则汽车通过桥顶的速度应为( ) A .25 m/s B .20 m/s

C .15 m/s

D .30 m/s

二、旋转秋千

“旋转秋千”运动可简化为圆锥摆模型,如图2-3-3所示.

1.向心力来源:物体做匀速圆周运动的向心力是由物体所受的重力和悬线对它的_____的合力提供. 2.动力学关系 ______=r m 2

ω

,又r =______

则ω=______,周期T =__________,

所以αcos =________,由此可知,α角度与角速度ω和绳长l 有关,在绳长l 确定的情况下,角速度ω______,α越大.

三、火车转弯

1.火车在弯道上的运动特点:火车车轮上突出的轮缘在铁轨上起到__________的作用,如果火车在水平路基上转弯,______对轮缘的弹力就是火车转弯的向心力,轮缘与外轨间的作用力____,铁轨与轮缘极易受损,故实际在转弯处,火车的外轨_______内轨. 2.向心力的来源

内外轨高度差:依据_________和______________,适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由_____和_______的合力来提供.

【补充】

1. 弯道的特点

在实际的火车转弯处,外轨高于内轨,若火车转弯所需的向心力完全由重力和支持力的合力提

供,即

R m mg 2

tan νθ=

,如图2-3-4所示,则θνtan 0gR =.

其中R 为弯道半径,θ为轨道所在平面与水平面的夹角,0ν为转弯处的规定速度.

2.明确圆周平面

虽然外轨高于内轨,但整个外轨是等高的,整个内轨是等高的.因而火车在行驶的过程中,重心的高度不变,即火车重心的轨迹在同一水平面内.故火车的圆周平面是水平面,而不是斜面.即火车的向心加速度和向心力均是沿水平面而指向圆心. 2-3-

3

2-3-

4

3.速度与轨道压力的关系

(1)当火车行驶速度ν等于规定速度0ν时,所需向心力仅由重力和弹力的合力提供,此时内外轨道对火车无挤压作用. (2)当火车行驶速度ν与规定速度0ν不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下: ①当火车行驶速度0νν>时,外轨道对轮缘有侧压力. ②当火车行驶速度0νν

<时,内轨道对轮缘有侧压力.

特别提醒:汽车、摩托车赛道拐弯处,高速公路转弯处设计成外高内低,也是尽量使车受到的重力和支持力的合力提供向心力,以减小车轮受到地面施加的侧向挤压.

【例2】有一列重为100 t 的火车,以72 km/h 的速率匀速通过一个内外轨一样高的弯道,轨道半径为400 m .(g 取 2

/10s m ) (1)试计算铁轨受到的侧压力;

(2)若要使火车以此速率通过弯道,且使铁轨受到的侧压力为零,我们可以适当倾斜路基,试计算路基倾斜角度θ的正切值.

【思路点拨】 (1)问中,外轨对轮缘的侧压力提供火车转弯所需要的向心力;(2)问中,重力和铁轨对火车的支持力的合力提供火车转弯的向心力.

【精讲精析】(1)外轨对轮缘的侧压力提供火车转弯所需要的向心力,所以有

N N r m F 5252

10400

2010=?==ν.

由牛顿第三定律可知铁轨受到的侧压力大小等于N

5

10

.

(2)火车过弯道,重力和铁轨对火车的弹力的合力正好提供向心力,如图2-3-9所示, 则r

m mg 2tan νθ

=

由此可得1.0tan 2

==

rg

νθ.

【方法总结】 解决这类题目首先要明确物体转弯做的是圆周运动,其次要找准物体做圆周运动的平面及圆心,理解向心力的来源是物体所受的合力.

【变式训练2】路基略倾斜,火车在拐弯时,对于向心力的分析,正确的是( ) A .由于火车本身作用而产生了向心力

B .主要是由于内外轨的高度差的作用,车身略有倾斜,车身所受重力的分力产生了向心力

C .火车在拐弯时的速率小于规定速率时,内轨将给火车侧压力,侧压力就是向心力

D .火车在拐弯时的速率大于规定速率时,外轨将给火车侧压力,侧压力作为火车拐弯时向心力的一部分

2-3-9

四、离心运动

1.定义:物体沿圆周运动的切线方向飞出或做逐渐_________而去的运动.

2.原因:合外力提供圆周运动的向心力______或不足,不存在受“离心力”的作用. 3.离心机械:利用_____运动的机械. 4.离心运动的实质

离心运动是物体逐渐远离圆心的一种物理现象.它的本质是物体惯性的表现.做圆周运动的物体,总是有沿着圆周切线方向飞出去的趋势,之所以没有飞出去,是因为受到向心力作用的缘故.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切线方向拉到圆周上来.一旦作为向心力的合外力突然消失,物体就会沿切线方向飞出去.

5.物体做离心运动的条件:做圆周运动的物体,一旦提供向心力的外力突然消失,或者合外力不能提供足够的向心力时,物体做远离圆心的运动,即离心运动.

6.离心运动的受力特点:物体做离心运动并不是物体受到离心力作用,而是由于合外力不能提供足够的向心力.所谓“离心力”也是由效果命名的,实际并不存在. 7.合外力与向心力的关系(如图2-3-5)

(1)若r m F 2

ω=合

或r

m F 2

ν=合,物体做匀速圆周运动,即“提供”满足“需要”.

(2)若

r m F 2

ω>合或r

m

F 2

ν>合,物体做半径变小的近心运动,即“提供过度”,

也就是“提供”大于“需要”. (3)若r m F 2

ω<合

或r

m

F 2

ν<合,则外力不足以将物体拉回到原轨道上,而做离心

运动,即“需要”大于“提供”或“提供不足”. (4)若0=合

F ,则物体做直线运动.

特别提醒:(1)离心运动并不是受“离心力”的作用产生的运动. (2) 离心运动并不是沿半径方向向外远离圆心的运动.

【例3】高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=0.23.若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所许可的最大速率m ν为多大?当超过m ν时,将会出现什么现象?(2/8.9s m g =)

【思路点拨】 明确向心力的来源和理解离心运动产生的原因是求解本题的关键.

【精讲精析】 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,最大静摩擦力可近似看做与滑动摩擦力

相等,则

mg f m μ=,则有mg R

m

m

μν=2

,gR m μν=,由2/8.9s m g =,可得

h km s m m /54/15=≈ν.当汽车的速度超过h km /54时,需要的向心力r

m 2

ν

大于最大静摩擦力,也就是说实际所受的

摩擦力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.

2-3-5

【变式训练3】下列关于离心现象的说法正确的是( ) A .当物体所受的离心力大于向心力时产生离心现象

B .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动

C .做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动

D .做匀速圆周运动的物体,当它所受的一切力都消失时,它将做曲线运动

五、竖直面内的圆周运动

1.轻绳模型

如图2-3-6所示,细绳系的小球或在轨道内侧运动的小球,在最高点时的临界状态为只受重力,则r

m

mg 2

ν=

,则

gr =ν.在最高点时:

(1) gr =ν时,拉力或压力为零.

(2) gr >ν时,物体受向下的拉力或压力. (3) gr <ν

时,物体不能达到最高点.

即绳类的临界速度为gr

=

临ν.

2.轻杆模型

如图2-3-7所示,在细轻杆上固定的小球或在管形轨道内运动的小球,由于杆和管能对小球产生向上的支持力,所以小球能在竖直平面内做圆周运动的条件是在最

高点的速度大于或等于零,小球的受力情况为: (1) 0=ν

时,小球受向上的支持力N =mg .

(2) gr <<ν0时,小球受向上的支持力0

(3) gr =ν时,小球除受重力之外不受其他力.

(4) gr >ν

时,小球受向下的拉力或压力,并且随速度的增大而增大.

即杆类的临界速度为0=临

ν.

特别提醒:对竖直平面内的圆周运动 (1)要明确运动的模型,即绳或杆.

(2)由不同模型的临界条件分析受力,找到向心力的来源.

【例4】长L =0.5 m 的轻杆,其一端连接着一个零件A ,A 的质量kg m

2=.现让A 在竖直平面内绕O 点做匀速圆周运动,

如图2-3-11所示.在A 通过最高点时,求下列两种情况下A 对杆的作用力: (1)A 的速率为1 m/s ; (2)A 的速率为4 m/s.( 2/10s m g

=)

【精讲精析】 以A 为研究对象,设其受到杆的拉力为F ,则有

2-3-

7

2-3-

6

L

m

mg F 2

ν=+.

(1)代入数据s m /1=ν,可得

N N g L m F 16)105

.01(2)(2

2

-=-?=-=ν,

即A 受到杆的支持力为16 N .根据牛顿第三定律可得A 对杆的作用力为压力16 N ,方向竖直向下 (2)代入数据s m /4=ν

,可得

N N g L m F 44)105

.04(2)(2

2

=-?=-=ν,

即A 受到杆的拉力为44 N .根据牛顿第三定律可得A 对杆的作用力为拉力44 N ,方向竖直向上

【变式训练4】长m L 5.0=的细绳拴着小水桶绕固定轴在竖直平面内转动,桶中有质量kg m 5.0=的水(2

/10s m g =),

求:

(1)在最高点时,水不流出的最小速率是多少? (2)在最高点时,若速率s m /3=ν,水对桶底的压力为多大?

一、选择题

1.若火车按规定速率转弯时,内、外轨对车轮皆无侧压力,则火车以较小速率转弯时( ) A.仅内轨对车轮有侧压力

B.仅外轨对车轮有侧压力

C.内、外轨对车轮都有侧压力

D.内、外轨对车轮均无侧压力

2.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须( ) A.减为原来的1/2倍 B.减为原来的1/4倍 C.增为原来的2倍 D.增为原来的4倍

3.如图2-3-12所示,两根长度相同的细绳,连接着相同的两个小球,让它们在光滑水平面内做匀速圆周运动,其中O 为圆心,两段绳子在同一直线上,此时,两段绳子受到的拉力之比21

:T T 为( )

A .1∶1

B .2∶1

C .3∶2

D .3∶1

4. 一辆卡车在丘陵地匀速行驶,地形如图2-3-13所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是( ) A .a 处

B .b 处

C .c 处

D .d 处

5.一汽车通过拱形桥顶点时速度为10 m/s ,车对桥顶的压力为车重的4

3

,如果要

使汽车在桥顶对桥面没有压力,车速至少为( ) A .15 m/s B .20 m/s C .25 m/s

D .30 m/s

6.杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子到最高点时,里面水也不流出来,这是因为 ( )

A .水处于失重状态,不受重力的作用了

B .水受平衡力作用,合力为零

C .水受的合力提供向心力,使水做圆周运动

D .杯子特殊,杯底对水有吸力 7.一重球用细绳悬挂在匀速前进的车厢的天花板上,当车厢突然制动时,则( ) A .绳的拉力突然变小 B .绳的拉力突然变大 C .绳的拉力没有变化 D .无法判断拉力如何变化

8.物体m 用线通过光滑的水平板上的小孔与砝码M 相连,并且正在做匀速圆周运动,如图2-3-14所示,如果减小M 的质量,则物体的轨道半径r 、角速度ω、线速度ν的大小变化情况是( ) A .r 不变,ν变小、ω变小 B .r 增大,ω减小、ν不变

C .r 减小,ν不变、ω增大

D .r 减小,ω不变、ν变小

9.为满足我国经济迅速发展的需要,我国的铁路运输经过了多次提速;当火车运行速度从120 km/h 提高到200 km/h 时,为使转弯处铁轨不受侧压力,在对转弯处铁路改造时,下列做法可行的是( ) A .使内、外轨的高度差适当增大些 B .使内、外轨的高度差适当减小些 C .适当增加火车的质量 D .适当增大转弯的半径 2-3-

12

2-3-13

2-3-14

10.物体做离心运动时,运动轨迹的形状为( ) A .一定是直线 B .一定是曲线 C .可能是直线也可能是曲线 D .可能是一个圆

11.如图2-3-15所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,正确的说法是( )

A .小球在圆周最高点时所受的向心力一定为重力

B .小球在最高点时绳子的拉力有可能为零

C .若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0

D .小球过最低点时绳子的拉力一定大于小球重力 二 、 计算题

12. 质量为m 的汽车,以速度V 通过半径R 的凸形桥最高点时对桥的压力为多少?若要使汽车对桥的压力为零, V '应该为多少?若汽车以速度V 通过半径为R 的凹型桥面最低点时对桥的压力为多少?

13. 如果汽车的质量为m ,水平弯道是一个半径50m 的圆弧,汽车与地面间的最大静摩擦力为车重的0.2倍,欲使汽车转弯时不打滑,汽车在弯道处行驶的最大速度是多少?( g 取10 m/s 2

)

14、如下图所示,自行车和人的总质量为m ,在一水平地面运动.若自行车以速度ν转过半径为r 的弯道.(1)求自行车的倾角应多大?(2)自行车所受的地面的摩擦力多大?

2-3-

15

一、1.重力 支持力 2. (1)N mg -,R

m

m g 2

-ν,小于 (2)mg N -,R

m mg 2

ν+,大于

二、1.拉力 2. αtan mg ,α

sin l ,

α

cos l g ,g

l απ

cos 2,

l

g

2ω,越大

三、1.限定方向 外轨 很大 略高于 2. 轨道半径 规定的行驶速度 重力 支持力 四、1.远离圆心 2.消失 3. 离心 疑难辨析

【变式训练1】B 【变式训练2】D 【变式训练3】C

【变式训练4】 (1)

R

m

m g 2

-ν (2)

N

4

课后训练

1.D

2.D

3.C

4.D

5.B

6.C

7.B

8.B

9.AD 10.C 11.BD

12. R

m

m g 2

-ν,

gR 13.s m /10 14.(1)gR

tg

2

1

να-=(2)α

tan mg f =

《圆周运动的实例分析》教案设计

教学设计 高一年级物理《圆周运动的实例分析》 子 洲 中 学 艾娜

高一年级物理《圆周运动的实例分析》教学设计 一、教材依据 本节课是沪科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。 二、设计思路 (一)、指导思想 ①突出科学的探究性和物理学科的趣味性; ②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。 (二)、设计理念 本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境和指导学生探究实验,引导学生分析实验现象,归纳总结出实验结论。 (三)教材分析 本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。 本节通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。 (四)学情分析 本人任教的学生基础较好、动手能力较强,对物理学科特别是紧密联系生活的内容特感兴趣。而且学生已经学完向心力和向心加速度理论知识,将会在极大的好奇心中学习本节内容,只是缺乏对实际圆周运动的深度分析,还没有能将其上升至理论高度。 三、教学目标 (一)知识与技能

圆周运动学案

第4节圆周运动 预习:1.描述圆周运动的物理量 (1)线速度 ①线速度的大小:做圆周运动的物体_______ ________叫线速度的大小. ②物理意义:描述质点沿圆周运动的______ _____. ③线速度的大小计算公式_____________. ④线速度的方向:_______________. 注意:线速度是做圆周运动的瞬时速度,是矢量,不仅有大小.而且有方向,且方向时刻改变. (2)角速度 ①定义:在圆周运动中_______ __________叫质点运动的角速度. ②物理意义:描述质点___________ ___________ ③公式___________,单位__________ (3)周期、频率、转速 ①周期:做圆周运动的物体运动_____ _________叫周期. 符号:_______,单位:________ ②频率:周期的倒数叫频率. 符号:__________,单位:__________ ③转速:做圆周运动的物体__________沿圆周绕圆心转过的__________叫转速.符号__________单位__________.

2.匀速圆周运动 (1)定义:物体沿圆周运动并且_____ _______处处相等,这种运动叫匀速圆周运动. (2)匀速圆周运动的性质是_______ _____的曲线运动. 3.线速度、角速度、周期间的关系 线速度和周期的关系式__________,角速度和周期的关系式__________,线速度与角速度的关系式__________, 周期与频率的关系式__________. 探究:1.如何描述匀速圆周运动的快慢?2.角速度大,线速度一定大吗?3.匀速圆周运动是匀速运动吗? 例1:做匀速圆周运动的物体,10 s内沿半径为20 m的圆周运动100 m,试求物体做匀速圆周运动时: (1)线速度的大小;(2)角速度的大小;(3)周期的大小. 例2:关于做匀速圆周运动的物体的线速度、角速度、周期的关系,下面说法中正确的是() A.线速度大的角速度一定大 B.线速度大的周期一定小 C.角速度大的半径一定小 D.角速度大的周期一定小

圆周运动的案例分析教案.doc

[学习目标定位]i. 知道向心力由一个力或几个力的合力提供,会分析具体问题中的向 心 力来源.2.能用匀速圆周运动规律分析、处理生产和生活中的实例.3.知道向心力、向心加速度公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 知识储备区 一、过山车问题 1.向心力:过山车到轨道顶部4时,如图1所示,人与车作为一个整体,所受到的向心力是重力〃泌艮轨道对车的弹力A的合力,即R、\=抨+睥.如图所示,过山车在最低点8向心力尸向=.\j mg. 2.临界速度: 当A—0时,过山车通过圆形轨道顶部时的速度最小,雁界=寸苏 (1),=施界时,重力恰好等于过山车做圆周运动的向心力,车不会脱离轨道. (2)代而界时,所需向心力小于车所受的重力,过山车有向下脱离轨道的趋势. (3)心咖界时,弹力和重力的合力提供向心力,车子不会掉下来. 二、转弯问题 1.自行车在水平路面转弯,地面对车的作用力与重力的合力提供转弯所需的向心力. 2.汽车在水平路面转弯,所受静摩擦力提供转弯所需的向心力. 3.火车转弯时外轨高于内轨,如图2所示,向心力由支持力和重力的合力提供. 学案周运动的案例分析 N 图 2

学习探究区 一、分析游乐场中的圆周运动 [问题设计] 游乐场中的过山车能从高高的圆形轨道顶部轰然而过,车与人却掉不下来,这主要是因为过山车的车轮镶嵌在轨道的槽内,人被安全带固定的原因吗? 答案不是. [要点提炼] 竖直平面内的“绳杆模型"的临界问题 1.轻绳模型(如图3所示) 图3 (1)绳(内轨道)施力特点:只能施加向下的拉力(或压力). 2 V (2)在最高点的动力学方程7+ 〃护板. 2 (3)在最高点的临界条件7=0,此时昵=帽,则v= 拆. %1福,拉力或压力为零. %1分履时,小球受向王的拉力或压力. %1心/冰时,小球不能(填“能”或“不能”)到达最高点. 即轻绳的临界速度为雁=寸盘 2.轻杆模型(如图4所示) 图4 (1)杆(双轨道)施力特点:既能施加向下的拉力,也能施加向上的支持力. (2)在最高点的动力学方程 2 V 当〉>疆耐,A+/ng=i邙,杆对球有向下的拉力,且随亿增大而增大. 2 当>=寸赢寸,〃/户板,杆对球无作用力. 2 _ V_ 当v<y[g^i. mg—N=iR,杆对球有向上的支持力.

2021年高中物理 .1匀速圆周运动学案1 粤教版必修

2021年高中物理 2.1匀速圆周运动学案1 粤教版必修2 【学习目标】 【知识和技能】 1.了解物体做圆周运动的特征 2.理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会用它们的公式进行计算。 3.理解线速度、角速度、周期之间的关系: 【过程和方法】 1.联系日常生活中所观察到的各种圆周运动的实例,找出共同特征。 2.联系各种日常生活中常见的现象,通过课堂演示实验的观察,归纳总结描述物体做圆周运动快慢的方法,进而引出描述物体做圆周运动快慢的物理量:线速度大小,角速度大小,周期T、转速n等。 3.探究线速度与周期之间的关系,结合,导出。 【情感、态度和价值观】 1.经历观察、分析总结、及探究等学习活动,培养尊重客观事实、实事求是的科学态度。2.通过亲身感悟,获得对描述圆周运动快慢的物理量(线速度、角速度、周期等)以及它们相互关系的感性认识。 【学习重点】 线速度、角速度、周期概念的理解,及其相互关系的理解和应用,匀速圆周运动的特点【知识要点】 一、线速度 1.定义:质点做圆周运动通过的弧长与所用时间的比值叫做线速度。 2.公式:。单位:m/s 3.矢量 4.方向:质点在圆周上某点的线速度方向就是沿圆周上该点的切线方向。线速度也有平均值和瞬时值之分。如果所取的时问间隔很小很小,这样得到的就是瞬时线速度。上面我们所说的速度方向就是指瞬时线速度的方向,与半径垂直,和圆弧相切。 5.物理意义:描述质点沿圆周运动快慢的物理量。线速度越大,质点沿圆弧运动越快。6.匀速圆周运动 (1)定义:物体沿着圆周运动,并且线速度大小处处相等的运动叫匀速圆周运动。或质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。(2)因线速度方向不断发生变化,故匀速圆周运动是一种变速运动,这里的“匀速”是指速率不变。

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。 一、两类模型——轻绳类和轻杆类 1.轻绳类。运动质点在一轻绳的作用下绕中心点作变速圆周运动。由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点 的向心力全部由质点的重力来提供,这时有,式中的是小球通过最高点的 最小速度,叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。 2.轻杆类。运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡 状态。所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持 力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。过最高点的最小向心加速度。

圆周运动学案

5.4 圆周运动(预习案) 班级小组姓名 【学习目标及方法指导】 1.了解物体做圆周运动的特征。 2.理解线速度、角速度和周期的概念,知道它们是描述物体做匀速圆周运动快慢的物理量,会用它们的公式进行计算。 3.理解线速度、角速度、周期之间的关系。 【学习重点、难点】 线速度、角速度、周期概念,及其相互关系的理解和应用,匀速圆周运动的特点。【自主学习过程】 一、线速度 1.定义:做圆周运动的质点通过的与的比值叫做圆周运动的线速度。 2.公式: 3.单位: 4.矢量性:量,方向: 5.匀速圆周运动:如果物体沿着,并且处处相等,这种运动叫做匀速圆周运动。 注意:“匀速”指的是? 练习:质点做匀速圆周运动,则( ) A.在任何相等的时间里,质点的位移都相等 B.在任何相等的时间里,质点通过的路程都相等 C.在任何相等的时间里,连接质点和圆心的半径转过的角度都相等 D.在任何相等的时间里,质点运动的平均速度都相等 二、角速度 1.定义:角速度等于和的比值角速度是描述的物理量。 2.公式: 3.单位:三、周期,频率,转速 1.周期的定义: 周期的符号:,单位: 2.频率的定义:物质在1秒内完成周期性变化的次数叫做频率。 常用 f 表示,单位Hz 3.转速的定义: 4.转速的符号:,单位: 四、线速度、角速度、周期之间的关系 分析:一物体做半径为r的匀速圆周运动,问: 1.它运动一周所用的时间叫,用T表示,它在周期T内转过的弧长为。由此可知它的线速度为。 2.一个周期T内转过的角度为,物体的角速度为。 思考总结得到角速度与线速度的关系: 讨论:(1)当v一定时,与成反比。 (2)当ω一定时,与成正比。 (3)当r一定时,与成正比。 思考:物体做匀速圆周运动时,v、ω、T是否改变? 五、匀速圆周运动的特点 由于匀速圆周运动是不变的运动,物体单位时间通过的弧长相等,所以物体在单位时间转过的角也相等。因此可以说,匀速圆周运动是.的圆周运动。 【自主检查】 1.对于做匀速圆周运动的物体,下列说法中正确的是() A.线速度不变B.周期不变 C.角速度大小不变D.运动状态不变 2.关于角速度和线速度,下列说法正确的是() A.半径一定,角速度与线速度成反比 B.半径一定,角速度与线速度成正比 C.线速度一定,角速度与半径成正比 D.角速度一定,线速度与半径成反比

圆周运动实例分析

圆周运动实例分析 广州南沙东涌中学 一.教学目标 1.知识与技能 1.能定量分析汽车转弯时的向心力由谁提供。 2.能定量分析汽车过拱形桥最高点和凹形桥最低点的压力问题。 3.会用牛顿第二定律分析生活中较简单的圆周运动问题。 2.过程与方法 通过对圆周运动的实例分析,渗透理论联系实际的观点,提高分析和解决问题的能力。 3.情感、态度与价值观 养成应用实践能力和思维创新意识;运用生活中的几个事例,激发学习兴趣、求知欲和探索动机;通过对实例的分析,建立具体问题具体分析的科学观念。 二.学情分析 学生已经学习过了圆周运动以及向心力的基本知识,并且生活中有很多圆周运动,学生在生活经验中已具备一些有关圆周运动的感性认识,但他们还不是很清楚物体做圆周运动的向心力应该由谁来充当,,也不能理性的分析和解释各种实际的圆周运动的情况。教学中要充分利用学生已有知识经验,使学生积极主动地参与教学过程。 三.重点难点 会用牛顿第二定律分析生活中较简单的圆周运动问题 四.教学过程 活动1【导入】引入新课 向同学们提出以下问题:1.物体做圆周运动受到的合外力是否为0? 2.向心力它是恒力还是变力以及向心力的公式? 3.生活中有哪些运动是圆周运动?引出本节课《圆周运动实例分析》 活动2【讲授】讲授新课 本节课主要有两个知识点:(1)汽车转弯问题(2)汽车过拱形桥问题 (1)汽车转弯的问题 1.汽车在水平路面转弯: 汽车在水平面转弯时,向心力由哪个力来提供?为什么汽车转弯时,要减速慢行? 通过PPT呈现汽车转弯时的图片,引导学生找出汽车转弯时的向心力由静摩擦力提供,通过分析可知,汽车转弯时 ,车速越大,所需向心力越大,因此,转弯时,必须减速慢行。 例题讲解; 例1.在一段半径为R的圆弧形水平弯道上,已知地面对汽车轮胎的最大静摩擦力等于车重的μ倍 ,则汽车转弯时的 安全速度是多少?

2020-2021学年高中物理 第4章 匀速圆周运动整合提升学案 鲁科版必修2

第4章匀速圆周运动 一、圆周运动的描述:线速度、角速度、向心力、加速度 1.线速度:反映质点沿圆周运动快慢的物理量. v=错误!=错误! 2.角速度:反映质点绕圆心转动快慢的物理量 ω=错误!=错误! 3.向心力:根据效果命名的力,可以是几个力的合力,也可以是某个力的分力,还可能是重力、弹力或摩擦力.如果物体做匀速圆周运动,合力一定全部提供向心力. 4.向心加速度:反映速度方向变化快慢的物理量. a=错误!=ω2r=错误!r=ωv.

例1如图1所示是一个皮带传动减速装置,轮A和轮B共轴固定在一起,各轮半径之比R A∶R B∶R C∶R D=2∶1∶1∶2,求在运转过程中,轮C边缘上一点和轮D边缘上一点向心加速度之比. 图1 二、圆周运动问题分析 1.明确圆周运动的轨道平面、圆心和半径是解题的基础.分析圆周运动问题时,首先要明确其圆周轨道是怎样的一个平面,确定其圆心在何处,半径是多大,这样才能掌握做圆周运动物体的运动情况. 2.分析物体受力情况,搞清向心力的来源是解题的关键.如果物体做匀速圆周运动,物体所受各力的合力就是向心力;如果物体做变速圆周运动,它所受的合力一般不是向心力,但在某些特殊位置(例如:竖直平面内圆周的最高点、最低点),合力也可能就是向心力. 3.恰当地选择向心力公式.向心力公式F=m错误!=mrω2=m错误!2r中都有明确的特征,应用时要根据题意,选择适当的公式计算. 例2如图2所示,两根长度相同的轻绳,连接着相同的两个小球,让它们穿过光滑的杆

在水平面内做匀速圆周运动,其中O为圆心,两段细绳在同一直线上,此时,两段绳子受到的拉力之比为多少? 图2 三、圆周运动中的临界问题 1.临界状态 当物体从某种特性变化为另一种特性时发生质的飞跃的转折状态,通常叫做临界状态,出现临界状态时,既可理解为“恰好出现”,也可理解为“恰好不出现”. 2.轻绳类 轻绳拴球在竖直面内做圆周运动,过最高点时,临界速度为v=错误!,此时F绳=0.

圆周运动及其运用学案

圆周运动及其运用 一、描述匀速圆周运动的物理量 1.概念:线速度、角速度、周期、转速、向心力、向心加速度,比较如表所示: 二、匀速圆周运动和非匀速圆周运动 1.匀速圆周运动 (1)定义:线速度_________的圆周运动. (2)性质:向心加速度大小_____,方向总是_________的变加速曲线运动. (3)质点做匀速圆周运动的条件合力______不变,方向始终与速度方向______且指向圆心. 【答案】大小不变 不变指向圆心 大小垂直 2.非匀速圆周运动 (1)定义:线速度大小、方向均__________的圆周运动. (2)合力的作用.

①合力沿速度方向的分量Ft产生切向加速度,Ft=mat,它只改变速度的______. ②合力沿半径方向的分量Fn产生向心加速度,Fn=man,它只改变速度的______. 【答案】发生变化 大小方向 三、离心运动和近心运动 1.离心运动 (1)定义:做_________的物体,在所受合外力突然消失或不足以提供圆周运动所需________的情况下,所做的逐渐远离圆心的运动. (2)本质:做圆周运动的物体,由于本身的______,总有沿着圆周__________飞出去的倾向. 【答案】圆周运动向心力 惯性切线方向 (3)受力特点. ①当F=mω2r时,物体做__________运动; ②当F=0时,物体沿______方向飞出; ③当F

【答案】匀速圆周切线远离 2.近心运动 当提供向心力的合外力大于做圆周运动所需向心力时,即F>mω2r,物体将逐渐______圆心,做近心运动. 【答案】靠近 考点一水平面内的匀速圆周运动 1.在分析传动装置的物理量时,要抓住不等量和相等量的关系,表现为: (1)同一转轴的各点角速度ω相同,而线速度v=ωR与半径R成正比,向心加速度大小a=Rω2与半径r成正比. (2)当皮带不打滑时,用皮带连接的两轮边沿上的各点线速度大小相 等,由ω=v R可知,ω与R成反比,由a=v2 R可知,a与R成反比. 2.用动力学方法解决圆周运动中的问题 (1)向心力的来源. 向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避

匀速圆周运动的实例分析 -

匀速圆周运动的实例分析 - 教学 知识目标 1、进一步理解向心力的概念. 2、理解向心力公式,进一步明确匀速圆周运动的产生条件,掌握向心力公式的应用. 能力目标 1、培养在实际问题中分析向心力来源的能力. 2、培养运用物理知识解决实际问题的能力. 情感目标 1、激发学生学习兴趣,培养学生关心周围事物的习惯. 教学 教材分析 教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题.后面又附有思考与讨论,开拓学生的思维. 教法建议 1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识

到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体. 第二:运用向心力公式计算做圆周运动所需的向心力. 第三:由物体实际受到的力提供了它所需要的向心力,列出方程 3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供. 4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象. 教学 教学 教学 主要设计: 一、讨论向心力的来源:

高中物理10大难点强行突破之三圆周运动的实例分析

难点之三:圆周运动的实例分析 一、难点形成的原因 1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。 2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用; 3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。 4、圆周运动的周期性把握不准。 5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有: mg T =?30cos 1 ① 30sin L ωm =30sin T A B 2 11② 代入数据得: s rad /4.21=ω, 要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有 mg T =?45cos 2 ③ T 2sin45°=m 2 2ωL AC sin30°④ 代入数据得:ω2=3.16rad/s 。要使AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有: 图3-1

匀速圆周运动教学设计

匀速圆周运动 一、教学内容分析 “匀速圆周运动”选自人教版高中《物理》第一册第五章第4节。在此之前,学生已经学习了直线运动的相关内容,和曲线运动的基本知识,自然界和日常生活中运动轨迹为圆周的许多事物也为学生的认知奠定了感性基础,本节课主要是帮助学生在原有的感性基础上建立匀速圆周运动的几个概念,为今后进一步学习向心力、向心加速度以及万有引力的知识打下基础。 此外,匀速圆周运动与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有重要的意义。 二、学习情况分析 本节内容是继学生学习平抛运动后,又一种变速曲线运动。在曲线运动的学习中,学生已经知道了曲线运动的速度方向在曲线这一点的切线方向并知道曲线运动是变速运动,此前,学生也已经掌握了直线运动及其快慢描述方法。这些知识都为匀速圆周运动的学习奠定了基础。此外,高一学生已具备一定观察能力和经验抽象思维能力,并对未知新事物有较强的探究欲望。 三、设计思想 “匀速圆周运动”是以概念教学为主的一节课,对物理概念的理解和认识是教学要达到的目标之一,也是教学的出发点。物理是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我在整节课的教学设计中,以建构主义理论为指导,辅以多媒体手段,采用情景教学法和引导式教学法,结合师生共同讨论、归纳,以“情境产生问题”,注重知识的形成过程,针对“什么是匀速圆周运动”以及“匀速圆周运动快慢的描述”展开探究活动,在问题交流讨论中发展学生观点,最终形成对概念的理解。 四、教学目标 知识目标 1、知道匀速圆周运动的概念; 2、理解线速度、角速度和周期; 3、理解线速度、角速度和周期三者之间的关系。 能力目标 能够用匀速圆周运动的有关公式分析和解决实际问题。 情感目标 具有协作意识和探究精神,并在活动中感受学习物理的乐趣。 五、教学重点和难点 重点

(完整版)《圆周运动》教学设计

《圆周运动》教学设计 六盘水市第二实验中学卢毅 一、教材分析 本节课的教学内容为新人教版第五章第四节《圆周运动》,它是在学生学习了曲线运动的规律和曲线运动的处理方法以及平抛运动后接触到的又一类曲线运动实例。本节作为该章的重要内容之一,主要向学生介绍了描述圆周运动快慢的几个物理量,匀速圆周运动的特点,在此基础上讨论这几个物理量之间的变化关系,为后续学习圆周运动打下良好的基础。 二、学情分析 通过前面的学习,学生已对曲线运动的条件、运动的合成和分解、曲线运动的处理方法、平抛运动的规律有了一定的了解和认识。在此基础上了,教师通过生活中的实例和实物,利用多媒体,引导学生分析讨论,使学生对圆周运动从感性认识到理性认识,得出相关概念和规律。在生活中学生已经接触到很多圆周运动实例,对其并不陌生,但学生对如何描述圆周运动快慢却是第一次接触,因此学生在对概念的表述不够准确,对问题的猜想不够合理,对规律的认识存在疑惑等。教师在教学中要善于利用教学资源,启发引导学生大胆猜想、合理推导、细心总结、敢于表达,这就能对圆周运动的认识有深度和广度。 三、设计思想 本节课结合我校学生的实际学习情况,对教材进行挖掘和思考,始终把学生放在学习主体的地位,让学生在思考、讨论交流中对描述圆周运动快慢形成初步的系统认识,让学生的思考和教师的引导形成共鸣。 本节课结合了曲线运动的规律及解决方法,利用生活中曲线运动实例(如钟表、转动的飞轮等)使学生建立起圆周运动的概念,在此基础上认识描述圆周运动快慢的相关物理量。总体设计思路如下:

四、教学目标 (一)、知识与技能 1、知道什么是圆周运动、匀速圆周运动。理解线速度、角速度、周期的概念,会用线速度角速度公式进行计算。 2、理解线速度、角速度、周期之间的关系,即r r T v ωπ ==2。 3、理解匀速圆周运动是变速运动。 4、能利用圆周运动的线速度、角速度、周期的概念分析解决生活生产中的实际问题。 (二)、过程与方法 1、知道并理解运用比值定义法得出线速度概念,运用极限思想理解线速度的矢量性和瞬时性。 2、体会在利用线速度描述圆周运动快慢后,为什么还要学习角速度。能利用类比定义线速度概念的方法得出角速度概念。 (三)、情感、态度与价值观 1、通过极限思想的运用,体会物理与其他学科之间的联系,建立普遍联系的世界观。 2、体会物理知识来源于生活服务于生活的价值观,激发学生的学习兴趣。 3、通过教师与学生、学生与学生之间轻松融洽的讨论和交流,让学生感受快乐学习。 五、教学重点、教学难点

圆周运动的实例分析、离心现象、曲线运动综合练习

圆周运动的实例分析、离心现象、曲线运动综合练习 二. 本周知识归纳与总结 1. 用向心力公式解题的一般方法: (1)明确研究对象,必要时要将它从转动系统中隔离出来; (2)找出物体圆周运动的轨道平面,从中找出圆心和半径; (3)对研究对象做受力分析,分析是哪些力提供了向心力 (4)建立正交坐标(以指向圆心方向为x 轴的正向),将力正交分解到坐标轴方向; ()()()5x 在轴方向,选用向心力公式向心 F m R m v R m T R m f R ====ωπ π2 22222 ==m n R y F y ()202π列方程求解,必要时再在轴方向按列方程求解合 注意:列方程时要注意力、速度、运动半径的对应关系;有些问题还需配合其他辅助手 段,需要具体问题具体分析。 2. 离心运动:做匀速圆周运动的物体,在合外力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。 3. 向心运动和离心运动产生的原因(如图所示,向心力用F n 表示)。 ()/12 当时,物体沿半径作匀速圆周运动;F mv R R n = ()/22 当时,物体将作向心运动,半径减小;F mv R R n > ()/32 当时,物体将作离心运动,半径增大;F mv R R n < (4)当F n =0时,即向心力消失时,半径R 趋于无限大,物体将沿切线方向飞出。 所以,向心运动和离心运动产生的原因是向心力多余和不足。 4. 离心运动的应用和防止: (1)洗衣机的脱水筒是利用离心运动把湿衣服甩干的。把湿衣服放在脱水筒里,筒转得慢时,水滴跟物体的附着力F 足以提供所需向心力F ;当筒转得比较快时,附着力F 不足以提供所需向心力F ,于是水滴做离心运动,穿过网孔,飞到筒外面。 (2)在水平公路上行驶的汽车,转弯时所需向心力是由车轮与路面间的静摩擦力提供的,如果转弯时速度过大,所需向心力F 大于最大静摩擦力,汽车将做离心运动而造成交通事故。 【典型例题】 例1. 如图所示,用细管弯成半径为r 的圆弧形轨道,并放置在竖直平面内,现有一小球在细管内运动,当小球通过轨道最高点时,若小球速度____________时,会对细管上部产生

匀速圆周运动的实例分析

匀速圆周运动的实例分析 北京市密云县第二中学蔡小娟 教学设计思路: 一、教学理念 本节课的教学设计努力遵循教育部颁发的《普通高中物理课程标准》倡导的“促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考”的教学理念.在课堂教学中以问题为主线,倡导情景设置、师生交流,在自主、合作、探究的氛围中,引导学生自己提出问题,努力促使学生成为一个研究者. 学习任务分析: 圆周运动在实际生活中有广泛的应用,有关圆周运动的问题是对牛顿运动定律的进一步应用,是教学的难点,同时也是学习机械能和电学知识的基础,通过实例分析求解,教会学生解决问题的一般方法,特别要掌握几个模型及条件. 一、培养学生分析向心力来源的能力,引导学生对做圆周运动的物体进行受力分析,让学生清楚地认识到物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 二、培养学生运用物理知识解决实际问题的能力,通过对例题的分析与讨论(结合动画或课件),引导学生从中领悟、掌握运用向心力公式的思路和方法. 学习者分析: 一、学生学完匀速圆周运动的理论知识,尚缺乏实际的应用,对定律的理解还比较粗浅,本节课帮助学生建立一个生动活泼的场景,利于学生的理解、消化. 二、本节课来源于生活中的大量实例,但学生对相关新事物、新情况的了解较为片面,不能很好地由感性认识提升为理性认识,通过对本节的学习让学生掌握探究学习的一般方法,使其成为学生终身学习的基础. 教学目标: 一、知识与技能 1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,那么这个力或这个合力就是做匀速圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源.2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例. 3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 二、过程与方法 1.通过对匀速圆周运动实例的分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力. 2.通过匀速圆周运动的规律在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力. 3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力. 三、情感态度与价值观 1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题. 重点难点

圆周运动的实例分析

圆周运动的实例分析(三) 1.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A运动的半径比B的大,则() A.A所需的向心力比B的大 B.B所需的向心力比A的大 C.A的角速度比B的大 D.B的角速度比A的大 2.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A和B,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是() A.速度v A>v B B.角速度ωA>ωB C.向心力F A>F B D.向心加速度a A>a B 3.如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则下列说法正确的是() A.球A的线速度必定大于球B的线速度 B.球A的角速度必定小于球B的角速度 C.球A的运动周期必定小于球B的运动周期 D.球A对筒壁的压力必定大于球B对筒壁的压力 4.如图所示,一根细线下端拴一个金属小球P,细线的上端固定在金属块Q上,Q放在带小孔的水平桌面上.小球在某一水平面内做匀速圆周运动(圆锥摆).现使小球在一个更高一些的水平面上做匀速圆周运动(图上未画出),两次金属块Q都保持在桌面上静止.则后一种情况与原来相比较,下面的判断中正确的是() A.小球P运动的周期变大 B.小球P运动的线速度变大 C.小球P运动的角速度变大 D.Q受到桌面的支持力变大 5.质量不计的轻质弹性杆P插在桌面上,杆端套有一个质量为m的小球,今使小球沿水平方向做半径为R的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为() A.mω2R B.m2g2-m2ω4R2 C.m2g2+m2ω4R2 D.不能确定

圆周运动教学设计范文

圆周运动教学设计范文 圆周运动教学设计范文 在教学工作者开展教学活动前,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。我们应该怎么写教学设计呢?下面是整理的圆周运动教学设计范文,欢迎阅读,希望大家能够喜欢。 本节是人教版高中《物理》必修2第五章第7节,是《曲线运动》一章的最后一节。学习本节内容既是对圆周运动规律的复习与巩固,又是后面继续学习天体运动规律的基础,具有承上启下的作用。教材安排了铁路的弯道,汽车过拱桥,航天器中的失重现象,离心现象四个方面的内容,如果面面俱到,难免会蜻蜓点水,为了在教学中突出重点、分散难点,我将教材内容进行了重新整合,分两课时完成。本课为第一课时主要讨论铁路弯道的设计意图。 通过前面的学习,学生已经对圆周运动有了较为清晰地认识,但是对于向心力的概念理解还不够深入。同时高一的学生思维活跃,求知欲强,他们很希望参与到课堂中来,自主的解决问题。 过程与方法知识与技能情感态度和价值观经历观察思考,自主探究,交流讨论等活动进一步理解向心力的概念。

能在具体问题中找到向心力的来源培养学生的团队精神,合作意识;感悟科学的严肃性,培养学生严谨的学风教学重点和难点:在具体问题中找到向心力的来源 1.教法:使用情境激趣、设疑引导、适时点拨的方式引领学生的学习; 2.学法:学生在教师的引领下,通过观察现象、自主探究、交流讨论等方式参与到课堂中来,体验求知乐趣,成为学习的主人。 3.教学资源: 多媒体课件; 自制教具:车轮模型、弯道模型; 一、设置情景、引入新课 首先,播放一段4.28胶济铁路火车事故的视频动画,将学生的注意力吸引到火车转弯这一具体情境中来。我就此提出两个问题:1.火车转弯时的限定速度是怎样规定的?2.火车超速时为什么容易造成脱轨事故?学生带着问题进入课堂,既引起了他们的兴趣,又为他们的学习指明了方向。 二、复习巩固、明确方法 我通过提问的方式,帮助学生回忆计算向心力的常用公式,然后,设置情景,让学生对做圆周运动的物体做出受力分析并找到向心力的来源。

物理教案-匀速圆周运动的实例分析

物理教案-匀速圆周运动的实例分析 教学目标 知识目标 1、进一步理解向心力的概念. 2、理解向心力公式,进一步明确匀速圆周运动的产生条件,掌握向心力公式的应用. 能力目标 1、培养在实际问题中分析向心力来源的能力. 2、培养运用物理知识解决实际问题的能力. 情感目标 1、激发学生学习兴趣,培养学生关心周围事物的习惯. 教学建议 教材分析 教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题.后面又附有思考与讨论,开拓学生的思维. 教法建议 1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体. 第二:运用向心力公式计算做圆周运动所需的向心力. 第三:由物体实际受到的力提供了它所需要的向心力,列出方程求解. 3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供.

4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象. 教学设计方案 匀速圆周运动的实例分析 教学重点:分析向心力来源. 教学难点:实际问题的处理方法. 主要设计: 一、讨论向心力的来源: 例如:万有引力提供向心力(人造地球卫星);弹力提供向心力(绳系小球在光滑水平面上的匀速圆周运动);摩擦力力提供向心力(物价在转盘上随转盘一起转动);合力提供向心力(圆锥摆等). 二、讨论火车转弯: (一)展示图片1:火车车轮有凸出的轮缘. (二)展示课件1:外轨作用在火车轮缘上的力F是使火车必须转弯的向心力. (三)展示课件2:外轨高于内轨时重力与支持力的合力是使火车转弯的向心力. (四)讨论:为什么转弯处的半径和火车运行速度有条件限制? 三、讨论汽车过拱桥: (一)思考:汽车过拱桥时,对桥面的压力与重力谁大? (二)展示课件3:汽车过拱桥在最高点的受力情况(变变) (三)展示课件4:汽车过凹形桥时低点时的受力情况(变变) (四)总结在圆周运动中的超重、失重情况.

人教版高一物理必修2 5.4圆周运动 学案(无答案)

§5.4 圆周运动 班级 姓名 学号 【目标导学】 1.认识匀速圆周运动、线速度、角速度和周期的概念,会用它们的公式进行计算 2.理解线速度、角速度、周期之间的关系式 3.理解匀速圆周运动是变速运动 【重点难点】 线速度、角速度、周期。掌握它们之间的联系 【自主预学】 先阅读课本,再回答问题 一、描述匀速圆周运动快慢的物理量 (1)线速度(v ) ①定义: 定义式: ②单位: ③方向: (2)角速度ω ①定义: 定义式: ②单位:rad/s (弧度每秒) (3)周期T ①定义: 定义式: ②单位: (4)转速n ①定义: 定义式: ②单位: 二、物理量之间的关系式 【合作互学】 【例题】如图是皮带传动的示意图,己知大轮和小轮的半径之比,r 1:r 2=2:1,B 、C 两点分别是大、小轮边缘上的点,A 点距O 的距离为r 1/2。试求: (1)B 、C 两点的线速度之比; (2)B 、C 两点的角速度之比; (3)A 、B 、C 三点的线速度之比。 解析: 东台市安丰中学 高一物理导学案

总结: 1.同轴多轮转动:除转轴外各点角速度相同; 2.皮带(齿轮、链条)传动:轮与皮带之间不打滑,轮边缘和皮带上各点线速度相等。 【练习1】半径为r和R的圆柱体靠摩擦传动,已知R=2r,A、B分别在小圆柱与大圆柱的边缘上,O 2C=r,如图所示,若两圆柱之间没有打滑现象,则 v A∶v B∶v C =_____ ___,ωA∶ωB∶ωC=___ _____. 解析: 【练习2】如右图A为地球表面北纬30°上的点,则 A 、B两地的线速度之比为;角速度之比为。 解析: 【学有所思】(简要的总结本节学会的知识和方法) 【行成于思】 1.()下列物理量在匀速圆周运动中保持不变的是 A.线速度B.速率C.角速度D.周期 2.()关于角速度和线速度,下列说法正确的是 A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比 C.线速度一定,角速度与半径成正比D.角速度一定,线速度与半径成反比 3.()对于作匀速圆周运动物体 A.线速度大的角速度一定大B.线速度大的周期一定小 C.角速度大的半径一定小D.角速度大的周期一定小 4.()如图所示,a、b是地球赤道上的两点,b、c是地球表面上不同纬度同一经度

匀速圆周运动的实例分析例题[1][1]

匀速圆周运动的实例分析例题[1][1]

匀速圆周运动的实例分析 典型例题1——关于汽车通过不同曲面的问题分析 一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求: (重力加速度) (1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力? 解: (1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有: , 解得桥面的支持力大小为 根据牛顿第三定律,汽车对桥面最低点的压力大小是N.

(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有 , 解得桥面的支持力大小为 根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N. (3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有 , 解得: 汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力. 典型例题2——细绳牵引物体做圆周运动的系列问题 一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:

相关主题
文本预览
相关文档 最新文档