当前位置:文档之家› 有源箝位反激变换器分析与设计

有源箝位反激变换器分析与设计

有源箝位反激变换器分析与设计
有源箝位反激变换器分析与设计

有源箝位反激变换器分析与设计

时间:2012-01-10 18:30:38 来源:作者:

1. 引言

反激(Flyback)变换器由于具有电路拓扑简洁、输入输出电气隔离、电压升/降范围宽、易于多路输出等优点,因而广泛用于中小功率变换场合。但是,反激变换器功率开关电压、电流应力大,漏感引起的功率开关电压尖峰必须用箝位电路来限制。作者在文献[1]中对RCD箝位、LCD箝位、有源箝位反激变换器进行了比较研究,得出有源箝位技术使反激变换器获得最优综合性能的结论。

图1 有源箝位反激变换器电路拓扑

图2 有源箝位反激变换器原理波形

2. 有源箝位反激变换器稳态原理分析

有源箝位反激变换器电路拓扑及原理波形,分别如图1、图2所示[2]。变压器用磁化电感Lm、谐振电感Lr(包括变压器漏感和外加小电感)和只有变比关系的理想变压器T表示,Cr为等效电容,包括两个开关S和SC的输出电容。稳态工作时,每个开关周期分为七个开关状态阶段,各开关状态等值电路如图3所示。七个开关状态为:

①t=t0~t1:t0时刻,功率开关S开通,箝位开关SC及其寄生二极管Dc与整流二极管D均截止,Lm与Lr线性充电;

②t=t1~t2:t1时刻,S关断,磁化电感电流即谐振电感电流以谐振方式对Cr充电,开关管S漏源电压uDS近似线性上升;

③t=t2~t3:t2时刻,uDS上升到Ui+uC,DC开通,将Lr和Lm串联支路端电压箝位在

uC≈Uo(N1/N2),磁化电流通过箝位支路对CC充电(CC>Cr),u1下降规律为u1=-uCLm/(Lr+Lm);

④t=t3~t4:t3时刻,u1已经下降到使D正偏导通,随后u1箝位在-Uo(N1/N2),Lr和CC开始谐振,Lr上的电压为uC-Uo(N1/N2),iC下降速率为[uC-Uo(N1/N2)]/Lr,在iC开始反向之前开通SC,SC 便获得了零电压开通(ZVS);

⑤t=t4~t5:t4时刻,SC关断,Lr与Cr谐振,在Cr放电期间u1仍然被箝位在-Uo(N1/N2)值上;

⑥t=t5~t6:t5时刻,uDS=0,假定Lr储能大于Cr储能,足以使S体内寄生二极管Ds开通,Lr 上电压箝位在Ui+Uo(N1/N2)值上,则副边整流二极管D中电流i2下降速率为

(Lm>>Lr)(1)

⑦t6~t7:t6时刻S零电压ZVS开通,随着iLr上升,i2逐渐下降,t7时刻iLr已上升到磁化电流iLm值,i2=0,D反偏,u1由-Uo(N1/N2)变为Ui,随后Lm和Lr再次线性充电,新的PWM开关周期又开始了。

要实现功率开关S的ZVS开通,必须满足:①应在t5~t6期间加驱动信号,否则iLr过零变正后,Lr将再次对Cr充电,功率开关S便失去了ZVS条件。S开通与SC关断的间隔应有严格要求,其值应不超过Lr和Cr谐振周期的四分之一,即

(2)

②SC关断时Lr储能应不小于Cr储能,以便能将Cr上电荷抽尽,即

(3)

由上述分析可知,有源箝位反激变换器具有下列优点:①箝位电容Cc将变压器漏感中能量吸收并回馈到电网侧,消除了漏感引起的关断电压尖峰,功率开关承受最小电压应力;②箝位电容Cc和谐振电容Cr与谐振电感Lr谐振,使主辅开关均获得了ZVS开关;③谐振电感Lr使整流二极管D关断电流变化率减小,降低了D反向恢复引起的关断损耗和开关噪声。

3.关键电路参数设计

3.1磁化电感Lm

磁化电感Lm大小决定了CCM/DCM工作模式的边界条件,若系统工作在CCM模式,则

(4)

式中,Pomin—电感电流临界连续时输出功率,Fs—开关频率

η—变换效率,D—开关S占空比

3.2谐振电感Lr与功率开关S

功率开关S和箝位开关SC电压应力为

(5)

式中最后一项为引入谐振电感Lr而导致的功率开关电压应力的增加。

随着谐振电感Lr的引入,实际有效占空比略小于开关S驱动信号占空比D,丢失的占空比△D为

由式(3)可得

(7)

式中Isp—功率开关峰值电流

而谐振电容电压为

(8)

UCr是谐振电感Lr的函数,精确地求解式(8)比较困难。事实上,电压ULr与Ui+(N1/N2)Uo相比较小,因此功率开关S获得ZVS开通的Lr值可近似表示为

(9)

谐振电感电流iLr(即变压器原边电感电流)为功率开关电流iS与箝位电容电流iC之和,其有效值为

3.3箝位电容Cc

Cc值的选取原则为:Cc与Lr的半个谐振周期应大大于功率开关S的截止时间,即

(11)

箝位电容电压为原边绕组电压与Lr端电压之和,即

(12)

箝位电容电流有效值为

3.4箝位开关Sc

箝位开关电压应力由式(5)决定。由式(11)有

通过箝位开关Sc的电流(和iC相同)近似为一个锯齿形波,峰值电流等于通过S的峰值电流,箝位开关Sc及其体内二极管Dc的导通时间均近似为(1-D)TS/2,因此Dc中电流平均值和Sc中电流有效值分别为

3.5整流二极管D

有源箝位反激变换器整流二极管D承受的电压应力与传统反激变换器相同,为Ui(N2/N1)+UO,但电流应力有很大区别。由于有源箝位支路的引入,虽然磁化电感工作在CCM模式,但D却工作在DCM 模式,电流峰值IDp增大了,即

(16)

D中电流有效值即为变压器副边电流有效值,即

3.6输出滤波电容Cf

输出滤波电容Cf的电流有效值为

4.试验结果

基于电流控制有源箝位反激变换器机内稳压电源设计实例:Ui=18~32VDC,三组输出

Uo/Io=+15V/1.0A、-15V/0.2A、+5V/0.4A,额定输出功率20W,FS=300KHz,Dmax=0.6,η=78.5%,临界连续功率Po,min=1/6Pomax,Lm=52.3μH,Lr=2μH,Cc=0.47μF,Cf=100μF,功率开关S与箝位开关Sc均选用IRF530。+15V、-15V、+5V三组输出整流二极管分别为SR506、1N5819、1N5819,控制电路采用UC3843电流型PWM控制器。输入电压Ui=27V时,有源箝位反激变换器原理试验波形,如图4所示。由图4(a)可见,变压器漏感引起的关断电压尖峰被消除了,由图4(a)、(b)可见,主开关和箝位开关均实现了ZVS开关,由图4(f)可见,整流二极管关断时di/dt小。试验波形与图2所示理论分析波形完全一致。

5.结论

将有源箝位技术应用于反激变换器,可克服传统反激变换器的缺点,实现功率开关的ZVS开关;抑制功率开关的关断电压尖峰;降低副边整流二极管的关断损耗和开关噪声,从而可实现反激变换器的高变换效率、高功率密度。

反激变换器课程设计报告

电力电子课程实习报告 班级:电气10-3班 学号: 10053303 姓名:李乐

目录 一、课程设计的目的 二、课程设计的要求 三、课程设计的原理 四、课程设计的思路及参数计算 五、电路的布局与布线 六、调试过程遇到的问题与解决办法 七、课程设计总结

一、课程设计的目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的应用; (3)增强设计、制作和调试电力电子电路的能力。 二、课程设计的要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的反击式开关电源。 电源输入电压:220V 电源输出电压电流:12V/1.5A 电路板:万用板手焊。 三、课程设计原理 1、引言 电力电子技术有三大应用领域:电力传动、电力系统和电源。在各种用电设备中,电源是核心部件之一,其性能影响着整台设备的性能。电源可以分为线性电源和开关电源两大类。 线性电源是把直流电压变换为低于输入的直流电压,其工作原理是在输入与输出之间串联一个可变电阻(功率晶体管),让功率晶体管工作在线性模式,用线性器件控制其“阻值”的大小,实现稳定的输出,电路简单,但效率低。通常用于低于10W的电路中。通常使用的7805、7815等就属于线性电源。 开关电源是让功率晶体管工作在导通和关断状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小),所以开关电源具有能耗小、效率高、稳压范围宽、体积小、重量轻等突出优点,在通讯设备、仪器仪表、数码影音、家用电器等电子产品中得到了广泛的应用。反激式功率变换器是开关电源中的一种,是一种应用非常广泛的开关电源。 2、基本反激变换器工作原理 基本反激变换器如图1所示。假设变压器和其他元件均为理想元器件,稳态工作下。

有源箝位反激变换器分析与设计

有源箝位反激变换器分析与设计 时间:2012-01-10 18:30:38 来源:作者: 1. 引言 反激(Flyback)变换器由于具有电路拓扑简洁、输入输出电气隔离、电压升/降范围宽、易于多路输出等优点,因而广泛用于中小功率变换场合。但是,反激变换器功率开关电压、电流应力大,漏感引起的功率开关电压尖峰必须用箝位电路来限制。作者在文献[1]中对RCD箝位、LCD箝位、有源箝位反激变换器进行了比较研究,得出有源箝位技术使反激变换器获得最优综合性能的结论。 图1 有源箝位反激变换器电路拓扑 图2 有源箝位反激变换器原理波形 2. 有源箝位反激变换器稳态原理分析 有源箝位反激变换器电路拓扑及原理波形,分别如图1、图2所示[2]。变压器用磁化电感Lm、谐振电感Lr(包括变压器漏感和外加小电感)和只有变比关系的理想变压器T表示,Cr为等效电容,包括两个开关S和SC的输出电容。稳态工作时,每个开关周期分为七个开关状态阶段,各开关状态等值电路如图3所示。七个开关状态为: ①t=t0~t1:t0时刻,功率开关S开通,箝位开关SC及其寄生二极管Dc与整流二极管D均截止,Lm与Lr线性充电; ②t=t1~t2:t1时刻,S关断,磁化电感电流即谐振电感电流以谐振方式对Cr充电,开关管S漏源电压uDS近似线性上升; ③t=t2~t3:t2时刻,uDS上升到Ui+uC,DC开通,将Lr和Lm串联支路端电压箝位在 uC≈Uo(N1/N2),磁化电流通过箝位支路对CC充电(CC>Cr),u1下降规律为u1=-uCLm/(Lr+Lm); ④t=t3~t4:t3时刻,u1已经下降到使D正偏导通,随后u1箝位在-Uo(N1/N2),Lr和CC开始谐振,Lr上的电压为uC-Uo(N1/N2),iC下降速率为[uC-Uo(N1/N2)]/Lr,在iC开始反向之前开通SC,SC 便获得了零电压开通(ZVS);

有源钳位正激电路的分析设计

有源箝位正激变换器电路分析设计 1.引言 有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器和单端变换器。和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器工作在磁滞回线一侧,利用率低。因此,它只适用于中小功率输出场合。单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用围。 单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应 用于独立的离线式中小功率电源设计中。在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。当今,节能和环保已成为全球对耗能设备的基本要求。所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt 大等。 为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上变 了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而S. . . . . ..

S. 大量地减少了开关器件和变压器的功耗,降低了dv/dt和di/dt,改善了电磁兼容性。因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。 本文主要介绍Flyback 型有源箝位正激变换器的稳态工作原理与电路设计。 2. 有源箝位正激变换器电路的介绍 有源箝位正激变换器由有源箝位支路和功率输出电路组成。有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振创造主开关和箝位开关的Z VS工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。 有源钳位正激电路的原理图如下所示:

(完整版)50W反激变换器的设计

50W反激变换器的设计(CCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.45 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则主功率管开通时间为: Ton=T*D=10uS*0.45=4.5uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Toff ( 设定整流管压降为1V ) 变压器的匝比n: n = 13.67 设定电源工作在连续模式Ip2 = 0.4 * Ip1 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η ( 设定电源的效率η为0.8 ) Ip1 = 1.98 A Ip2 = 0.79 A 变压器的感量 L = ( Vin * Ton ) / ( Ip1 – Ip2 ) = 379 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 27 T 变压器的次级匝数Ns = Np / n = 2 T 变压器的实际初次级匝数可以取 Np = 27 T Ns = 2 T 重新核算变压器的设计 最大占空比:Vin * D = n * ( V o + Vf ) * ( 1 – D ) D = 0.447 最大磁通密度:Bmax = ( Vin * Ton ) / ( Np * Ae ) Bmax = 0.195 T 初级电流Ip1 和Ip2: 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η Ip2 + ( Vin * Ton ) / L = Ip1 Ip1 = 1.99 A Ip2 = 0.8 A Ip_rms = 0.93A 次级电流Is1和Is2 Is1 =Ip1*n=26.87A Is2=Ip2*n =10.8A Is_rms = 12.56A 次级电压折射到初级的电压 V or = n * ( V o + Vf ) = 81V 初级功率管Mosfet 的选择 Vmin = (√2 * 264 + V or +50 ) / 0.8 = 630 V Ip_rms = Ip_rms / 0.8 = 1.16 A ( 设定应力降额系数为0.8 ) 可以选择Infineon 的IPP60R450E6 次级整流管Diode 的选择 Vmin = (√2 * 264 / n + 5 +15 ) / 0.8 = 60 V Is_rms = Is_rms / 0.8 = 15.7 A ( 设定应力降额系数为0.8,噪音为15V ) 可以选择IR 的30CTQ060PBF 输出电容的选择 设定输出电压的纹波为50mv 输出电流的交流电流: Isac_rms = 0.5 * ( Is1 + Is2 ) * √D * ( 1- D ) Isac_rms = 9.36A Resr = Vripple / Isac_rms = 5.34 mohm 选择Nichicon 电容HD 系列6.3V/3900uF 四个并联使用50W反激变换器的设计(DCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.3 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则功率管开通时间:Ton=T*D=10uS*0.3=3uS 假设关断时间:Toff=7uS,Tr=4uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Tr ( 设定整流管压降为1V ) 变压器的匝比n: n = 12.53 设定电源工3作在续模式Io = Tr/T * Ip2 Ip2=Io*T/Tr=25A Ip1 = Ip2/n=1.99 A 变压器的感量 L = ( Vin * Ton ) / Ip1 = 151 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 18 T 变压器的次级匝数 Ns = Np / n = 1.4 T=2T 变压器的实际初次级匝数可以取 Ns = 2 T Np=Ns * n=25.1T=26T 开关电源一次滤波大电解电容 开关电源决定一次侧滤波电容,主要影响电源的性能参数为输出低频交流纹波与保持时间. 滤波电容越大,电容器上的Vin(min)越高,可以输出较大功率的电源,但相对价格也提高了。 输入电解电容计算方法(举例说明): 1.因输出电压12V 输出电流2A, 故输出功率:Pout=V o*Io=1 2.0V*2A=24W。 2.设定变压器的转换效率约为80%,则输出功率为24W的 电源其输入功率:Pin=Pout/效率=W W 30 % 80 24 =. 3.因输入最小交流电压为90V AC,则其直流输出电压为:Vin=90*1.2=108Vdc 故负载直流电流为:I= Vin Pin =A Vac W 28 .0 108 30 = 4.设计允许的直流纹波电压V ?/V o=20%,并且电容要维持电压的时间为1/4周期t(即半周期的工频率交流电压在约 是4ms,T= f 1 = 60 1 =0.0167S=16.7 ms)则: C=uF V t I 9. 51 6. 21 10 * 4 * 28 .0 *3 = = ? - 故实际选择电容量47uF. 5.因最大输入交流电压为264Vac,则最高直流电压为:V=264*2=373VDC. 实际选用通用型耐压400Vdc的电解电容,此电压等级,电容有95%的裕度. 6.电容器的承受的纹波电流值决定电容器的温升,进而决定电容器的寿命.(电容器的最大纹波电流值与其体积,材质有关.体积越大散热越好耐受纹波电流值越高)故在选用电容器要考虑实际纹波电流值<电容器的最大纹波电流值. 7.开关源元器件温升一般较高,通常选用105℃电容器,在特殊情况无法克服温升时可选用125℃电容器. 故选用47uF,400v, 105℃电解电容器可以满足要求(在实际使用时还考虑安装机构尺寸,体种大小,散热环境好坏等)

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的工作原理 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。 (1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3) LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。 它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝

有源钳位正激变换器的理论分析和设计方法,有源钳位,正激变换器.

有源钳位正激变换器的理论分析和设计方法,有源钳位,正激变换器,零电压软开关 1引言单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。当今,节能和环保已成为全球对耗能设备的基本要求。所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变 1引言 单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。当今,节能和环保已成为全球对耗能设备的基本要求。所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大,EMI问题难以处理。 为了克服这些缺陷,文献[1][2][3]提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv/dt和di/dt,改善了电磁兼容性。因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。 然而,有源钳位正激变换器并非完美无缺,零电压软开关特性也并非总能实现。因而,在工业应用中,对该电路进行优化设计显得尤为重要。本文针对有源钳位正激变换器拓扑,进行了详细的理论分析,指出了该电路的局限性,并给出了一种优化设计方法。 2正激有源钳位变换器的工作原理 如图1所示,有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关Sa(带反并二极管)和储能电容Cs,以及谐振电容Cds1、Cds2,且略去了传统正激变换器的磁恢复电路。磁饱和电感Ls用来实现零电压软开关,硬开关模式用短路线替代。开关S和Sa工作在互补状态。为了防止开关S和Sa共态导通,两开关的驱动信号间留有一定的死区时间。下面就其硬开关工作模式和零电压软开关工作模式分别进行讨论。为了方便分析,假设:

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的 工作原理 令狐采学 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD 箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。

(1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3)LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。

它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝比变大,从而可以有效地减少原边的导通损耗; (2)在变压器磁复位过程中,寄生元件中存储的

正激有源钳位分析

有源钳位正激变换器的理论分析和设计方法 2009年07月14日 17:48 深圳华德电子有限公司作者:刘耀平用户评论(0)关键字: 有源钳位正激变换器的理论分析和设计方法 摘要:零电压软开关有源钳位正激变换器拓扑非常适合中小功率开关电源的设计。增加变压器励磁电流或应用磁饱和电感均能实现零电压软开关工作模式。基于对零电压软开关有源钳位正激变换器拓扑的理论分析,提出了一套实用的优化设计方法。实验结果验证了理论分析和设计方法。 关键词:有源钳位;正激变换器;零电压软开关 1 引言 单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。当今,节能和环保已成为全球对耗能设备的基本要求。所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大; d v/d t和d i/d t大,EMI问题难以处理。 为了克服这些缺陷,文献[1][2][3]提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了d v/d t和d i/d t,改善了电磁兼容性。因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。 * 然而,有源钳位正激变换器并非完美无缺,零电压软开关特性也并非总能实现。因而,在工业应用中,对该电路进行优化设计显得尤为重要。本文针对有源钳位正激变换器拓扑,进行了详细的理论分析,指出了该电路的局限性,并给出了一种优化设计方法。 2 正激有源钳位变换器的工作原理 如图1所示,有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关S a(带反并二极管)和储能电容C s,以及谐振电容C ds1、C ds2,且略去了传统正激变换器的磁恢复电路。磁饱和电感L s 用来实现零电压软开关,硬开关模式用短路线替代。开关S和S a工作在互

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. 输入电压范围Vin=85 —265Vac; 输出电压/ 负载电 流:Vout1=5V/10A,Vout2=12V/1A; 变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取: 工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85* “2-20=100Vdc( 取低频纹波为20V). 根据伏特- 秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输岀电流的过流点为120%;+5v 和+12v整流二极管的正向压降均为 1.0V. +5V 输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V 输岀功率 Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输岀总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A Ip2=0.4*Ip1=1.20A 5. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt, 得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4.5/[3.00-1.20] =250uH 6. 变压器铁芯的选择. 根据式子Aw*Ae=P t*106/[2*ko*kc*fosc*Bm*j*?], 其中: Pt( 变压器的标称输岀功率)= Pout=85W Ko( 窗口的铜填充系数)=0.4 Kc( 磁芯填充系数)=1( 对于铁氧体), 变压器磁通密度Bm=1500 Gs j( 电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]

TI 反激变压器设计

26.5W AC/DC Isolated Flyback Converter Design

TASK : 26.5W 9-Outputs AC/DC Isolated Flyback Converter Design SPECIFICATION: Technical Specification on Sept 10, 2008 DATE: 15 Sept. 2008

Customer Specification f L 100Hz :=Line frequency fs 100kHz :=Switching frequency Vo 1 5.0V :=Main output voltage Io 1_max 2A :=Main Nominal load current Vo 215.0V :=Io 2_max 30mA :=Vo 315.0V :=Io 3_max 30mA :=Vo 415.0V :=Io 4_max 0.3A :=Vo 524.0V :=Io 5_max 0.1A :=Vo 618.0V :=Io 6_max 0.12A :=Vo 718.0V :=Io 7_max 0.12A :=Vo 818.0V :=Io 8_max 0.12A :=Vo 918.0V :=Io 9_max 0.12A :=+5V Output ripple voltage Vr 100mV :=+5VStep load output ripple voltage ΔVo step 150mV :=ΔIo 5V Io 1_max 80?% :=+5V Step load current amplitude η0.70 :=

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器得工作原理 2、1有源箝位正激变换器拓扑得选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但就是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器得磁复位,防止变压器磁芯饱与[36].传统得磁复位技术包括采用第三个复位绕组技术、无损得LCD箝位技术以及RCD箝位技术.这三种复位技术虽然都有一定得优点,但就是同时也存在一些缺陷[37-39]。 (1)第三复位绕组技术采用第三个复位绕组技术正激变换器得优点就是技术比较成熟,变压器能量能够回馈给电网. 它存在得缺点就是:第三复位绕组使得变压器得设计与制作比较复杂;变压器磁芯不就是双向对称磁化,因而利用率较低;原边主开关管承受得电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器得优点就是电路结构比较简单,成本低廉. 它存在得缺点就是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不就是双向对称磁化,磁芯利用率较低。 (3) LCD箝位技术采用无损得LCD箝位技术正激变换器得优点就是磁场能量能够全部回馈给电网,效率较高。 它存在得缺点就是:在磁复位过程中,箝位网络得谐振电流峰值较大,增加了开关管得电流应力与通态损耗,因而效率较低;磁芯不就是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器就是在传统得正激式变换器得基础上,增加了由箝位电容与箝位开关管串联构成得有源箝位支路,虽然与传统得磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器得成本,但就是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器得占空比可以大于0、5,使得变压器得原副边

有源钳位正激

有源钳位正激的复位:高侧与低侧 简介 关于有源钳位技术的所有论文均显示钳位电路应用于直接跨过变压器初级侧的高端,或直接跨过主MOSFET开关的漏极至源极的低端。更有趣的是,作者似乎在哪方面最好,哪一方面最好,而为什么却很少或根本没有解释的问题上各占一半。 将有源钳位变压器复位技术应用于高端与将其应用于高端之间存在细微但值得注意的区别。每种应用都会产生不同的传递函数,进而导致在复位期间向钳位电路施加不同的电压。钳位电容器的值和电压额定值以及每种情况下栅极驱动电路之间的不同考虑因素都将受到直接影响。 Low-Side Clamp(低端钳位) 图1显示了应用于基本单端正激转换器的低端钳位电路,该转换器具有标准的全波整流输出和LC滤波器 只要主MOSFET Q1导通,就会在变压器的励磁电感上施加全部输入

电压,这称为功率传输模式。 相反,每当辅助(AUX)MOSFET Q2导通时,钳位电压和输入电压之间的差就会施加到变压器的励磁电感上,这称为变压器复位周期。低端钳位的一个特定事实是,由于体二极管的方向,辅助MOSFET Q2必须是P沟道器件。还值得注意的是,Q2仅载有变压器励磁电流,与反射的负载电流相比,平均值很小。因此,选择低栅极电荷MOSFET应该是主要考虑因素,而低RDS(on)只是次要考虑因素。 在Q1关闭和Q2打开之间还引入了一个附加的死区时间。在死区时间期间,初级电流保持连续流过P沟道AUX MOSFET Q2或主MOSFET Q1的体二极管。这通常被称为谐振周期,其中为零电压开关(ZVS)设置条件。这是有源钳位拓扑结构的重要且独特的特性,但是对于此比较而言,它几乎没有什么意义,除了简要提到有源钳位应用于低端还是高端始终存在。 忽略漏感的影响,可以通过在变压器励磁电感两端应用伏秒平衡原理来推导低端钳位的传递函数 (1)给出钳位电压VC(LS)的简化式(1) (2)有趣的是,对于非隔离式升压转换器,(2)中给出的传递函数也是相同的传递函数,这就是为什么低侧钳位通常被称为升压型钳位的原因。

反激变换器(Flyback)的设计和计算步骤

反激变换器(Flyback)的设计和计算步骤 齐纳管吸收漏感能量的反激变换器: 0. 设计前需要确定的参数 A开关管Q的耐压值:Vmq B 输入电压范围:Vinmin ~Vinmax C 输出电压V o D 电源额定输出功率:Po(或负载电流Io) E 电源效率:X F 电流/磁通密度纹波率:r(取0.5,见注释C) G 工作频率:f H 最大输出电压纹波:V opp 1. 齐纳管DZ的稳压值Vz Vz <= Vmq × 95% - Vinmax,开关管Q承受的电压是Vin + Vz,在Vinmax处还应为Vmq 保留5%裕量,因此有V inmax + Vz < Vmq × 95% 。 2. 一次侧等效输出电压Vor V or = Vz / 1.4(见注释A) 3. 匝比n(Np/Ns) n = V or / (V o + Vd),其中Vd是输出二极管D的正向压降,一般取0.5~1V 。 4. 最大占空比的理论值Dmax Dmax = V or / (V or + Vinmin),此值是转换器效率为100%时的理论值,用于粗略估计占空比是否合适,后面用更精确的算法计算。 一般控制器的占空比限制Dlim的典型值为70%。

----------------------------------------------------------------------------- 上面是先试着确定Vz,也可以先试着确定n,原则是n = Vin / Vo,Vin可以取希望的工作输入电压,然后计算出Vor,Vz,Dmax等,总之这是计算的“起步”过程,根据后面计算考虑实际情况对n进行调整,反复计算,可以得到比较合理的选择。 ----------------------------------------------------------------------------- 5. 负载电流Io Io = Po / V o,如果有多个二次绕组,可以用单一输出等效。 6. 一次侧有效负载电流Ior Ior = Io / n ,由Ior × Np = Io × Ns得来。 7. 占空比D D = Iin / (Iin + Ior),其中Iin = Pin / V in,而Pin = Po / X。这里V in取Vinmin。(见注释B) 8. 二次电流斜坡中心值Il Il = Io / (1 - D) 9. 一次电流斜坡中心值Ilr Ilr = Il / n 10. 峰值开关电流Ip k Ipk = (1 + 0.5 × r) × Ilr 11. 伏秒数Et Et = V inmin × D / f ,(Et = V on × Ton = V inmin × D/f) 12. 一次电感Lp Lp = Et / (Ilr × r) 13. 磁芯选择 (1)V e = 0.7 × (((2 + r)^2) / r) × (Pin / f),V e单位cm^3;f单位KHz,根据此式确定磁芯有效体积V e,寻找符合此要求的磁芯。(见注释D) (2)最适合反激变压器的磁芯是“E Cores”和“U Cores”,“ETD"、”ER"、“RM"这三种用于反激性能一般,而“Planar E”、“EFD"、”EP"、“P"、”Ring"型不适合反激变压器。 (3)材质选锰锌铁氧体,PC40比较常用且经济。 14. 一次匝数Np Np = (1 + 2/r) × (V on × D)/(2 × Bpk × Ae × f),其中V on = V inmin - Vq,Vq是开关管Q的导通压降;Bpk不能超过0.3T,一般反激变压器取0.3T;Ae是磁芯的有效截面积,从所选磁芯的参数中查的。(公式推导见注释E,说明见注释F) 15. 二次匝数Ns

反激钳位电路设计方法

一种有效的反激钳位电路设计方法 0 引言 单端反激式开关电源具有结构简单、输入输出电气隔离、电压升/降范围宽、易于多路输出、可靠性高、造价低等优点,广泛应用于小功率场合。然而,由于漏感影响,反激变换器功率开关管关断时将引起电压尖峰,必须用钳位电路加以抑制。由于RCD钳位电路比有源钳位电路更简洁且易实现,因而在小功率变换场合RCD钳位更有实用价值。 1 漏感抑制 变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。设计和绕制是否合理,对漏感的影响是很明显的。采用合理的方法,可将漏感控制在初级电感的2%左右。 设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。绕制时绕线要尽量分布得紧凑、均匀,这样线圈和磁路空间上更接近垂直关系,耦合效果更好。初级和次级绕线也要尽量靠得紧密。 2 RCD钳位电路参数设计 2.1 变压器等效模型 图1为实际变压器的等效电路,励磁电感同理想变压器并联,漏感同励磁电感串联。励磁电感能量可通过理想变压器耦合到副边,而漏感因为不耦合,能量不能传递到副边,如果不采取措施,漏感将通过寄生电容释放能量,引起电路电压过冲和振荡,影响电路工作性能,还会引起EMI问题,严重时会烧毁器件,为抑制其影响,可在变压器初级并联无源RCD钳位电路,其拓扑如图2所示。

2.2 钳位电路工作原理 引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率。要做到这点必须对RC参数进行优化设计,下面分析其工作原理:当S1关断时,漏感Lk释能,D导通,C上电压瞬间充上去,然后D截止,C通过R放电。

有源钳位正激电源变换器的工作原理及优势

有源箝位正激电源变换器的工作原理及优势 — Bob Bell, 美国国家半导体公司电源应用工程师 对设计人员来说,有源箝位正激变换器有很多优点,现在正得到广泛应用。采用正激结构的电源变换器是高效率、大功率应用(50W 至 500 W范围)的出色选择。虽然正激结构的普及有各种各样的原因,但设计者主要青睐的是它的简捷、性能和效率。 正激变换器来源于降压结构。两者之间的主要区别是:正激结构变压器的输入地和输出地之间是绝缘的,另外它还有降压或升压功能。正激结构中的变压器不会象在对称结构(如推挽、半桥和全桥)中那样,在每个开关周期内进行自复位。正激功率变换器中使用了一些不同的复位机制,它们各有自己的优点和挑战。对设计者而言,有源箝位正激变换器具有诸多的优点,因此现在这个拓扑被广泛应用。 图1: 降压和前向拓扑结构 图 1 显示了 降压 和正激转换器之间的相似之处。注意两种变换功能的唯一区别是在正激变换功能中,匝数比(Ns/Np)这一名词所包含的内容。Ns 和 Np 分别为次级匝数和初级匝数,均绕在变压器磁芯上。图 2 显示了一个变压器模型,其中包括与初级绕组并联的“励磁电感”(Lm)。这个励磁电感可以在次级绕组开路状态下在初级端子处测量。励磁电感中的电流与磁芯中的磁通密度成正比。确定尺寸的某种磁芯只能支持到某个磁通密度,然后磁芯就会进入饱和。当磁芯饱和时,电感量会急剧下降。变压器模型中另外一个部分是与初级绕组串联的“漏感”(LL)。漏感

可以在次级绕组短路情况下在初级端子处测量。这一名称表示杂散的初级电感,它不会耦合到次级。 图2 转换模式 有源箝位电路的工作 图3a 图3b

正激有源钳位的详细分析An Overview of Forward Converter with Various Reset Schemes

An Overview of Forward Converter with Various Reset Schemes By Gary Hua 9/20/07

Features of Forward Converter z One of fundamental topologies z Most commonly used topology z Applicable power level from a few Watts to a couple of Kilo-Watts z Appears simple but difficult to optimize design z Where are you on skill 1-10?

Test 1.How does the B-H curve in the 3rd winding reset forward converter look? 2.Which secondary diode is subject to higher switching loss? 3.Can the resonant reset forward converter operate with ZVS? 4.Can two-switch forward converter operate at greater than 50% duty cycle? 5.Does the clamp diode in active- clamp forward converter suffer from reverse-recovery problem?

一种在全负载范围内实现ZVS的有源箝位反激变换器

一种在全负载范围内实现ZVS的有源箝位反激变换器 一种在全负载范围内实现ZVS的有源箝位反激变换器 0引言 传统的反激变换器反激变换器,因其相对简单的电路结构以及能实现升降压功能而在DC/DC场合中得到了广泛使用.但是,由于反激变换器的变压器同时还兼作为电路中的电感使用,所以气隙较大,不可避免的漏感也较大。在电路原边开关管关断时,该漏感会和原边开关管上的 结电容产生寄生振荡,从而在原边丌关管上产生电压尖剌,使之承受高的电压应力,同时,该振 荡还是一个EMD源,给电路带来EMI方面的问题。传统的RCD箝位电路将存储在变压器漏感 中的能量,全都消耗在箝位电阻上,在一定程度卜缓解了这个压力,但是,降低了电路的效率。 如果采用一个有源箝位有源箝位的电路来取代传统的RCD箝位电路的话,就能很好地解决这个 问题。 1有源箝位电路 典型的有源箝位电路。 有源箝位的反激变换器除了能将漏感上的能量反馈到输出,提高电路效率外,还具有以下几 个优点:首先,电压箝位效果良好,能减少开关管上的电压应力;其次,电路原边的主管和辅管 都可实现ZVS,从而减少电路的开关损耗。这个特性对于高压输入的场合特别重要。由于开关 管上的电压是谐振到零的,这样既限制了电压关断时的dv/dt,同时箝位电容和变压器原边谐 振电感的谐振还限制了副边整流管关断时的di/dt;通过恰当地设计箝位电容的值,还可以实 现副边整流二极管的ZCS,从而减少或消除了整流管的开关损耗和由于二极管反向恢复引起的 开关噪声,从而有效地减少了电路的EMI。 正是由于这些优点,有源箝位反激变换器受到厂业界的重视。该电路不但可以作为普通的DC/DC变换器使用,而且还可以用作一个性能优良的PFC电路。 传统的反激变换器中存在着“电感电流连续(CCM)”和“电感电流断续(DCM)”两种不同的工作状态。这两种不同的工作状态在有源箝位反激变换器当小也分别体现不同的工作特点。CCM的有源箝位反激变换器和传统的反激变换器一样,在一个开关周期 内,变压器原边的激磁电流始终大于零;而DCM的有源箝位反激变换器中变压器原边的激磁电 流却会出现断续的状态,当激磁电 流到零的时候,在箝位电容的作用下,变压器原边的激磁电流将反向流动,从而在一个开关 周期内体现为一个正负交变的量。文献[4]详细地分析了CCM状态下的有源箝位反激变换器的工 作过程以及设计中的注意事项。从中可知,CCM状态下的有源箝位反激变换器同传统的反激变 换器一样,具有电流纹波小,电路导通损耗小,适合于功率大的输出场合等优点。但该工作状态 需要一个外加谐振电感来实现原边开关管的ZVS(如图1中的Lr),而且软开关软开关的实现和负 载有关.只能在一定的负载范围内实现。 但是,保证电路在全范围内实现软开关有着重大的现实意义,因为,全范围软开关能保证整 个电路的工作状态一致,特别是保证电路的EMl的性能一致,从而减小了整个电路的EMI滤波 器。为此,本文对有源箝位反激变换器进行了优化设计,以保证整个电路从空载到满载范围内都 能实现软开关。 文章首先对电路的工作状态进行了详细的分析,而后给出了电路当中关键元器件的设汁依据, 最后,用一个100W/100kHz的样机验证了该电路的高效率和优良的全负载范围内的软开关 特性。 2电路的工作原理

反激式变换器原理设计

反激式变换器原理设计与实用 1、引言 (1) 2、反激变换器工作原理 (1) 3、工作模式简述 (2) 3.1工作模式介绍 (2) 3.2两种工作模式的区别 (2) 4、反激变压器设计模板 (3) 4.1、确定设计条件 (3) 4.2磁芯的选择 (3) 4.3变压器原这匝数计算 (3) 4.4变压器副边匝数计算 (4) 4.5计算原边电感量 (4) 4.6核算磁感应强度 (4) 4.7选取导线 (4) 4.8核算核算窗口占空系数 (4) 5、反激变换器设计时注意事项 (4) 6 结论 (5) 1、引言 反激式转换器又称单端反激式或“BUCK-BOOST”转换器,因其输出端在原边绕组关断时获得能量故而得名。在反激变换器拓扑中,开关管导时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。其优点如下:a、电路简单,能高效提供多路直流输出,因此适合多组输出要求;b、输入电压在很大的范围内波动时,仍可有较稳定的输出,目前己可实理交流输入85-265V间,无需切换而达到稳定输出的要求;c、转换效率高,损失小;d、变压器匝数比值小。 2、反激变换器工作原理 以隔离反激式转换器为例(如右图),简要说明其工作原理:当开关管VT 导通时,变压器T初级Np有电流Ip,并将能量储存于其中(E=Lp*Ip2/2)。 由于初级Np与次级Ns极性相反,此时次级输出整流二极管D反向偏压而止,无能量传送到负载。当开关管VT关断时,由楞次定律:(感应电动势E=—N Δ∮/ΔT)可知,变压器原边绕组将产生一反向电动势,此时输出整流二极管D正向导通,负载有电流Il流通。 由图可知,开关管Q导通时间Ton的大小将决定IP、Vds的幅值为Vds(max)=Vin/1-Dmax。(其中Vin:输入直流电压;Dmax:最大占空比Dmax=Ton/T)。

相关主题
文本预览
相关文档 最新文档