当前位置:文档之家› 江苏省高考数学二轮复习:第讲 函数与方程思想

江苏省高考数学二轮复习:第讲 函数与方程思想

江苏省高考数学二轮复习:第讲 函数与方程思想
江苏省高考数学二轮复习:第讲 函数与方程思想

第19讲函数与方程思想

考试说明指出:“高考把函数与方程的思想作为思想方法的重点来考查,使用填空题考查函数与方程思想的基本运算,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力相综合的角度进行深入考查.”

函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.方程的思想,就是分析数学问题中各个量及其关系,建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.

函数和方程的思想简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系,对函数和方程思想的考查,主要是考查能不能用函数和方程思想指导解题,一般情况下,凡是涉及未知数问题都可能用到函数与方程的思想.

函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.

由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考要考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.

1. 设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________.

2.函数f(x)=ax-a+1存在零点x0,且x0∈[0,2],则实数a的取值范围是________.

3.一个长方体共一顶点的三个面的面积分别为2,3,6,则该长方体的外接球体积为________.

4.关于x的方程sin2x+cosx+a=0有实根,则实数a的取值范围是________.

【例1】若a,b为正数,且ab=a+b+3,求a+b的取值范围.

【例2】设函数f(x)=ax2+bx+c(a>0),且f(1)=-a 2.

(1) 求证:函数f(x)有两个零点;

(2) 设x1,x2是函数f(x)的两个零点,求|x1-x2|的取值范围;

(3) 求证:函数f(x)的零点x1,x2至少有一个在区间(0,2)内.

【例3】如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1) 求实数b的值;

(2) 求以点A为圆心,且与抛物线C的准线相切的圆的方程.

【例4】已知函数f(x)=x|x2-3|,x∈[0,m],其中m∈R,且m>0

(1) 若m<1,求证:函数f(x)是增函数;

(2) 如果函数f(x)的值域是[0,2],试求m的取值范围;

(3) 如果函数f(x)的值域是[0,λm2],试求实数λ的最小值.

1. (2011·北京)已知函数f(x)=?????

2x ,x ≥2,

(x -1)3,x<2,若关于x 的方程f(x)=k 有两个不同的

实根,则实数k 的取值范围是________.

2.(2011·广东)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.

3.(2009·福建)若曲线f(x)=ax 3+lnx 存在垂直于y 轴的切线,则实数a 的取值范围是________.

4.(2010·天津)设函数f(x)=x -1

x ,对任意x ∈[1,+∞),f(mx)+mf(x)<0恒成立,则实

数m 的取值范围是________.

5.(2011·辽宁) 设函数f(x)=x +ax 2+blnx ,曲线y =f(x)过点P(1,0),且在P 点处的切线斜率为2.

(1) 求a ,b 的值; (2) 证明:f(x)≤2x -2.

6.(2011·全国)在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.

(1) 求圆C 的方程;

(2) 若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值.

(2009·广东)(本小题满分14分)已知二次函数y =g(x)的导函数的图象与直线y =2x 平行,且y =g(x)在x =-1处取得最小值m -1(m ≠0).设函数f(x)=g (x )x

.

(1) 若曲线y =f(x)上的点P 到点Q(0,2)的距离的最小值为2,求m 的值 (2) k(k ∈R )如何取值时,函数y =f(x)-kx 存在零点,并求出零点. 解:(1) 设g(x)=ax 2+bx +c ,则g ′(x)=2ax +b ;

又g ′(x)的图象与直线y =2x 平行,∴ 2a =2,a =1.(1分) 又g(x)在x =-1取极小值,-b

2=-1,b =2,

∴ g(-1)=a -b +c =1-2+c =m -1,c =m ;(2分) f(x)=

g (x )x =x +m

x

+2,设P(x 0,y 0), 则|PQ|2=x 20+(y 0-2)2=x 20+

????x 0+m x 02=2x 20+m 2

x 20

+2m ≥22m 2

+2m ,(4分) 当且仅当2x 02=

m 2

x 02

时,|PQ|2取最小值,即|PQ|取最小值 2. 当m>0时,22m +2m =2,∴ m =2-1(6分) 当m<0时,-22m +2m =2,∴ m =-2-1(7分) (2) 由y =f(x)-kx =(1-k)x +m

x +2=0,

得(1-k)x 2+2x +m =0. (*)

当k =1时,方程(*)有一解x =-m 2,函数y =f(x)-kx 有一零点x =-m

2;(8分)

当k ≠1时,方程(*)有二解

Δ=4-4m(1-k)>0,若m>0,k>1-1m

函数y =f(x)-kx 有两个零点x =-2±4-4m (1-k )2(1-k )=1±1-m (1-k )

k -1;(10分)

若m<0,k<1-

1

m ,函数y =f(x)-kx 有两个零点,x =-2±4-4m (1-k )2(1-k )

=1±1-m (1-k )

k -1

;(12分)

当k ≠1时,方程(*)有一解Δ=4-4m(1-k)=0,k =1-1

m

, 函数y =f(x)-kx 有一个

零点,x =1

k -1.(14分)

第19讲 函数与方程思想

1. 在等差数列{a n }中,已知a 5=10,a 12=31,则通项a n =__________.

【答案】 3n -5 解析:显然公差不为零,故通项为n 的一次函数,设a n =an +b ,a ,

b 为常数,由题意得???

??

5a +b =10,

12a +b =31

?

????

a =3,

b =-5,∴ a n =3n -5. 2. 设函数f(x)=x 2-1,对任意x ∈????32,+∞,f ????x

m -4m 2f(x)≤f(x -1)+4f(m)恒成立,则实数m 的取值范围是____________.

【答案】 ????-∞,-32∪???

?3

2,+∞

解析:(解法1)不等式化为f(x -1)+4f(m)-f ????x m +4m 2

f(x)≥0, 即(x -1)2-1+4m 2-4-

x 2

m

2+1+4m 2x 2-4m 2≥0,

整理得???

?1-1

m 2+4m 2x 2-2x -3≥0, 因为x 2>0,所以1-1

m 2+4m 2≥2x +3x 2,设g(x)=2x +3x 2,x ∈????32,+∞. 于是题目化为1-1m 2+4m 2≥g(x),对任意x ∈????32,+∞恒成立的问题. 为此需求g(x)=2x +3x 2,x ∈????32,+∞的最大值.设u =1x ,则0<u ≤2

3

. 函数g(x)=h(u)=3u 2+2u 在区间????0,23上是增函数,因而在u =2

3处取得最大值. h ????23=3×49+2×23=83,所以1-1m 2+4m 2≥g(x)max =83, 整理得12m 4-5m 2-3≥0,即(4m 2-3)(3m 2+1)≥0, 所以4m 2-3≥0,解得m ≤-

32或m ≥32

, 因此实数m 的取值范围是m ∈?

???-∞,-

32∪???

?32,+∞.

(解法2)(前面同解法1)原题化为1-1

m 2+4m 2≥g(x),对任意x ∈????32,+∞恒成立的问题.

为此需求g(x)=2x +3x 2,x ∈????32,+∞的最大值. 设t =2x +3,则t ∈[6,+∞).g(x)=h(t)=4t

t 2-6t +9

4

t +9t

-6. 因为函数t +9t 在(3,+∞)上是增函数,所以当t =6时,t +9t 取得最小值6+3

2

.

从而h(t)有最大值46+32-6=83.所以1-1m 2+4m 2≥g max (x)=8

3,整理得12m 4-5m 2-3≥0,

即(4m 2-3)(3m 2+1)≥0,

所以4m 2-3≥0,解得m ≤-

32或m ≥32

, 因此实数m 的取值范围是m ∈?

???-∞,-

32∪???

?32,+∞.

(解法3)不等式化为f(x -1)+4f(m)-f ????x m +4m 2

f(x)≥0,即 (x -1)2-1+4m 2-4-

x 2

m

2+1+4m 2x 2-4m 2≥0,整理得????1-1m 2+4m 2x 2-2x -3≥0,令F(x)=???

?1-1

m 2+4m 2x 2-2x -3.

由于F(0)=-3<0,则其判别式Δ>0,因此F(x)的最小值不可能在函数图象的顶点得到,

所以为使F(x)≥0对任意x ∈????32,+∞恒成立,必须使F ???

?3

2为最小值, 即实数m 应满足??

?

1-1

m 2

+4m 2

>0,

F ???

?32≥0,

解得m 2≥3

4,因此实数m 的取值范围是

m ∈?

???-∞,-

32∪???

?32,+∞. 基础训练

1. 1 解析:a +2=3,a =1,a 2+4>3,不用讨论.

2. a ≤-1或a ≥1 解析:f(0)·f(2)≤0,(a +1)(a -1)≥0.

3.

6π 解析:设长方体的长、宽、高分别为x ,y ,z ,???

xy =

2,xz =

3,yz =

6

???

x =1,y =2,z =3,

2r =x 2+y 2+z 2=6,V =4

3

πr 3=6π.

4. ????-54,1 解析:a =-sin 2x -cosx =????cosx -122-54,最小值为-5

4,最大值为1. 例题选讲

例1 点拨:本题解法很多,关键要学会转化.

解:(解法1)将ab =a +b +3看成是含两个未知数的方程,可以用一个字母去表示另一个字母,再代入到a +b 中,转化为一元函数.

b =a +3a -1,a +b =a +a +3a -1=2+(a -1)+4a -1,由b ∈R +得a >1,∴ a +b =2+(a -1)+4a -1

≥2+2

(a -1)×4a -1=6,当且仅当a -1=4

a -1

即a =3时取等号,故a +b 的取值范围是

[6,+∞).

(解法2) 直接利用基本不等式ab ≤????a +b 22

,构造不等式,然后解不等式即可.

ab =a +b +3≤??

?

?a +b 22

,(a +b)2-4(a +b)-12≥0,(a +b -6)(a +b +2)≥0. 从而得a +b ≥6.(当且仅当a =b =3时取等号)

变式训练 若a ,b 为正数,且ab =a +b +3,求ab 的取值范围. 【答案】 ab ≥9.

例2 点拨:结合二次函数、二次方程间的关系,利用二次方程根的分布、根与系数关系、零点存在性定理解决.

(1) 证明:∵ f(1)=a +b +c =-a

2,∴ 3a +2b +2c =0.

∴ c =-3

2

a -b.

∴ f(x)=ax 2+bx -3

2

a -

b ,

判别式Δ=b 2-4a ???

?-3

2a -b =b 2+6a 2+4ab =(2a +b)2+2a 2, 又∵ a >0,∴ Δ>0恒成立,故函数f(x)有两个零点.

(2) 解:若x 1,x 2是函数f(x)的两个零点,则x 1,x 2是方程f(x)=0的两根, ∴ x 1+x 2=-b a ,x 1x 2=-b a -3

2.

∴ |x 1-x 2|=(x 1+x 2)2-4x 1x 2=

????-b a 2-4????-b a -32=

???

?b a +22+2≥ 2.

|x 1-x 2|的取值范围是[2,+∞].

(3) 证明:f(0)=c ,f(2)=4a +2b +c ,由(1)知3a +2b +2c =0,∴ f(2)=a -c. ①当c >0时,有f(0)>0,又∵ a >0,∴ f(1)=-a

2

<0,

∴ 函数f(x)在区间(0,1)内至少有一个零点.

②当c ≤0时,f(2)=a -c >0,f(1)<0,f(0)=c ≤0, ∴ 函数f(x)在区间(1,2)内有一个零点,

综合①②可知函数f(x)在区间(0,2)内至少有一个零点.

变式训练 设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.

(1) 若S 5=5,求S 6及a 1; (2) 求d 的取值范围.

解:(1) 由题意知S 6

=-15

S 5

=-3,∴ ???

S 5

=5a 1

+5×4

2d =5,S 6

=6a 1

+6×5

2

d =-3,

解得a 1=7,d =-3.∴ S 6=-3,a 1=7.

(2) ∵ S 5S 6+15=0,

∴ (5a 1+10d)(6a 1+15d)+15=0,

即2a 21+9da 1+10d 2

+1=0.

故(4a 1+9d)2=d 2-8,∴ d 2-8≥0. 故d 的取值范围为d ≤-22或d ≥2 2.

例3 解:(1) 由?????

y =x +b ,

x 2=4y

得x 2-4x -4b =0,(*)

因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b)=0,解得b =-1.

(2) 由(1)可知b =-1,故方程(*)即为x 2-4x +4=0,

解得x =2,代入x 2=4y ,得y =1.故点A(2,1),因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-1)|=2,所以圆A 的方程为(x -2)2+(y -1)2=4.

例4 (1) 证明:当m<1时,f(x)=x(3-x 2)=3x -x 3, 因为f ′(x)=3-3x 2=3(1-x 2)>0,所以f(x)是增函数, (2) 解:令g(x)=x|x 2-3|,x ≥0,

则g(x)=???

3x -x 3,0≤x ≤3,

x 3-3x ,x> 3.

当0≤x ≤3时,g ′(x)=3-3x 2,由g ′(x)=0得x =1, 所以g(x)在[0,1]上是增函数,在[1,3]上是减函数.

当x>3时,g ′(x)=3x 2-3>0,所以g(x)在[3,+∞)上是增函数, 所以x ∈[0,3]时,g(x)max =g(1)=2,g(x)min =g(0)=g(3)=0, 所以03时,在x ∈[0,3]时,f(x)∈[0,2], 在x ∈[3,m]时,f(x)∈[0,f(m)],

这时f(x)的值域是[0,2]的充要条件是f(m)≤2,

即m 3-3m ≤2,(m -2)(m +1)2≤0,解得3

(3) 由(2)可知,0

2

m

2,m ∈[1,2]时这是减函数,∴ λ∈????12,2. 当m>2时,函数f(x)的最大值为f(m)=m 3-3m ,由题意知m 3-3m =λm 2,即λ=m -3

m ,

这是增函数,∴ λ∈???

?1

2,+∞. 综上,当m =2时,实数λ取最小值为1

2.

变式训练 已知函数g(x)=xlnx ,设0<a <b , 求证:0<g(a)+g(b)-2g ??

??

a +

b 2<(b -a)ln2.

点拨:确定变量,构造函数证明不等式. 证明:g(x)=xlnx ,g ′(x)=lnx +1.

构造函数F(x)=g(a)+g(x)-2g ??

??a +x 2,

则F ′(x)=g ′(x)-2???

?

g ????a +x 2′=lnx -ln a +x 2.

当0<x <a 时,F ′(x)<0,在此F(x)在(0,a)内为减函数;

当x >a 时,F ′(x)>0,因此F(x)在(a ,+∞)上为增函数. 从而,当x =a 时,F(x)有极小值F(a). 因为F(a)=0,b >a ,所以F(b)>0, 即0<g(a)+g(b)-2g ??

??a +b 2.

再构造函数G(x)=F(x)-(x -a)ln2,

则G ′(x)=lnx -ln a +x

2

-ln2=lnx -ln(a +x).

当x >0时,G ′(x)<0.因此G(x)在(0,+∞)上为减函数. 因为G(a)=0,b >a ,所以G(b)<0, 即g(a)+g(b)-2g ??

??

a +

b 2<(b -a)ln2.

综上得0<g(a)+g(b)-2g ????

a +

b 2<(b -a)ln2.

高考回顾

1. (0,1) 解析:f(x)=2

x (x ≥2)单调递减且值域为(0,1],f(x)=(x -1)3(x <2)单调递增且值

域为(-∞,1),结合函数的图象可得f(x)=k 有两个不同的实根,则实数k 的取值范围是(0,1).

2. 10 解析:S 9=S 4,9a 1+9×82d =4a 1+4×32d ,a 1=1,d =-1

6;

由1+(k -1)????-16+1+3×????-1

6=0,得k =10. 本题也可用数列性质解题,S 9=S 4a 7=0.

3. (-∞,0) 解析:由题意可知f ′(x)=3ax 2+1

x ,又因为存在垂直于y 轴的切线,所

以3ax 2+1

x

=0

a =-

1

3x 3

(x >0)a ∈(-∞,0). 4. (-∞,-1) 解析:因为对任意x ∈[1,+∞),f(mx)+mf(x)=2mx -

1mx -m

x

<0恒成立,显然m ≠0.所以当m <0时,有2m 2x 2-1-m 2>0对任意x ∈[1,+∞)恒成立,即2m 2×1-1-m 2>0,解得m 2>1,即m <-1;当m >0时,有2m 2x 2-1-m 2<0对任意x ∈[1,+∞)恒成立,m 无解,综上所述实数m 的取值范围是m <-1.

5. (1) 解:f ′(x)=1+2ax +b

x

.

由已知条件得????? f (1)=0,f ′(1)=2.即?

????

1+a =0,

1+2a +b =2,解得a =-1,b =3.

(2) 证明:f(x)的定义域为(0,+∞),由(1)知f(x)=x -x 2+3lnx.

设g(x)=f(x)-(2x -2)=2-x -x 2+3lnx ,则

g ′(x)=-1-2x +3

x =-(x -1)(2x +3)x

.

当0<x <1时,g ′(x)>0;当x >1时,g ′(x)<0.

所以g(x)在(0,1)单调增加,在(1,+∞)单调减少. ∴ x =1时,g(x)取极大值即为最大值.

而g(1)=0,故当x >0时,g(x)≤0,即f(x)≤2x -2.

6. 解:(1) 曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).

故可设圆C 的圆心为(3,t),则有32+(t -1)2=(22)2+t 2,解得t =1.

则圆C 的半径为32+(t -1)2=3.所以圆C 的方程为(x -3)2+(y -1)2=9. (2) 设A(x 1,y 1),B(x 2,y 2),其坐标满足方程组:

?????

x -y +a =0,(x -3)2+(y -1)2=9.

消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0. 由已知可得,判别式Δ=56-16a -4a 2>0.

因此,x 1,2=(8-2a )±56-16a -4a 24,从而x 1+x 2=4-a ,x 1x 2=a 2-2a +12,①

由OA ⊥OB ,可得x 1x 2+y 1y 2=0,又y 1=x 1+a ,y 2=x 2+a ,

所以2x 1x 2+a(x 1+x 2)+a 2=0,②

由①,②得a =-1,满足Δ>0,故a =-1.

江苏省高考数学二轮复习专题八二项式定理与数学归纳法(理)8.1计数原理与二项式定理达标训练(含解析)

计数原理与二项式定理 A组——大题保分练 1.设集合A,B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集. (1)若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数; (2)若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数. 解:(1)110. (2)集合M有2n个子集,不同的有序集合对(A,B)有2n(2n-1)个. 当A?B,并设B中含有k(1≤k≤n,k∈N*)个元素, 则满足A?B的有序集合对(A,B)有n∑ k=1C k n(2k-1)= n ∑ k=0 C k n2k- n ∑ k=0 C k n=3n-2n个. 同理,满足B?A的有序集合对(A,B)有3n-2n个. 故满足条件的有序集合对(A,B)的个数为2n(2n-1)-2(3n-2n)=4n+2n-2×3n. 2.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈ N*).性质T:排列a1,a2,…,a n中有且只有一个a i >a i+1 (i∈{1,2,…,n-1}). (1)求f(3); (2)求f(n). 解:(1)当n=3时,1,2,3的所有排列有(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2), (3,2,1),其中满足仅存在一个i∈{1,2,3},使得a i>a i+1的排列有(1,3,2),(2,1,3),(2,3,1), (3,1,2),所以f(3)=4. (2)在1,2,…,n的所有排列(a1,a2,…,a n)中, 若a i=n(1≤i≤n-1),从n-1个数1,2,3,…,n-1中选i-1个数按从小到大的顺序排列为a1,a2,…,a i-1,其余按从小到大的顺序排列在余下位置,于是满足题意的排列个数为C i-1 n-1. 若a n=n,则满足题意的排列个数为f(n-1). 综上,f(n)=f(n-1)+n-1 ∑ i=1 C i-1 n-1=f(n-1)+2n-1-1.

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

2014年全国高考江苏省数学试卷及答案【精校版】

2014年江苏高考数学试题 数学Ⅰ试题 参考公式: 圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上. . 1.已知集合{2134}A =--,,,,{123}B =-,,,则A B =I . 【答案】{13}-, 2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为 . 【答案】21 3.右图是一个算法流程图,则输出的n 的值是 . 【答案】5 4.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是 . 【答案】13 5.已知函数cos y x =与sin(2)(0)y x ??=+<π≤,它们的图象有一个横坐标为 3 π 的交点,则?的值是 . 【答案】 6 π 6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24 7.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是 .

【答案】4 8.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且 1294S S =,则12V V 的值是 . 【答案】32 9.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 255 10.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 . 【答案】20?? ??? 11.在平面直角坐标系xOy 中,若曲线2b y ax x =+(a b ,为常数)过点(25)P -,,且该曲线在 点P 处的切线与直线7230x y ++=平行,则a b +的值是 . 【答案】3- 12.如图,在平行四边形ABCD 中,已知,85AB AD ==,, 32CP PD AP BP =?=u u u r u u u r u u u r u u u r ,,则AB AD ?u u u r u u u r 的 值是 . 【答案】22 13.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21 ()22 f x x x =-+.若函 数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 . 【答案】() 102 , 14.若ABC ?的内角满足sin 22sin A B C =,则cos C 的最小值是 . 62-二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........ 作答, 解答时应写出文字

2003年全国2卷高考理科数学试题

2003年普通高等学校招生全国统一考试(全国卷) 数 学(理工农医类) 注意事项: 1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式: 三角函数的积化和差公式: 正棱台、圆台的侧面积公式 )]sin()[sin(21cos sin βαβαβα-++=? l c c S )(21 +'=台侧 其中c '、c 分别表示 )]sin()[sin(2 1 sin cos βαβαβα--+=? 上、下底面周长,l 表示斜高或母线长. )]cos()[cos(21cos cos βαβαβα-++=? 球体的体积公式:334 R V π=球 ,其中R )]cos()[cos(2 1 sin sin βαβαβα--+-=? 表示球的半径. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分) 一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一项是符合要求的 1.已知2(π - ∈x ,0),5 4cos =x ,则2tg x = ( ) (A )247 (B )247- (C )7 24 (D )724 - 2.圆锥曲线θ θρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数?????-=-2112)(x x f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+) (C )(∞-,2-)?(0,∞+) (D )(∞-,1-)?(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )2 5.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

2003年高考.江苏卷.数学试题及答案

2003年普通高等学校招生全国统一考试(江苏卷) 数 学(理工农医类) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回 第Ⅰ卷(选择题共60分) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的. (1)如果函数2 y ax bx a =++的图象与x 轴有两个交点,则点(,)a b aOb 在平面上的区 域(不包含边界)为( ) (2)抛物线2 ax y =的准线方程是2=y ,则a 的值为 ( ) (A ) 8 1 (B )- 81 (C )8 (D )-8 (3)已知== -∈x tg x x 2,5 4 cos ),0,2 (则π ( ) (A ) 24 7 (B )- 24 7 (C ) 7 24 (D )- 7 24 (4)设函数0021 ,1)(0 ,, 0,12)(x x f x x x x f x 则若>?????>≤-=-的取值范围是( ) (A )(-1,1) (B )(1,)-+∞ (C )(-∞,-2)∪(0,+∞) (D )(-∞,-1)∪(1,+∞) (5)O 是平面上一定点,A B C 、、是平面上不共线的三个点,动点P 满足 [)( ),0,,AB AC OP OA P AB AC λλ=++ ∈+∞则的轨迹一定通过ABC 的 (A )外心 (B )内心 (C )重心 (D )垂心 (6)函数1 ln ,(1,)1 x y x x +=∈+∞ -的反函数为( ) a (A) (B) (C) (D)

(A )1,(0,)1x x e y x e -=∈+∞+ (B )1 ,(0,)1x x e y x e +=∈+∞- (C )1,(,0)1x x e y x e -=∈-∞+ (D )1 ,(,0)1 x x e y x e +=∈-∞- (7)棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为 ( ) (A )33a (B )34a (C )36a (D )3 12 a (8)设2 0,()a f x ax bx c >=++,曲线()y f x =在点00(,())P x f x 处切线的倾斜角的取值范围为0, ,4P π?? ???? 则到曲线()y f x =对称轴距离的取值范围为 ( ) (A )10,a ?????? (B )10,2a ?? ???? (C )0,2b a ?????? (D )10,2b a ?-????? (9)已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为4 1的的等差数列, 则=-||n m ( ) (A )1 (B )4 3 (C )21 (D )83 (10)已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为3 2 - ,则此双曲线的方程是 ( ) (A )14 32 2=-y x (B ) 13422=-y x (C )12522=-y x (D )1522 2 =-y x (11)已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和 AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

2019届江苏省高考数学二轮复习微专题3.平面向量问题的“基底法”和“坐标法”

微专题3 平面向量问题的“基底法”与“坐标法” 例1 如图,在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上.若BE →=λBC →,D F →=19λDC →,则 AE →·A F → 的最小值为 ________. (例1) 变式1 在△ABC 中,已知AB =10,AC =15,∠BAC =π 3,点M 是边AB 的中点, 点N 在直线AC 上,且AC →=3AN → ,直线CM 与BN 相交于点P ,则线段AP 的长为________. 变式2若a ,b ,c 均为单位向量,且a ·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为________. 处理平面向量问题一般可以从两个角度进行: 切入点一:“恰当选择基底”.用平面向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算. 切入点二:“坐标运算”.坐标运算能把学生从复杂的化简中解放出来,快速简捷地达成解题的目标.对于条件中包含向量夹角与长度的问题,都可以考虑建立适当的坐标系,应用坐标法来统一表示向量,达到转化问题,简单求解的目的.

1. 设E ,F 分别是Rt △ABC 的斜边BC 上的两个三等分点,已知AB =3,AC =6,则AE →·A F → =________. 2. 如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·A F →=2,则AE →·B F →=________. 3. 如图,在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE → =33 32 ,则AB 的长为________. (第2题) (第3题) (第4题) 4. 如图,在2×4的方格纸中,若a 和b 是起点和终点均在格点上的向量,则向量2a +b 与a -b 夹角的余弦值是________. 5. 已知向量OA →与OB →的夹角为60°,且|OA →|=3,|OB →|=2,若OC →=mOA →+nOB →,且OC → ⊥AB → ,则实数m n =________. 6. 已知△ABC 是边长为3的等边三角形,点P 是以A 为圆心的单位圆上一动点,点Q 满足AQ →=23AP →+13 AC →,则|BQ → |的最小值是________. 7. 如图,在Rt △ABC 中,P 是斜边BC 上一点,且满足BP →=12 PC → ,点M ,N 在过点P 的直线上,若AM →=λAB →,AN →=μAC → ,λ,μ>0,则λ+2μ的最小值为________. (第7题) (第8题) (第9题) 8. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,E 为线段AO 的中点.若BE → =λBA →+μBD → (λ,μ∈R ),则λ+μ=________. 9. 如图,在直角梯形ABCD 中,若AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1, 动点P 在边BC 上,且满足AP →=mAB →+nAD → (m ,n 均为正实数),则1m +1n 的最小值为________. 10. 已知三点A(1,-1),B(3,0),C(2,1),P 为平面ABC 上的一点,AP →=λAB →+μAC → 且AP →·AB →=0,AP →·AC →=3. (1) 求AB →·AC →的值; (2) 求λ+μ的值.

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

2014年江苏高考数学(理科)答案与解析

2014江苏高考数学试题及参考答案 数学I 一、填空题:本大题共14小题,每小题5分,共计70分。请把答案填写在答题卡相应位置上。 1.已知集合{2,1,3,4}A =--,{1,2,3}B =-,则A B =______. 【解析】{1,3}- 2.已知复数2(52i)z =-(i 是虚数单位),则z 的实部为______. 【解析】21 2 254i 20i 2120i z =+-=- 3.右图是一个算法流程图,则输出的n 的值是______. 【解析】5 4.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是______. 【解析】1 3 当且仅当两数为1,6或2,3时乘积为6,有2种情况, 从这4个数中任取两个数有24C 6=种,故概率为 1 3 5.已知函数cos y x =与sin(2)y x ?=+(0π)?≤<,它们的图象有一个横坐标为π 3 的交点,则? 的值是________. 【解析】π 6 由题意,ππ1sin(2)cos 332?? +==,∵0π?≤<,∴2π2π5π 333?≤+< 当且仅当2π5π36?+= ,π 6 ?=时等式成立 6.某种树木的底部周长的频率分布直方图如图所示,则在抽测的60株树木中,有______株树木的 底部周长小于100cm . (第6题) /cm (第3题)

【解析】24 ∵60(0.150.25)24?+= 7.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值为_____. 【解析】4 设公比为q (0)q >,则由8642a a a =+得26 6622a a q a q =+,解得22q =,故4624a a q == 8.设甲、乙两个圆柱的底面积分别为12,S S ,体积分别为12,V V ,若它们的侧面积相等,且 1294 S S =, 则 1 2 V V 的值是________. 【解析】 32 设两圆柱底面半径为12,r r ,两圆柱的高为12,h h 则1232r r =,∵两圆柱侧面积相等,∴11222π12πr h r h =,1223h h =,则11122232 V S h V S h == 9.在平面直角坐标系xoy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为_______. ∵圆心(2,1)-到直线230x y +-= 的距离d = = ∴直线230x y +-=被圆22(2)(1)4x y -++= 截得的弦长为 10.已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有()0f x <成立,则实数m 的取值范 围是_______. 【解析】?? ? ??? 若0m ≥,对称轴02m x =-≤,2(1)230f m m m +=+<,解得3 02 m -<<,舍去; 当0m <时,2 m m <- ,()f x 在[,1]x m m ∈+上的最大值只可能在x m =和1x m =+处取到 因此2 2 ()210 (1)230 f m m f m m m ?=-

江苏省高考数学试卷 真题详细解析

2017年江苏省高考数学试卷 一.填空题 1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件. 4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是. 5.(5分)若tan(α﹣)=.则tanα=. 6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是. 7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数

x,则x∈D的概率是. 8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项和为S n,已知S3=,S6=,则a8=. 10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x 的值是. 11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a ﹣1)+f(2a2)≤0.则实数a的取值范围是. 12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,, 与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=. 13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是. 14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是. 二.解答题 15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.

数学2003江苏卷(附解答)

a (A) (B) (C) (D) 2003年普通高等学校招生全国统一考试(江苏卷) 数学试题 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1.如果函数a bx ax y ++=2的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区 域(不包含边界)为 ( ) 2.抛物线2ax y =的准线方程是y=2,则a 的值为 ( ) A . 8 1 B .- 8 1 C .8 D .-8 3.已知== -∈x x x 2tan ,5 4cos ),0,2 (则π ( ) A . 24 7 B .-24 7 C .7 24 D .-7 24 4.设函数,1)(.0, ,0,12)(021>??? ??>≤-=-x f x x x x f x 若则 x 0的取值范围是 ( ) A .(-1,1) B .(-1,+∞) C .(-∞,-2)∪ (0,+∞) D .(-∞,-1)∪(1,+∞) 5.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 ),,0[),(+∞∈+ +=λλOA OP 则P 的轨迹一定通过△ABC 的 ( ) A .外心 B .内心 C .重心 D .垂心

6.函数),1(,1 1ln +∞∈-+=x x x y 的反函数为 ( ) A .),0(,11+∞∈+-= x e e y x x B .),0(,11+∞∈-+=x e e y x x C .)0,(,1 1-∞∈+-=x e e y x x D .)0,(,1 1-∞∈-+=x e e y x x 7.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为 ( ) A . 3 3 a B . 4 3 a C . 6 3 a D . 12 3 a 8.设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))(,(00x f x P 处切线的倾斜角的取值范 围为]4,0[π ,则P 到曲线)(x f y =对称轴距离的取值范围为 ( ) A .[a 1,0] B .]21, 0[a C .|]2| ,0[a b D .|]21| ,0[a b - 9.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则 |m -n|= ( ) A .1 B . 4 3 C . 2 1 D . 8 3 10.已知双曲线中心在原点且一个焦点为F (7,0)直线y=x -1与其相交于M 、N 两点, MN 中点的横坐标为3 2- ,则此双曲线的方程是 ( ) A . 14 3 2 2 =- y x B . 13 4 2 2 =- y x C . 12 5 2 2 =- y x D . 15 2 2 2 =- y x 11.已知长方形四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中 点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).设P 4的坐标为(x 4,0).若1< x 4<2,则tan θ的取值范围是 ( ) A .)1,31 ( B .)3 2 ,31( C .)2 1 ,52( D .)3 2 ,52( 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( ) A .3π B .4π C . 33π D .6π

江苏省高考数学二轮复习 专题10 数列(Ⅱ)

江苏省2013届高考数学(苏教版)二轮复习专题10 数__列(Ⅱ) 回顾2008~2012年的高考题,数列是每一年必考的内容之一.其中在填空题中,会出现等差、等比数列的基本量的求解问题.在解答题中主要考查等差、等比数列的性质论证问题,只有2009年难度为中档题,其余四年皆为难题. 预测在2013年的高考题中,数列的考查变化不大: 1填空题依然是考查等差、等比数列的基本性质. 2在解答题中,依然是考查等差、等比数列的综合问题,可能会涉及恒等关系论证和不等关系的论证. 1.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________. 解析:S 100=1002(a 1+a 100)=45,a 1+a 100=9 10 , a 1+a 99=a 1+a 100-d =25 . a 1+a 3+a 5+…+a 99=50 2 (a 1+a 99)=502×25 =10.

答案:10 2.已知数列{a n }对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=-6,那么a 10=________. 解析:由已知得a 4=a 2+a 2=-12,a 8=a 4+a 4=-24,a 10=a 8+a 2=-30. 答案:-30 3.设数列{a n }的前n 项和为S n ,令T n = S 1+S 2+…+S n n ,称T n 为数列a 1,a 2,…,a n 的“理 想数”,已知数列a 1,a 2,…,a 500的“理想数”为2 004,那么数列12,a 1,a 2,…,a 500的“理想数”为________. 解析:根据理想数的意义有, 2 004=500a 1+499a 2+498a 3+…+a 500 500, ∴501×12+500a 1+499a 2+498a 3+…+a 500 501 = 501×12+2 004×500 501 =2 012. 答案:2 012 4.函数y =x 2 (x >0)的图象在点(a k ,a 2 k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数, a 1=16,则a 1+a 3+a 5=________. 解析:函数y =x 2 (x >0)在点(16,256)处的切线方程为y -256=32(x -16).令y =0得a 2 =8;同理函数y =x 2(x >0)在点(8,64)处的切线方程为y -64=16(x -8),令y =0得a 3=4;依次同理求得a 4=2,a 5=1.所以a 1+a 3+a 5=21. 答案:21 5.将全体正整数排成一个三角形数阵: 按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________.

专题01 函数与方程思想(解析版)

专题01 函数与方程思想 思想方法诠释 1.函数的思想:是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题得到解决的思想. 2.方程的思想:是建立方程或方程组或者构造方程或方程组,通过解方程或方程组或者运用方程的性质去分析问题、转化问题,从而使问题获得解决的思想. 【典例讲解】 要点一 函数与方程思想在函数、方程、不等式中的应用 [解析] (1)当y =a 时,2(x +1)=a ,所以x =a 2 -1. 设方程x +ln x =a 的根为t ,则t +ln t =a ,则|AB |=????t -a 2+1=????t -t +ln t 2+1=????t 2-ln t 2 +1.设g (t )=t 2-ln t 2+1(t >0),则g ′(t )=12-12t =t -12t ,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为3 2,故选D. (2)因为函数f (x )=log 3(9x +t 2)是定义域R 上的增函数,且为“优美函数”,则f (x )=x 至少有两个不等 实根,由log 3(9x +t 2)=x ,得9x +t 2=3x ,所以(3x )2-3x +t 2=0有两个不等实根.令λ=3x (λ>0),则λ2-λ+t 2 =0有两个不等正实根,所以????? Δ=1-4t 2>0,t 2>0, 解得-12

(完整版)2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷 参考答案与试题解析 一、填空题(本大题共14小题,每小题5分,共计70分) 1.(5分)(2015?江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5. 考点:并集及其运算. 专题:集合. 分析:求出A∪B,再明确元素个数 解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5}; 所以A∪B中元素的个数为5; 故答案为:5 点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题 2.(5分)(2015?江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6. 考点:众数、中位数、平均数. 专题:概率与统计. 分析:直接求解数据的平均数即可. 解答:解:数据4,6,5,8,7,6, 那么这组数据的平均数为:=6. 故答案为:6. 点评:本题考查数据的均值的求法,基本知识的考查. 3.(5分)(2015?江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为. 考点:复数求模. 专题:数系的扩充和复数. 分析:直接利用复数的模的求解法则,化简求解即可. 解答:解:复数z满足z2=3+4i, 可得|z||z|=|3+4i|==5, ∴|z|=. 故答案为:. 点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力. 4.(5分)(2015?江苏)根据如图所示的伪代码,可知输出的结果S为7.

考点:伪代码. 专题:图表型;算法和程序框图. 分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7. 解答:解:模拟执行程序,可得 S=1,I=1 满足条件I<8,S=3,I=4 满足条件I<8,S=5,I=7 满足条件I<8,S=7,I=10 不满足条件I<8,退出循环,输出S的值为7. 故答案为:7. 点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题. 5.(5分)(2015?江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为. 考点:古典概型及其概率计算公式. 专题:概率与统计. 分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则 一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种, 其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种; 所以所求的概率是P=. 故答案为:. 点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目. 6.(5分)(2015?江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3. 考点:平面向量的基本定理及其意义. 专题:平面向量及应用.

相关主题
文本预览
相关文档 最新文档