当前位置:文档之家› 线性代数

线性代数

线性代数
线性代数

1线性方程组

1. 三种行初等变换

倍加变换(某一行的倍数加到另一行)对换变换(两行交换)

倍乘变换(某一行所有元素乘以同一个非零数)

2. 行等价

一个矩阵可经过一系列初等行变换成为另一个矩阵。

行变换可逆。

3. 若两个线性方程组的增广矩阵行等价,则它们有相同的解集。

4. 简化行阶梯矩阵

a) 非零行的先导元素为0

b) 先导元素1是该元素所在列的唯一非零元素

一个矩阵的简化行阶梯矩阵唯一。

5. 对应于主元列的变量称基本变量,其他变量称自由变量。

6. 向量的平行四边形法则

若R2中的向量u,v用平面上的点表示,则u+v对应于u,v,0为三个顶点的平行四边形的第四个顶点。

[思考:即使u,v不是R2而是R3甚至R n中的向量,上述结论是否仍然成立?]

7. 向量方程

x1a1+x2a2+...+x n a n=b

和增广矩阵如下的线性方程组

[a1 a2 ... a n b]

和矩阵方程

Ax=b

有相同的解集。

8. 方程Ax=b有解的条件:b是A的各列的线性组合。

9. 设A为mxn矩阵,以下命题等价:

a) 对R m中每个b,Ax=b有解

b) R m中的每个b都是A的列的一个线性组合

c) A的各列生成R m(R m = Span{A各列})

d) A在每一行都有一个主元位置(注意是A的每一行,*不*是A的增广矩阵的每一行)

10. 方程Ax=0有非平凡解的条件:至少有一个自由变量。

11. 如果非齐次方程有多个解,其解可表示为一个向量(这个向量也是非齐次方程的特解)加上相应的齐次方程的解。

或者说:非齐次方程解=该方程特解+对应的齐次方程的通解

12. 若一组向量v1,v2,...,v n组成的向量方程

x1v1+x2v2+...+x n v n = 0

仅有平凡解,则这些向量线性无关;否则这些向量线性相关。

同样,仅当矩阵方程Ax=0仅有平凡解,A的各列线性无关。

13. 单个的零向量线性相关,因为0x=0有非平凡解;同理,单个的非零向量线性无关。含有零向量的向量组必定线性相关。

14. 向量集线性相关,则其中至少一个向量是其他向量的线性组合;但该集合中也有可能存在不能表示为其他向量线性组合的向量。

15. 若向量组中的向量个数超过每个向量的元素个数,那么这个向量组必定线性相关。

16. 仅存在两个向量的向量集是否线性相关很好判断:看一个是否是另一个的倍数就可以了。

17. 矩阵A与向量x的积,就是A的各列以x中对应元素为权的线性组合。下式中,A为矩阵,x为向量,x n为向量元素,a n为矩阵列。

Ax =x1a1+x2a2+...+x n a n

18. 设u,v是R3中的线性无关向量,那么span{v}是过零点和v的直线,span{u,v}是过u,v,0的平面。

19. 矩阵乘法Ax=b的另一种理解是,将矩阵A作用于向量x,产生新向量b。解方程Ax=b就是求出R n 中所有经过A的“作用”后变为b的向量x。

20. 符号T:R n->R m说明T的定义域是R n,余定义域是R m。T(x)的集合是T的值域。

21. 由R n到R m的每个线性变换都是矩阵变换,反之亦然(每个矩阵变换都是线性变换)。即对于线性变换R n->R m,存在唯一矩阵A使得T(x)=Ax(对R n中一切x )。

A可按下式求得:

A = [T(e1) T(e2) ... T(e n)]

其中e j是单位矩阵I n的第j列。A称为线性变换T的标准矩阵。

22. 若T的值域是整个余定义域,T是满射;若T是一对一的,T是单射。

23. 线性映射T是一对一的条件:Ax=0仅有平凡解。

24. 若T为线性变换,A为T的标准矩阵,那么:

当且仅当A的列生成R m时,T把R n映上到R m(即将R n映射到R m上,满射);

当且仅当A的列线性无关时,T是一对一的。

2矩阵代数

1. 设A,B为可以相乘的矩阵,AB的每一列都是A的各列的线性组合,以B的对应列的元素为权。

同样,AB的每一行都是B的各行的线性组合,以A的对应行的元素为权。

例如,AB的第m列是以B的第m列为权的A的各列的线性组合;

AB的第n行是以A的第n行为权的B的各行的线性组合。

2. 矩阵乘法恒等式:I m A = A = AI n

3. 逆矩阵的概念仅对方阵有意义。

4. 若A可逆,则对每一R n中的b,方程Ax=b有唯一解x=A-1b

5. 初等矩阵:将单位矩阵进行一次初等行变换所得的矩阵。

6. 对mxn矩阵A进行初等行变换所得的矩阵,等于对单位矩阵进行相同行变换所得初等矩阵与A相乘的结果。

设对单位矩阵I m进行初等行变换所得初等矩阵为E,对A进行相同初等行变换的结果可写为EA。

因为初等行变换可逆,所以必有另一行变换将E变回I。设该“另一行变换”对应初等矩阵为F,结合上一行,F对E的作用可写为FE=I。

因此,每个初等矩阵均可逆。

7. 当n阶方阵A行等价于I n时,A可逆。此时,将A变为I n的一系列初等行变换同时将I n变为A-1。

8. 求A-1:将增广矩阵[A I] 进行行化简,若A可逆,则[A I] ~ [I A-1]

将 [A I] 行变换为[I A-1]的过程可看作解n个方程组:

Ax=e1, Ax=e2, ... Ax=e n

这n个方程组的“增广列”都放在A的右侧,就构成矩阵

[A e1 e2 ... e n] = [A I]

如果我们只需要A-1的某一列或某几列,例如需要A-1的j列,只需解方程组Ax=e j,而不需要求出整个A-1。

[注:根据此条可以导出利用克拉默法则求逆矩阵的公式]

9. 可逆矩阵定理

对于n阶方阵,以下命题等价:

a) A可逆

b) A与n阶单位矩阵等价

c) A有n个主元位置

d) 方程Ax=0仅有平凡解

e) A各列线性无关

f) 线性变换x|->Ax是一对一的

g) 对R n中任意b,Ax=b至少有一个解(有且仅有唯一解?)

h) A各列生成R n

i) 线性变换x|->Ax将R n映上到R n

j) 存在nxn阶矩阵B,使AB=BA=I

k) A T可逆

l) A的列向量构成R n的一个基

m) ColA=R n

n) dim(Col(A))=n

o) rank(A)=n

p) Nul(A)=0

q) dim(Nul(A))=0

r) det(A)≠0 <=> A可逆

s) A可逆当且仅当0不是A的特征值

t) A可逆当且仅当A的行列式不等于零

再次强调,以上命题仅对n阶方阵等价。对于mxn(m≠n)则未必

10. 分块矩阵乘法

两个矩阵A、B相乘,要求A的列数等于B的行数,因此若要使分块后的矩阵能够应用乘法,分块时A 的列分法必须与B的行分法一致,而A的行分法与B的列分法可以任意。

例如A有5列B有5行,A分块为3列/2列,那么B就要分为3行/2行。

11. 按上一项所述,如果将A的每一列都分作为一块,同样将B的每一行都分作为一块,那么就可以得到:

AB = [col1(A) col2(A) ... col n(A)] [row1(B) row2(B) ... row n(B)]T

= sigma(col k(A)row k(B)) (1 ≤ k ≤ n)

每个col k(A)row k(B)本身也是一个mxp矩阵(假设A为mxn矩阵,B为nxp矩阵)。

12. 单位下三角矩阵的逆也是单位下三角矩阵。

13. LU分解

如果A可化为阶梯形U,且化简过程中仅使用行倍加变换(将一行倍数加到它下面的另一行),那么由于每次初等变换均等价于相应初等矩阵与A相乘,所以A到U的变换过程可表示为:

E p...E1A=U

于是A可表示为A=LU,其中L=(E p...E1)-1,即L=E1-1...E p-1

由于单位下三角矩阵的逆也是单位下三角矩阵,所以L为单位下三角矩阵。

14. 向量空间:向量集中的向量满足加法交换律和结合律、标量乘法交换律和结合律、存在零向量和负向量,以上运算结果仍在该集合中。

15. 子空间:非空,对加法和标量乘法封闭(非空且封闭则必包含零向量)。

16. 若v1, v2, ... vp在V中,Span(v1, v2, ... vp)是V的子空间。

17. 设A为mxn矩阵,满足Ax=0的x集合是A的零空间,是R n的子空间,空间中的任意向量v满足Av=0。

18. 设A为mxn矩阵,A的列的所有线性组合是A的列空间,是R m的子空间,空间中的任意向量v使方程Ax=v相容。

19. 子空间的维与向量的维:向量中元素数量是向量的维;子空间的基的向量的数量是子空间的维。

20. 矩阵A的行空间的维=列空间的维=rank(A)

21. 若A有n列,那么rank(A) + dim(Nul(A)) = n

22. 矩阵的主元列构成列空间的基

23. 若A,B均为nxn矩阵,则detAB=(detA)(detB) [注:一般来说det(A+B)≠detA+detB]

24. 若A为nxn矩阵,且除了其中一列以外其他各列固定,那么detA是那个可变列的线性函数

25. 若A是一个2x2矩阵,那么由A的列确定的平行四边形面积为|detA|

若A是一个3x3矩阵,那么由A的列确定的平行六面体的体积为|detA|

(若A为2x2矩阵,两列为v1,v2,那么平行四边形的四个顶点为0,v1,v2,v1+v2)

(若A为3x3矩阵,三列为v1,v2,v3,那么平行六面体的八个顶点为0,v1,v2,v3,v1+v2,v1+v3,v2+v3,v1+v2+v3)

26. 若T: R2->R2是由一个2x2矩阵A确定的线性变换,S是R2中的一个平行四边形,则:

T(s)的面积=|detA|·S的面积

3向量空间

0. 尽管我们在大多数情况下我们以R n作为向量空间的研究对象,但实际上有很多非R n形式的向量空间。

例如,最高次幂为n的多项式空间。

1. mxn矩阵A的零空间是R n的子空间;同样,m个方程n个未知数的齐次线性方程组的解的集合也是R n的子空间。

NulA的生成集中向量的个数等于方程Ax=0中自由变量的个数。

当且仅当Ax=0仅有平凡解,NulA={0}。

当且仅当x|->Ax是一对一的,NulA={0}。

2. mxn矩阵A的列空间是A的列的线性组合组成的集合,ColA是R m的子空间。

当且仅当Ax=b对每一个b都有一个解,ColA=R m

当且仅当x|->Ax将R n映上到R m,ColA=R m

3. 向量空间V->W的线性变换T将V中每个向量x映射成W中唯一向量T(x)

线性变换T的核(即零空间)是V中所有满足T(u)=0的向量u的集合

T的值域(即列空间)是W中所有具有形式T(x)的向量的集合

4. 矩阵的行初等变换不影响矩阵列的线性相关关系(想象方程组的求解过程)

5. 矩阵A的主元列构成ColA的一个基

与矩阵A等价的阶梯矩阵的非零行构成RowA的一个基

若两个矩阵行等价,它们有相同的行空间

6. 如果一个一般意义上的向量空间(不一定是R x)的基包含n个向量,那么该向量空间中的某个向量可以用相对于该基的坐标操作,这样就使得操作V像操作R n一样方便。

例如,n次多项式向量空间的一个基是{t0, t1, ..., t n}

向量y=a0+a1t+...+a n t n相对于该基的坐标是R n+1中的向量:

[a0 a1 ... a n]T

7. 对R n中的一个基B={b1,b2, ..., b n},若令P B=[b1 b2 ... b n]

那么:x=P B[x]B

[x]B=P B-1x

8. 若向量空间V的一个基是B={b1,b2, ..., b n},那么x|->[x]B是由V映上到R n的一对一的线性变换。

9. 若B和C都是向量空间V的基,假定基中的向量个数为n,则存在一个nxn矩阵P C<-B使得:

[x]C=P C<-B[x]B

其中P C<-B是基B中向量的C-坐标向量:

P C<-B=[ [b1]c ... [b n]c ]

该矩阵称为由B到C的坐标变换矩阵。自然,

[x]B=P C<-B-1[x]C

如上所述,P C<-B是基B中向量的C-坐标向量,所以可以按下式求P C<-B:

[c1...c n | b1...b n] ~ [ I | P C<-B ]

10. 一个具有非负分量且各分量数值相加等于1的向量称为概率向量;随机矩阵是各列均为概率向量的方阵。

对一个nxn的正规随机矩阵P,存在稳态向量(也是概率向量)q使得Pq=q

4 特征值与特征向量

1. 一个例子:随机矩阵与其稳态向量q满足Aq=q,此时特征值λ=1,特征向量即稳态向量q。

2. 由Ax=λx,可以推出(A-λI)x=0。由于特征向量不能为0,该方程必须有非平凡解,因此A-λI不可逆;

所以det(A-λI)=0。据此可解出所有λ,再跟据λ可解出特征向量。det(A-λI)=0称为特征方程。

3. 根据齐次线性方程组的特点,一个特征值对应的特征向量有无限多个,且对应于λ的所有特征向量加上零向量可以构成向量空间,称为矩阵A对应于特征值λ的特征空间。

4. n阶矩阵的特征方程是λ的n阶方程,如果将特征向量限制在R中,那么特征方程未必有解,即不是所有的矩阵都有R域中的特征值;但每一个矩阵一定存在n个复数域中的特征值(k重根按k个特征值计)。

5. 设λ1,...λr是n阶矩阵的r个相异特征值,v1,...v r是对应的r个特征向量,那么向量集{v1,...v r}线性无关。

6. 若存在可逆矩阵P使得两个n阶矩阵A,B满足A=PBP-1,则称A,B相似。

7. 若n阶矩阵A,B相似,那么这两者有相同的特征多项式,从而有相同的特征值(包括相同的代数重数)。

8. 特征向量的应用举例

假设我们现在要分析x k+1=Ax k,x0已知。如果我们能将x0分解为A的特征向量的线性组合,比如x0=c1v1+c2v2,v1,v2为A的特征向量,

那么上述递归方程就能有一个简单的解法解出x k:

x1=Ax0

=A(c1v1+c2v2)

=c1Av1+c2Av2

=c1λv1+c2λv2

x2=Ax1

=A(c1λv1+c2λv2)

=c1λAv1+c2λAv2

=c1λ2v1+c2λ2v2

...

x k=c1λk v1+c2λk v2

9. n阶矩阵可对角化的条件是A有n个线性无关的特征向量。

若A=PDP-1,D为对角阵,那么P的列向量是A的n个线性无关的特征向量,D的主对角线元素是A 的对应于P中特征向量的特征值。

换言之,A可对角化的充分必要条件是有足够多的特征向量形成R n的基。这样的基称为特征向量基。

10. 某特征值对应的特征空间的维数小于或等于该特征值的代数重数。

11. 矩阵A可对角化的充分必要条件是所有不同特征空间的维数和为n,即每个特征值对应特征空间的维数等于该特征值的代数重数。

12. 若A可对角化,那么所有特征空间的基的向量的集合是R n的特征向量基。

13. 若V是n维向量空间,W是m维向量空间,T是V到W的线性变换,B和C分别是V和W的基,那么T相对于基B和C的矩阵为:

M=[ [T(b1)]c ... [T(b n)]c ]

用M来表示V到W的变换:

[T(x)]c = M[x]B

若W=V,C=B,上式即简化为:

[T(x)]B = [T]B[x]B

此时M=[T]B,称为T相对于B的矩阵,或简称为T的B-矩阵。

14. 设A=PDP-1,D为n阶对角矩阵,若R n的基由P的列向量组成,那么D是变换x|->Ax的B-矩阵。

实际上,上述表述中,D不一定要是对角矩阵。

设y=Ax,且A可表示成PDP-1,那么:

y=Ax

=> y=PDP-1x

=> P-1y=P-1PDP-1x

=> P-1y=DP-1x

=> (P-1y)=D(P-1x)

P-1y和P-1x可分别看作y和x在R n的基P下的坐标。

对于差分方程x k+1=Ax k,上式就成为:

P-1x k+1=D(P-1x k)

用w表示x在P下的坐标,就是:

w K+1=Dw k

矩阵A对角化后的最大优点是解耦了向量x的各分量。

5正交与最小二乘

1. 内积:如果u和v是R n空间的向量,u和v的内积定义为:

u·v = u T v

内积满足交换律。

2. u·u≥0,在u=0时取等号。

3. 向量的长度即向量的范数,记作||v||。

||v||=sqrt[∑(v i2)]

4. 向量的距离dist(u,v)=sqrt(∑[(u i-v i)2])

5. 两个向量正交 <=> u·v=0 <=> ||u+v||2=||u||2+||v||2

6. 若A为mxn矩阵,A的行向量空间的正交补空间是A的零空间,A的列向量空间的正交补空间是A T 的零空间。

如果x是NulA中的向量,那么根据Ax=0,x与A的每一行正交;

如果x与A的每一行正交,那么x满足Ax=0,x是NulA中的向量。

7. 若W是R n的子空间,那么W的正交补也是R n的子空间。

8. u·v=||u|| ||v|| cosθ

9. 若Rn中的向量集合W中的任意两个不同向量都正交,该向量集称为正交向量集。非零正交向量集是线性无关集。

10. 一个向量y相对于该向量所在向量空间的某个正交基的坐标可根据下式计算;c j=(y·u j)/(u j·u j)

u j是基中的向量,c j是对应该向量的权。

如果基非正交,那么就必须求解线性方程组才能得到y相对于该基的坐标。

11. 若向量空间R n的某个子空间W的某个正交基为{u1,...,up},向量y在W上的正交投影为:

Proj w y=[(y·u1)/(u1·u1)]u1+...+[(y·u p/u p·u p)]u p

y=Proj w y+z

向量z与向量空间W正交,z=y-Proj w y。

和式中的每个分量是y在对应基向量上的正交投影Proj u y。

Proj w y是W中最接近y的点,或者说是W中元素对y的最佳逼近。

12. 如果U是具有单位正交列的mxn矩阵,x和y是R n的向量,那么:

||Ux||=x

(Ux)·(Uy)=x·y

(Ux)·(Uy)=0 <=> x·y=0

即映射x->Ux不改变长度和正交性。

13. 单位正交矩阵是一个可逆方阵且满足U-1=U T

14. 如果{u1,...u n}是Rn子空间W的单位正交基,那么:

Proj w y=(y·u1)u1+...+(y·u p)u p=UU T y

15. 若U是nxp矩阵且列单位正交,W是U的子空间,那么:

U T Ux=I p x=x

UU T y=Proj w y

16. 对R n非零子空间构造正交基的方法

假定Rn中子空间W有基{x1,...,xn}

选取v1=x1

从x2中除去其在v1(即x1)上的投影得到v2:v2=x2-Proj v1x2

从x3中除去其在{v1,v2}上的投影得到v3:v3=x3-Proj v1x3-Proj v2x3

......

将以上正交基单位化即得到标准正交基。

17. QR分解

如果mxn矩阵A的列线性无关,那么A可以分解为QR,Q为mxn矩阵,其列为ColA的标准正交基;R为nxn上三角可逆矩阵。

QR分解实际上就是将A的列经标准正交化得到Q,而R=Q-1A=Q T A。

18. 满足Ax=b的最小二乘解满足方程:

A T Ax=A T b

该方程称为Ax=b的法方程。

19. 矩阵A T A可逆的充分必要条件是A的列线性无关。此时Ax=b有唯一最小二乘解(A T A)-1A T b

20. 内积空间:不严格的理解:在满足一定规则的前提下,我们可以对向量空间的两个向量作自定义运算,以满足实际要求。

例如给向量中的某个元素赋予更高的权值;或者对于元素为表达式的情况,对表达式中的变量仅取特定值。

21. 加权最小二乘:若W是元素(即权值)非负的对角矩阵,则最小二乘方程为(WA)T WAx=(WA)T Wy

6SVD与PCA

1.我们知道,如果矩阵A有一组特征值λk和特征向量v k,那么下式成立:

Av k=λv k

矩阵的奇异值σ满足类似的式子,如下所示:

Av k=σk u k

各单位向量v k相互正交;各单位向量u k也相互正交。

以二阶矩阵为例,它有两个奇异值σ1,σ2:

Av1=σ1u1

Av2=σ2u2

v1和v2正交,u1和u2正交,且均为单位向量。对于R2中的任意向量x,若将其投影到span{v1,v2},那么:

Ax=A[(v1·x)v1+(v2·x)v2]

=(v1·x)Av1+(v2·x)Av2

=(v1·x)σ1u1+(v2·x)σ2u2

=u1σ1v1T x+u2σ2v2T x // 此处利用了m T np=pm T n,p,m,n为同阶向量

因此A=u1σ1v1T+u2σ2v2T

写成更一般的矩阵形式,就是:

A=UΣV

其中:

A是mxn矩阵

U=[u1 u2 ... u m],是mxm方阵

Σ是主对角线为σ1 ... σn的mxn准对角矩阵

V=[v1 v2 ... vn],是nxn方阵

数学史话线性代数发展史简介

数学史话线性代数发展史简介 数学史话—线性代数发展史简介 一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。 傅鹰 数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。 F. Cajori 从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。 V. Z.卡兹 数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。 M(Kline 一、了解数学史的重要意义 数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。与其他文化一样,数学科学是几千年来人类智慧的结晶。在学习数学时,我们基本是通过学习教材来认识这门学科的。教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌

和数学思想产生的过程。正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。 数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。 通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。 二、代数学的历史发展情况 数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟 通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。本节简要介绍一下代数学的历史发展情况。 “代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔?花拉子米(al-Khwarizmī,约780,850)一本代数教程,书名的直译为《还原与对消的计算概要》(其书名中的al-jabr 这个词意为“还原”,它所指的意思是把方程式一边的负项移到方程另一端“还原”为正项;al-muqabala意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项。在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文词“algebra”就是阿拉伯文“al-jabr”的讹用。

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮食也没有规 律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,,x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在一段时间内, 每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入= 实际收入+支付服务费) 解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题意,建立方程 组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得

x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表, 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609 0.65217391304348 矩阵的应用 案例1 矩阵概念的引入 (1)线性方程组 1111221121122222 1122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=?? ??+++=? 的系数(,1,2,,),(1,2,,)i j j a i j n b j n == 按原来的位置构成一数表

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

考研线性代数公式速记大全

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○ 注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○ 注 ()()a b r aE bA n aE bA aE bA x οολ+

12121211 12121222()121 2()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 √ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ②若A B 与都是方阵(不必同阶),则 == ()mn A O A A O A B O B O B B O A A A B B O B O *= =* * =-1(拉普拉斯展开式) ③上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④关于副对角线: (1)2 1121 21 1211 1 ()n n n n n n n n n n n a O a a a a a a a O a O ---* ==- 1 (即:所有取自不同行不 同列的n 个元素的乘积的代数和) ⑤范德蒙德行列式:()1 2 2 22 1211 1112n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏ 111 由m n ?个数排成的m 行n 列的表11 12121 2221 2 n n m m mn a a a a a a A a a a ?? ? ? = ? ? ?? 称为m n ?矩阵.记作:()ij m n A a ?=或m n A ? () 1121112222* 12n T n ij n n nn A A A A A A A A A A A ?? ? ? == ? ? ?? ,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法: ① 1 A A A *-= ○注: 1 a b d b c d c a ad bc --????= ? ? --???? 1 主换位副变号

(完整版)线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式23 0123()p t a a t a t a t =+++, 并求(1.5)f 的近似值。 解:令三次多项式函数23 0123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 279318420 33 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+L 上的值()i f t 时,就可 以用n 次多项式2012()n n p t a a t a t a t =++++L 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数的起源发展及其意义

线性代数的起源发展及其意义 线性代数是处理矩阵和向量空间的数学分支,在现代科学的各个领域都有应用。由于费马和笛卡尔的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因当时对其充分的研究和探索而使其达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在中国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善男才将它翻译成为“代数学”,之后一直沿用。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现。

线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位 在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; 该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数,非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。 现代线性代数已经扩展到研究任意或无限维空间。作

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数发展简史论文范文

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2011年11月6日

摘要:代数学可以笼统地解释为关于字母运算的学科。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。 关键词:高等代数行列式矩阵向量 线性代数发展简史 1 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。 线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,它不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。 在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。 行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。1764年,法国数学家贝佐特(Bezout)把确定行列式每一项的符号的

线性代数应用题

线性代数应用题集锦 郑波 重庆文理学院数学与统计学院 2011年10月

目录 案例一. 交通网络流量分析问题 (1) 案例二. 配方问题 (4) 案例三. 投入产出问题 (6) 案例四. 平板的稳态温度分布问题 (8) 案例五. CT图像的代数重建问题 (10) 案例六. 平衡结构的梁受力计算 (12) 案例七. 化学方程式配平问题 (15) 案例八. 互付工资问题 (17) 案例九. 平衡价格问题 (19) 案例十. 电路设计问题 (21) 案例十一. 平面图形的几何变换 (23) 案例十二. 太空探测器轨道数据问题 (25) 案例十三. 应用矩阵编制Hill密码 (26) 案例十四. 显示器色彩制式转换问题 (28) 案例十五. 人员流动问题 (30) 案例十六. 金融公司支付基金的流动 (32) 案例十七. 选举问题 (34) 案例十八. 简单的种群增长问题 (35) 案例十九. 一阶常系数线性齐次微分方程组的求解 (37) 案例二十. 最值问题 (39) 附录数学实验报告模板 (40)

这里收集了二十个容易理解的案例. 和各类数学建模竞赛的题目相比, 这些案例确实显得过于简单. 但如果学生能通过这些案例加深对线性代数基本概念、理论和方法的理解, 培养数学建模的意识, 那么我们初步的目的也就达到了. 案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 图1 某地交通实况 图2 某城市单行线示意图 【模型准备】某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数发展史

线性代数发展史 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 行列式 行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆(G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝祖(E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系 统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。 总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙 (A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。1815 年,柯西在一篇论文中给出了行列式的第

线性代数案例

线性代数 案例 Cayler-Hamilton 定理 【实验目的】 1.理解特征多项式的概念 2.掌握Cayler-Hamilton 定理 【实验要求】掌握生成Vandermonde 矩阵的vander 命令、求矩阵特征多项式系数的poly()命令、求矩阵范数的norm 命令及矩阵多项式运算的polyvalm 命令 【实验内容】 Cayler-Hamilton 定理是矩阵理论中的一个比较重要的定理,其内容为:若矩阵A 的特征多项式为 1121)det()(+-++++=-=n n n n n a s a s a s a A sI s f 则有()0,f A =亦即 11210 n n n n a A a A a A a E -+++ ++= 假设矩阵A 为Vandermonde 矩阵,试验证其满足Cayler-Hamilton 定理。 【实验方案】 Matlab 提供了求取矩阵特征多项式系数的函数poly(),但是poly()函数会产生一定的误差,而该误差在矩阵多项式求解中可能导致了巨大的误差,从而得出错误的结论。 在实际应用中还有其他简单的数值方法可以精确地求出矩阵的特征多项式系数。例如,下面给出的Fadeev-Fadeeva 递推算法也可以求出矩阵的特征多项式。 ()1111,1,2,...,,,2,...,k k k k k c tr AR k n k R I R AR c I k n --?=-=?? ?==+=? 该算法首先给出一个单位矩阵I ,并将之赋给1R ,然后对每个k 的值分别求出特 征多项式参数,并更新k R 矩阵,最终得出矩阵的特征多项式的系数k c 。该算法可以直接由下面的Matlab 语句编写一个( )1poly 函数实现: Function c=poly1(A) [nr,nc]=size(A); if nc==nr % 给出若为方阵,则用Fadeev-Fadeeva 算法求特征多项式 I=eye(nc); R=I; c=[1 zeros(1,nc)]; for k=1:nc,c(k+1)=-1/k*trace(A*R);r=A*R+c(k+1)*I;

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

教材:线性代数(DOC)

2013届钻石卡学员学习计划---数学三第十五单元(课前或课后学习内容) 计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版 线性代数第一章行列式 第1章第1节二阶与三阶行列式(P1——P4) 第1章第2节全排列及其逆序数(P4——P5) 第1章第3节n阶行列式的定义(P5——P8) 第1章第4节对换(P8——P9) 第1章第5节行列式的性质(P9——P15) 第1章第6节行列式按行(列)展开(P16——P21) 第1章第7节克拉默法则(P21——P25) 本单元中我们应当学习—— 1.行列式的概念和性质,行列式按行(列)展开定理. 2.用行列式的性质和行列式按行(列)展开定理计算行列式. 3.用克莱姆法则解齐次线性方程组.

2013届钻石卡学员学习计划---数学三 第十六单元(课前或课后学习内容) 计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版 线性代数第二章矩阵及其运算 第2章第1节矩阵(P29——P32) 第2章第2节矩阵的运算(P33——P42) 第2章第3节逆矩阵(P42——P47) 第2章第4节矩阵分块法(P47——P54)

2013届钻石卡学员学习计划---数学三线性代数第三章矩阵的初等变换与线性方程组 第3章第1节矩阵的初等变换(P57——P65) 本单元中我们应当学习—— 1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质. 2.矩阵的线性运算、乘法运算、转置以及它们的运算规律. 3. 方阵的幂与方阵乘积的行列式的性质. 4.逆矩阵的概念和性质,矩阵可逆的充分必要条件. 5. 伴随矩阵的概念,用伴随矩阵求逆矩阵. 6.分块矩阵及其运算.

线性代数发展史

线性代数发展史 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹( Leibnitz ,1693 年)。 1750 年克莱姆( Cramer )在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是拉格朗日( Lagrange )在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss )大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre )一书中提出的。(1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物

线性代数学习心得体会doc

线性代数学习心得体会 篇一:学习线性代数的心得体会 学习线性代数的心得体会 线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。我自己对线性代数的应用了解的也不多。但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。 线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。 线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。那么,就应该在第二天有线代课时晚上睡得早一点。如果你觉得上课跟不上老师的思路那么请预习。这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,

想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。 一定要重视上课听讲,不能使线代的学习退化为自学。上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。上课时一定要“虚心”,即使老师讲的某个题自 己会做也要听一下老师的思路。 上完课后不少同学喜欢把上课的内容看一遍再做作业。实际上应该先试着做题,不会时看书后或做完后看书。这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。作业尽量在上课的当天或第二天做,这样能减少遗忘给做作业造成的困难。做作业时遇到不会的题可以 问别人或参考同学的解答,但一定要真正理解别人的思路,绝对不能不弄清楚别人怎么做就照抄。适当多做些题对学习是有帮助的。。 线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只

相关主题
文本预览
相关文档 最新文档