当前位置:文档之家› 线性代数发展史

线性代数发展史

线性代数发展史
线性代数发展史

线性代数发展史

由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。

行列式

行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。

1750 年,瑞士数学家克莱姆(G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝祖(E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系

统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。

总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。

在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙

(A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。

继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。1815 年,柯西在一篇论文中给出了行列式的第

一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。另外,他第一个把行列式的元素排成方阵,采用双足标记法;引进了行列式特征方程的术语;给出了相似行列式概念;改进了拉普拉斯的行列式展开定理并给出了一个证明等。

19 世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士·西尔维斯特(J.Sylvester,1814-1894) 。他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学的不平等对待。西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个次和一个次的多项式中消去x 的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要条件这一结果,但没有给出证明。

继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可比(J.Jacobi,1804-1851) ,他引进了函数行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成。由于行列式在数学分析、几何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。整个19 世纪都有行列式的新结果。除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。

矩阵

矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。

英国数学家凯莱(A.Cayley,1821-1895) 一般被公认为是矩阵论的创

立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。文中他定义了矩阵

的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。

1855 年,埃米特(C.Hermite,1822-1901) 证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831-1872) 、布克海姆(A.Buchheim) 等证明了对称矩阵的特征根性质。泰伯(H.Taber) 引入矩阵的迹的概念并给出了一些有关的结论。

在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。1854 年,约当研究了矩阵化为标准型的问题。1892 年,梅茨勒(H.Metzler) 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。

矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已广泛地应用于现代科技的各个领域。

线性方程组

线性方程组的解法,早在中国古代的数学著作《九章算术方程》章中已作了比较完整的论述。其中所述方法实质上相当于现代的对方程组的增广矩阵施行初等行变换从而消去未知量的方法,即高斯消元法。在西方,线性方程组的研究是在17 世纪后期由莱布尼茨开创的。他曾研究含两个未知量的三个线性方程组组成的方程组。麦克劳林在18 世纪上半叶研究了具有二、三、四个未知量的线性方程组,得到了现在称为克莱姆法则的结果。克莱姆不久也发表了这个法则。18世纪下半叶,法国数学家贝祖对线性方程组理论进行了一系列研究,证明了元齐次线性方程组有非零解的条件是系数行列式等于零。

19 世纪,英国数学家史密斯(H.Smith) 和道奇森(C-L.Dodgson) 继续研究线性方程组理论,前者引进了方程组的增广矩阵和非增广矩阵的概念,后者证明了个未知数个方程的方程组相容的充要条件是系数矩阵和增广矩阵的秩相同。这正是现代方程组理论中的重要结果之一。

大量的科学技术问题,最终往往归结为解线性方程组。因此在线性方程组的数值解法得到发展的同时,线性方程组解的结构等理论性工作也取得了令人满意的进展。现在,线性方程组的数值解法在计算数学中占有重要地位。

二次型

二次型也称为“二次形式”,数域?上的?元二次齐次多项式称为数域?上的?元二次型。二次型是我们线性代数教材的后继内容,为了我们后面的学习,这里对于二次型的发展历史我们也作简单介绍。二次型的系统研究是从18 世纪开始的,它起源于对二次曲线和二次曲面的分类问题的讨论。将二次曲线和二次曲面的方程变形,选有主轴方向的轴作为坐标轴以简化方程的形状,这个问题是在18 世纪引进的。柯西在其著作中给出结论:当方程是标准型时,二次曲面用二次项的符号来进行分类。然而,那时并不太清楚,在化简成标准型时,为何总是得到同样数目的正项和负项。西尔维斯特回答了这个问题,他给出了个变数的二次型的惯性定律,但没有证明。这个定律后被雅可比重新发现和证明。1801 年,高斯在《算术研究》中引进了二次型的正定、负定、半正定和半负定等术语。

二次型化简的进一步研究涉及二次型或行列式的特征方程的概念。特征方程的概念隐含地出现在欧拉的著作中,拉格朗日在其关于线性微分方程组的著作中首先明确地给出了这个概念。而三个变数的二次型的特征值的实性则是由阿歇特(J-N.P.Hachette) 、蒙日和泊松

(S.D.Poisson,1781-1840) 建立的。

柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。后来,他又证明了个变数的两个二次型能用同一个线性变换同时化成平方和。

1851 年,西尔维斯特在研究二次曲线和二次曲面的切触和相交时需要考虑这种二次曲线和二次曲面束的分类。在他的分类方法中他引进了初等因子和不变因子的概念,但他没有证明“不变因子组成两个二次型的不变量的完全集”这一结论。

1858 年,魏尔斯特拉斯对同时化两个二次型成平方和给出了一个一般

的方法,并证明,如果二次型之一是正定的,那么即使某些特征根相等,这个化简也是可能的。魏尔斯特拉斯比较系统的完成了二次型的理论并将其推广到双线性型。

从解方程到群论

求根问题是方程理论的一个中心课题。16 世纪,数学家们解决了三、四次方程的求根公式,对于更高次方程的求根公式是否存在,成为当时的数学家们探讨的又一个问题。这个问题花费了不少数学家们大量的时间和精力。经历了屡次失败,但总是摆脱不了困境。

到了18 世纪下半叶,拉格朗日认真总结分析了前人失败的经验,深入研究了高次方程的根与置换之间的关系,提出了预解式概念,并预见到预解式和各根在排列置换下的形式不变性有关。但他最终没能解决高次方程问题。拉格朗日的弟子鲁菲尼(Ruffini,1765-1862) 也做了许多努力,但都以失败告终。高次方程的根式解的讨论,在挪威杰出数学家阿贝尔那里取得了很大进展。阿贝尔(N.K.Abel,1802-1829) 只活了27 岁,他一生贫病交加,但却留下了许多创造性工作。1824 年,阿贝尔证明了次数大于四次的一般代数方程不可能有根式解。但问题仍没有彻底解决,因为有些特殊方程可以用根式求解。因此,高于四次的代数方程何时没有根式解,是需要进一步解决的问题。这一问题由法国数学家伽罗瓦全面透彻地给予解决。

伽罗瓦(E.Galois,1811-1832) 仔细研究了拉格朗日和阿贝尔的著作,建立了方程的根的“容许”置换,提出了置换群的概念,得到了代数方程用根式解的充分必要条件是置换群的自同构群可解。从这种意义上,我们说伽罗瓦是群论的创立者。伽罗瓦出身于巴黎附近一个富裕的家庭,幼时受到良好的家庭教育,只可惜,这位天才的数学家英年早逝,1832 年 5 月,由于政治和爱情的纠葛,在一次决斗中被打死,年仅21 岁。

置换群的概念和结论是最终产生抽象群的第一个主要来源。抽象群产生的第二个主要来源则是戴德金(R.Dedekind,1831-1916) 和克罗内克(L.Kronecker,1823-1891) 的有限群及有限交换群的抽象定义以及凯莱(A.Kayley,1821-1895) 关于有限抽象群的研究工作。另外,克莱因

(F.Clein,1849-1925) 和庞加莱(J-H.Poincare,1854-1912) 给出了无限变换群和其他类型的无限群,19 世纪70 年代,李(M.S.Lie,1842-1899) 开始研究连续变换群,并建立了连续群的一般理论,这些工作构成抽象群论的第三个主要来源。

1882-1883 年,迪克(W.vondyck,1856-1934) 的论文把上述三个主要来源的工作纳入抽象群的概念之中,建立了(抽象)群的定义。到19 世纪80 年代,数学家们终于成功地概括出抽象群论的公理体系。

20 世纪80 年代,群的概念已经普遍地被认为是数学及其许多应用中最基本的概念之一。它不但渗透到诸如几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支中而起着重要的作用,还形成了一些新学科如拓扑群、李群、代数群等,它们还具有与群结构相联系的其他结构,如拓扑、解析流形、代数簇等,并在结晶学、理论物理、量子化学以及编码学、自动机理论等方面,都有重要作用。

航空航天概论论文

航空发动机未来发展的智能化 院系:机电工程学院 班级:****** 学号:****** 姓名:******

摘要:航空航天业的发展离不开航空发动机的发展,而纵观历史,航空发动机的发展历史并不算久远但是其发展速度却是很迅速的。从最早的活塞式发动机到现在的喷气式发动机,发动机技术的发展大大促进了航空飞行器的发展。早期的飞机飞行的速度并不是很快,主要是受制于发动机的技术,但是今天的飞机不仅飞行速度惊人,而且飞行的安全系数也更高了。现在的航空发动机技术虽然已经很先进,但是还没有到达最高点,也就是说现在的发动机技术还有很大的提升空间。预计未来的发动机会向更加智能的方向发展,包括智能节油技术,智能修复技术等等。 关键词:发动机安全系数智能技术历史前景 一.引言: 航空航天的发展离不开航空发动机发展的支持,发动机对于飞机而言就像心脏对于我们人类一样重要,离开了发动机,飞机就成为了空壳,没有任何用处,所以发动机才是飞行器的核心,发展飞行器虽然要求各方面的技术均衡发展,但是就目前的发展状况来看,发动机技术的发展速度明显落后于其他各方面技术的发展,故发动机的技术在某一个层面上也代表了航空工业的发展现状。从飞机诞生到其被用于战争,世界各国都意识到了飞机将带给世界的巨大影响,于是纷纷开始发展航空飞行器,于是一个更深层面的技术发展拉开了帷幕,它就是发动机的技术研究。 二.航空发动机的发展历史 1.活塞式发动机的发展 很早以前,我们的祖先就幻想像鸟一样在天空中自由飞翔,也曾作过各种尝试,但是多半因为动力源问题未获得解决而归于失败。最初曾有人把专门设计的蒸汽机装到飞机上去试,但因为发动机太重,都没有成功。到19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。 世界上首架飞机是由美国莱特兄弟制造出来的。在当时大多数人认为飞机依靠自身动力的飞行完全不可能,而莱特兄弟确不相信这种结论,从1900年至1902年他们兄弟进行1000多次滑翔试飞,终于在1903年制造出了第一架依靠自身动力进行载人飞行的飞机“飞行者”1号,并且获得试飞成功。他们因此于1909年

线性代数知识点总结

线性代数知识点总结 第一章 行列式 (一)要点 1、二阶、三阶行列式 2、全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义 3、行列式的性质 4、n 阶行列式ij a D =,元素ij a 的余子式和代数余子式,行列式按行(列)展开定理 5、克莱姆法则 (二)基本要求 1、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章 矩阵 (一)要点 1、矩阵的概念 n m ?矩阵n m ij a A ?=)(是一个矩阵表。当n m =时,称A 为n 阶矩阵,此时由A 的元素按原来排列的形式构成的n 阶行列式,称为矩阵A 的行列式,记为A . 注:矩阵和行列式是两个完全不同的两个概念。 2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1)矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。 如果两矩阵A 与B 相乘,有BA AB =,则称矩阵A 与B 可换。 注:矩阵乘积不一定符合交换 (2)方阵的幂:对于n 阶矩阵A 及自然数k , 规定I A =0 ,其中I 为单位阵 .

(3) 设多项式函数k k k k a a a a ++++=--λλλλ?1110)( ,A 为方阵,矩阵A 的 多项式I a A a A a A a A k k k k ++++=--1110)( ?,其中I 为单位阵。 (4)n 阶矩阵A 和B ,则B A AB =. (5)n 阶矩阵A ,则A A n λλ= 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A 可逆,则其逆矩阵是唯一的);矩阵A 的伴随矩阵记为*A , 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如n m A ?,l n B ?,将矩阵B 分块为 ) (21l b b b B =,其中j b (l j 2, ,1=)是矩阵B 的第j 列, 则 又如将n 阶矩阵P 分块为) (21n p p p P =,其中j p (n j 2, ,1=)是矩阵P 的第j 列. (3)设对角分块矩阵

线性代数结课论文

华北水利水电大学 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成:姓名 学号 联系方式: 年月日

摘要:一次方程也叫线性方程,讨论线性方程及线性运算的代数就是线性代数,它是高等代数的一大分支,同时也是大学数学教育中一门主要基础课程。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧式空间和二次型等。 关键词:线性代数行列式矩阵向量线性方程组二次型群论 正文: 1.引言:线性代数是大学数学教育中一门主要基础课程,对于培养面向21世纪人才起着重要作用。通过了解线性代数的发展简史可以让我们更好地理解数学,从而更好地学习并应用它。 2.1 行列式 我们知道,在线性代数中最重要的内容之一就是行列式,它不仅是一种语言和速记,而且他的大多数生动的概念能对新的思想领域提供钥匙,同时人们已经证明了这个概念是数学、物理中非常有用的工具。 行列式出现于线性方程组的求解,它的概念最早是由十七世纪日本数学家关孝和在其著作《解伏题之法》中提出的。他于1683年写

了这本书,书里对行列式的概念和它的算法进行了清除的叙述。同时代的德国数学家莱布尼茨是欧洲提出行列式的第一人,也是微积分学的奠基人之一,他于1693年4月在写给洛比达的一封信中使用并给出了行列式,而且给出方程组的系数行列式为零的条件。 1750年,瑞士数学家克莱姆在其著作《线性带分析导引》中,比较完整、明确地阐述了行列式的定义与展开法,并且发表了求解线性系统方程的重要公式,即我们现在所称的解线性方程组的克莱姆法则。 1764年,数学家贝祖将确定行列式每一项符号的方法进行了系统化,利用系数行列式等于零这一条件判断对给定了含n个未知量的n 个齐次线性方程是否有非零解。 尽管上述几位数学家对行列式的提出与应用做出了很大的贡献,但仍在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 可喜的是,法国数学家范德蒙给出了一条法则,用二阶余子式和它们的余子式来展开行列式,从而把行列式理论与线性方程组求解相分离,他也因此成为了第一个对行列式理论做出连贯的系统的阐述的人。范德蒙自幼在父亲的指导下学习音乐,但他对数学却有浓厚的兴趣,后来终于成为了法兰西科学院院士,就对行列式本身这一点来说,他是这门理论的奠基人。 1772年,拉普拉斯在论文《对积分和世界体系的探讨》中证明了范德蒙的一些规则,并推广了他的展开行列式的方法。

《线性代数A》教学大纲

《线性代数A》教学大纲 课程中文名称:线性代数A 课程性质: 必修 课程英文名称:Linear Algebra A 总学时:48学时,其中课堂教学48学时 先修课程:初等数学 面向对象:全校理工科学生(包括财经类等文科专业) 开课系(室):数学科学系 一.课程性质、目的和要求 线性代数是理工科及财经管理类本科生必需掌握的一门基础课,通过本课程的学习使学生掌握行列式的计算、矩阵理论、向量组和向量空间基本概念,用矩阵理论求解线性方程组、及用线性方程组解的结构理论讨论矩阵的对角化并进一步研究二次型,使学生掌握本课程的基本理论和方法,培养和提高逻辑思维和分析问题解决问题的能力,并为学习相关课程与进一步扩大知识面奠定必要的、必需的基础。 二、课程内容及学时分配 1. 行列式(6学时) 教学要求:了解行列式的定义、掌握行列式的基本性质。会应用行列式性质和行列式按行(列)展开定理进行行列式计算。 重点:行列式性质 难点:行列式性质和行列式按行(列)展开定理的应用 2.矩阵(12学时) 教学要求:理解矩阵的概念、掌握单位矩阵、对角矩阵与对称矩阵的性质。掌握矩阵的线性运算、乘法、方阵行列式、转置的定义及其运算规律。理解逆矩阵的概念及其性质,熟练掌握逆矩阵的求法。熟练掌握矩阵的初等变换及其应用。理解矩阵秩的概念并掌握其求法。了解满秩矩阵的定义及其性质。了解分块矩阵及其运算。 重点:矩阵的线性运算、矩阵的乘法、逆矩阵的求法、矩阵的初等变换 难点:矩阵的秩,矩阵的分块 3.向量组和向量空间(10学时) 教学要求:理解n维向量的概念及其运算。理解向量组的线性相关、线性无关与线性表示等概念,了解并会用向量组线性相关、线性无关的有关性质及判别法。了解向量组的极大线性无关组和秩的概念,并会求向量组的秩。了解n维向量空间及其子空间、基、维数与坐标等概念。了解向量的内积、长度与正交等概念,会用施米特正交化方法把向量组正交规范化。了解规范正交基、正交矩阵的概念、以及它们的性质。 重点:n维向量的概念、线性相关、线性无关、极大线性无关组、向量组秩的概念难点:线性无关的相关证明、向量组秩的概念、向量空间 4. 线性方程组(8学时)

数学史话线性代数发展史简介

数学史话线性代数发展史简介 数学史话—线性代数发展史简介 一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。 傅鹰 数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。 F. Cajori 从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。 V. Z.卡兹 数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。 M(Kline 一、了解数学史的重要意义 数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。与其他文化一样,数学科学是几千年来人类智慧的结晶。在学习数学时,我们基本是通过学习教材来认识这门学科的。教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌

和数学思想产生的过程。正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。 数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。 通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。 二、代数学的历史发展情况 数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟 通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。本节简要介绍一下代数学的历史发展情况。 “代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔?花拉子米(al-Khwarizmī,约780,850)一本代数教程,书名的直译为《还原与对消的计算概要》(其书名中的al-jabr 这个词意为“还原”,它所指的意思是把方程式一边的负项移到方程另一端“还原”为正项;al-muqabala意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项。在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文词“algebra”就是阿拉伯文“al-jabr”的讹用。

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

大一线性代数论文

中国矿业大学银川学院机电动力与信息工程 线性代数论文 (2012-2013) 专业:电气及其自动化 班级:11级电气(2)班

姓名:薛成建 学号:120110516126 任课老师:马延福 日期:2012. 6.19 摘要 随着我国经济建设与科学技术的迅速发展,高等教育已进入了一个 飞速发展的时期,并且突破了以前的精英式教育模式,发展成为一种在终身学习的大背景下极具创造性和再创性的基础学科教育。高等学校教育教学观念不断更新,教学改革不断深入,办学规模不断扩大,数学课程开设的专业覆盖面不断增大。越来越需要一本高质量的高等学校非教学类专业的教材———《线性代数》。 为适应教学课程开设的专业覆盖面,逐渐引入了以求适应的知识点。n 阶行列式、矩阵、n 维向量与向量空间,应用数学模型等慢慢走进了专业覆盖面。在实际问题中,我们经常会碰到超过3个元素的数组,例如确定飞机的状态,需要以下几个参数:机身的仰角、机翼的转角、机身的水平转角、飞机重心在空间的位置参数等。因此,需要引入n 维向量的概念。n 个数组成的有序数组 (a a a n ,,,21 )或 a a a n 2 1 称为一个 n 维向量,简称向量。其中只有一行的称 为行向量,只有一列的称为列向量。数a a a n ,,,21 称为这个向量的分量,a i 称为这个向量的第i 个分量或坐标。分量都是实数的向量称为实向量,分量都是负数的向量称为负向量。

实际上,n 维行向量可以看成行矩阵,n 维列向量可以看成列矩阵。 如果两实向量相等,即称两个向量相等。 对于两个分量的各分量的和所组成的向量,称为两个向量的和。 一个数与向量的各分量相乘所组成的向量,称为向量e 与k 的数量乘积,简称数乘,记为k e 。 分量全为零的向量(000 )称为零向量,记为0。 α与-1的数乘(-1)α称为α的负向量,记为-α。 向量的加法与数乘具有下列性质: (1) a +b =b +a ; (交换律) (2) (a +b )+c =a +(b +c ); (结合律) (3) a +0=a ; (4) a +(-a )=0; (5) k (a +b )=k a +k b ; (6) (k+i)a = k a +i a ; (7) k(i a )=(ki)a ; (8) i a = a ; (9) 0a =0; (10) k 0=0 在数学中,满足(1)~(8)的运算称为线性运算。我们还可以证明: (11) 如果k ≠0且a ≠0,那么k a ≠0. 由若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组。 例如一个mxn 矩阵A=) (a ij mxn 有n 个m 维列向量 a 1 = a a a m 1 21 11 , a 2 = a a a m 2 22 12 , ··· ,a n = a a a mn n n 21 , 我们称向量组a a a n 2 1为矩阵A 的列向量组。 对于行向量组也同样。

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

大学线性代数论文

线性代数论文 线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)。①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位;②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的;④随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 行列式的计算方法. 定义法 在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念. (1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列. (2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面 的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序 数. (3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列. 在做好这些工作之后,来引入行列式的定义: 定义:n阶行列式 等于所有取自不同行不同列的n个元素的乘积. a1j1a2j2a3j3………anj n <Ⅱ> 的代数和,这里j1,j2,j3,……j n为1,2,3,……,n的一个排列,每一项<Ⅱ> j1,j2,j3,……j n是偶排列时, <Ⅱ>带有正号,当都按下列规则带有符号,当

线性代数发展简史

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级:2012084 成员组成:201208420 联系方式:************ 2013年11月6日 摘要:线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 关键词:行列式,矩阵,,,, 正文:线性代数的发展简史 引言 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。1848 年英格兰的J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。1855 年矩阵代数得到了Arthur Cayley 的工作培育。Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST 的系数矩阵变为矩阵S 和矩阵T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由Cayley 在1858 年在他的矩阵理论文集中提出的。利用单一的字母A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家Cauchy 首先给出了特征方程的术语,并证明了阶数超过3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论,数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既v x w 不等于w x v )的向量代数是由Hermann Grassmann 在他的《线性扩张论》(Die lineale Ausdehnungslehre )一书中提出的。(1844) 。

航天技术论文

我的航天技术论文 在过去半年中,接连发生了两起重大航天灾难。尽管人们备感痛惜,但这些挫折并不能阻挡人类进军宇宙的步伐。既然航天活动风险如此之大,为什么人类依然不放弃进军宇宙的梦想呢?从长期看,地球的资源是有限的,人类总有一天必须走出自己的摇篮;从中短期看,航天活动可带来巨大回报,是一个国家综合国力的体现。进军宇宙是人类现在和未来的一项伟大事业。于是,载人航天成为现代航天科技发展的重中之重…… 中国载人航天技术的发展及其意义和前景 俗话说,天高任鸟飞,海阔凭鱼跃。人类在漫长的社会进步中不断扩展自身的生存空间。现在,人类的活动范围已经历了从陆地到海洋,从海洋到大气层空间,再从大气层空间到太空的逐步发展过程。人类活动范围的每一次扩展都是一次伟大的飞跃。 中国载人航天技术的发展历程 很久以前,人类就有飞出地球、探知太空奥秘和开发宇宙资源的愿望,我国古代的不少神话故事便是突出的反映。最典型的是流传很广的嫦娥奔月,它描写一个叫嫦娥的美女,偷吃了丈夫后羿从西王母那里求得的长生不老的仙药后,身体变轻飘到月亮上去了。 历史上第一个试验乘火箭上天的人是15世纪中国官员万户。1945年,美国学者基姆在他的《火箭与喷气发动机》一书中是这样描写的:万户先做了两个大风筝,并排装在一把椅子的两边。然后,他在椅子下面捆绑了47支当时能买到的最大火箭。准备完毕后,万户坐在椅子当中,然后命其仆人点燃火箭。但是,随着一声巨响,他消失在火焰和烟雾中,人类首次火箭飞行尝试没有成功。 20世纪80年代,改革开放带来了航天技术的春天。1986年,中共中央、国务院批准了《高技术研究发展计划("863"计划)纲要》,把航天技术列为我国高技术研究发展的重点之一。"863"高技术航天领域的专家们对我国航天技术未来的发展进行了深入细致的论证,描绘了我国航天技术发展前景的蓝图,一致认为载人航天是我国继人造卫星工程之后合乎逻辑的下一步发展目标。1992年1月,党中央批准研制载人飞船工程。自此,我国的载人航天工程正式启动。1999年11月20日,我国成功发射了自行研制的第一艘飞船神舟1号,成为世界上第三个发射宇宙飞船的国家。此后,又分别把神舟2、3和4号送上九重天。在1992年开始研制载人飞船之前,我国"863"高技术航天领域的专家们曾为研制哪种运输器这个问题进行了几年的研究,即对从研制飞船起步和越过载人飞船直接发展航天飞机的多种技术方案进行了充分的论证、比较和分析,甚至还激烈地争论过。2003年10月15日圆了万户的梦,因为在这一天中国人民期待已久的第一艘载人飞船神舟5号顺利升空并安全返回,实现了中华千年飞天的理想。它也打破了美国和苏联.俄罗斯在这一领域的多年垄断格局,成为世界第3个独立自主研制并发射载人航天器的国家,这对世界载人航天事业的发展和振兴中华会起到巨大的推动作用。 载人航天的重大意义 历史上,远洋航海技术的兴起,导致了世界贸易的发展、世界市场的开辟和近代科学的一系列成就,开始了一个"全球文明"的时代。当代载人航天技术的问世,则使人类走出地球这一摇篮而到达太空,开始了一个"空间文明"的新时代。

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

向量产生和发展历程

向量产生和发展历程 一、向量的产生: 规定了方向和大小的量称为向量.向量又称为矢量,最初被应用于物理学.很多物理 量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿. 二、向量的发展过程: 向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型. 从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系. 向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学. 但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量.他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数论文

华北水利水电学院 题目:常见的矩阵及其计算 课程名称:线性代数(第二版) 专业班级: 成员组成: 联系方式: 2012年10月20 日

常见的矩阵及其计算 摘要:矩阵是线性代数理论中极其重要的组成部分,是高等数学的一个基本的概念。它在线性代数与数学的许多分支都有重要应用,许多实际问题都可以用有关理论得到解决。矩阵,是由个数组成行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母表示其元素,其中下标都是正整数,他们表示该元素在矩阵中的位置。 关键词:常见矩阵计算方法 Common matrix and calculation Abstract:The matrix in linear algebra theory is extremely important part, of higher mathematics is a basic concept. It in linear algebra and mathematical many branches have important application, many practical problems can be solved with related theory. Matrix, consisting of a line list of regular form, Usually use capital letters said matrixes of each number, are called matrix elements, usually use lowercase said its elements, the subscript are all positive integer, they said the elements in the position of the matrix. Key words:Common matrix Calculation method

航天发展史论文

世界航天器发展历史 摘要:航空作为前人的梦想如今已经初步实现。当然所有科技的研发最初都运用于军事航空也不例外。据说飞机最早的雏形是中国的风筝,风筝最初是用来传递信息,这也为人类上空埋下伏笔,但是真正想让人飞上空中的却不是中国。 关键词:飞行研究气球飞艇动力 正文: 人类对飞行的最初探索自古以来人类就怀有飞行理想,这种理想来自生产、生活和对自由飞行的向往。但在社会生产力低下的年代,这种理想始终不能实现,只能在神话和传说(见飞行神话传说)中寄托自己的渴望。 航空作为前人的梦想如今已经初步实现。当然所有科技的研发最初都运用于军事航空也不例外。据说飞机最早的雏形是中国的风筝,风筝最初是用来传递信息,这也为人类上空埋下伏笔,但是真正想让人飞上空中的却不是中国。中国早在五代时期就使用过原始的热气球──孔明灯。历史上还记录过各种轻于空气的飞行器的其他设想和尝试,在西方,13世纪的R.培根曾提出用稀薄空气或液体燃料充入薄壁金属球使它在空气中上升的想法。但首次制造成功载人气球的是法国蒙哥尔费兄弟。他们于1783年6月4日进行了自己制作的热气球表演。他们用一只更大的热气球,载上羊、公鸡和鸭各一只,飞行8分钟后安全降落。中世纪欧洲不断有人对飞行作过勇敢的尝试,他们用羽毛作成翅膀,从塔上或高处跳下,试图模仿鸟的飞行,结果往往以失败而告终。在很长的一段时期内,人类对飞行的探索进展缓慢,文艺复兴时期的L.达·芬奇科学地研究了飞行问题,但他的研究成果直到19世纪后期才为后人发现,对航空的发展未起到应有的作用。17世纪后期意大利的G.A.博雷利探讨了人类肌肉与飞行的关系后,证明:“人类靠自己的体力作灵巧的飞行是绝对不可能的。” 在18世纪产业革命的推动下,1783年法国蒙哥尔费兄弟的热空气气球和J.-A.C.查理的氢气气球相继升空成功,标志着人类航空发展的第一次重大突破。而随着对航空器的研究1903年12月17日,美国莱特兄弟用自己制造的飞机,实现了人类首次持续的、有动力的、可操纵的飞行,开创了现代航空的新纪元。但对到底是谁第一个制造了飞机人们在当时产生了争论,但大部分人认为是莱特兄弟制造了飞机。

浅谈《高等数学》与《线性代数》课程的相通性

浅谈《高等数学》与《线性代数》课程的 相通性 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 《高等数学》和《线性代数》这两门课的内容差异大,但也有不少知识点具有相同性,很多方法和结论相互渗透,本文探讨了《高等数学》与《线性代数》课程内容的一些相通性。 随着科学技术的发展和计算机的广泛应用,《高等数学》和《线性代数》的作用越来越重要,它们是高等院校培养应用型人才重要的数学基础课。《高等数学》主要学习的是微积分方面的知识,《线性代数》主要学习的是几何方面的知识。由于课程内容的不同,部分高校在课程安排上往往一个教师要么只教《高等数学》,要么只教《线性代数》,从而在教学时往往忽略了引导学生去思考这两门课程中的一些相通性。实际上,看似两门完全不同的课程之间实有许多相通之处,而让学生了解和掌握这些相通性不但有利于更好地掌握这两门课程,而且还可以培养学生发现、思考和总结的能力,所学知识真正做到融会贯通。

几年来,笔者一直在教学一线,既承担《高等数学》的教学,也承担《线性代数》的教学。在教学实践中,笔者发现和总结了一些这两门课程的相通性,下面介绍几点。 一、《高等数学》和《线性代数》课程中部分定义和结论的相通性 4.方程解的结构。在《线性代数》中,当非齐次线性方程组Ax=b有无穷解时,其解可以表示为对应齐次方程组Ax=0的通解加上非齐次线性方程组Ax=b 的一个特解。在《高等数学》中,非齐次线性微分方程的通解也有类似的结构,即也可表示成对应齐次微分方程的通解加上非齐次微分方程的特解。线性方程组和线性微分方程除了解结构类似外,解的性质也完全一样。 二、《高等数学》和《线性代数》课程中部分量运算的相通性 在《线性代数》中有一个重要的量——矩阵,故对矩阵的运算作了大量的介绍,有矩阵的加法、矩阵

相关主题
文本预览
相关文档 最新文档