当前位置:文档之家› 四相步进电机控制系统设计资料讲解

四相步进电机控制系统设计资料讲解

四相步进电机控制系统设计资料讲解
四相步进电机控制系统设计资料讲解

四相步进电机控制系

统设计

课题:四相五线单4拍步进制电动机的正反转控制专业:机械电子工程

班级:2班

学号: 20110259

姓名:周后银

指导教师:李立成

设计日期: 2014.6.9~2014.6.20

成绩:

1概述

本实验旨在通过控制STC89C52芯片,实现对四相步进电机的转动控制。具体功能主要是控制电机正转10s、反转10s,连续运行1分钟,并用1602液晶显示屏显示出来。

具体工作过程是:给系统上电后,按下启动开关,步进电机按照预先

实验具体用到的仪器:STC89C52芯片、开关单元、四项步进电机、等硬件设

备。

实验具体电路单元有:单片机最小系统、步进电机连接电路、开关连接电路、1602液晶显示屏显示电路。

2四相步进电机

2.1步进电机

步进电机是一种将电脉冲转化为角位移的执行机构。电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

2.2步进电机的控制

1.换相顺序控制:通电换相这一过程称为脉冲分配。

2.控制步进电机的转向控制:如果给定工作方式正序换相通电,步进

电机正转,如果按反序通电换相,则电机就反转。

3.控制步进电机的速度控制:如果给步进电机发一个控制脉冲,它就

转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。

2.3步进电机的驱动模块

ABCD四相工作指示灯指示四相五线步进电机的工作状态

2.4步进电机的工作过程

开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,

1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,

2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕

组轮流供电,则转子会沿着A、B、C、D方向转动。

四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。

单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图3.a、

b、c所示:

步进电机工作时序波形图

对步进电机四个绕组依次实现如下方式的循环通电控制:

单四拍运行:正转A-B-C-D;反转D-C-B-A

双四拍运行:正转AB-BC-CD-DA;反转DC-CB-BA-AD

八拍运行:正转A-AB-B-BC-C-CD-D-DA

本实验使用的是单四拍循环控制,单四拍运行正转A-B-C-D;

反转D-C-B-A

3LCD1602液晶显示屏

引脚接口说明表

第1脚:VSS为地电源。

第2脚:VDD接5V正电源。

第3脚:VL为液晶显示器对比度调整端,接正电源时对比度最弱,接地时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K的电位器调整对比度。

第4脚:RS为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第5脚:R/W为读写信号线,高电平时进行读操作,低电平时进行写操作。当RS和R/W共同为低电平时可以写入指令或者显示地址,当RS为低电平R/W为高电平时可以读忙信号,当RS为高电平R/W为低电平时可以写入数据。

第6脚:E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。

第7~14脚:D0~D7为8位双向数据线。

第15脚:背光源正极。

第16脚:背光源负极。

4电路图设计

4.1 STC89C52概述

4.2 最小系统

单片机最小系统或者称为最小应用系统,就是用最少的元件组成的单片机可以工作的系统,对 52系列单片机来说,最小系统一般应该包括:单片机、复位电路、晶振电路。

4.3 复位电路

复位电路采用手动复位和上电自动复位。

上电自动复位:在单片机上电的瞬间,RC电路充电,由于电容上电电压不能突变,所以RST引脚出现高电平,RST引脚出现的高电平将会随着对电容C的充电过程而逐渐回落。

手动复位:当按下复位按钮时,RST出现高电平,实现复位。

4.4 拨码电路

拨码开关和P3口相连,拨动开关sw1、sw2、sw3、sw4来控制电机的启停、正反转、速度的加减。

4.5 电机驱动电路

将步进电机的A、B、C、D分别接到P1.0、P1.1、P1.2、P1.3管脚上

实物连接

5 程序设计

5.1 主程序框图

系统分为电机转动、电机正转、电机反转、电机加速、电机减速和

电机停止这几个部分组成,其主程序框图如图下所示

5.2 步进电机速度控制程序框图

正转部分: 送P1口不同的值,从而改变电机电源的相序,是电机正转,数值分别为0xf8,0xfc,0xf4,0xf6,0xf2,0xf3,0xf1,0xf9。流程图如下

反转部分:送P1口不同的值,从而改变电机电源的相序,是电机反

转,数值分别为0xf9,0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8。流程图如下

加速部分: 当电机处于正转或反转的时候,按下K2,调用加速程序,是电机每转动一部的延时时间变短,从而实现电机的加速。

减速部分: 当电机处于正转或反转的时候,按下K3,调用加速程序,是电机每转动一部的延时时间变长,从而实现电机的减速。

运行与停止: 按下K1键,系统默认是停止,拨动一次是运行,在拨动一次是停止,即是基数次运行,偶数次停止(一般不会拨动N 次,为了看到现象,就拨动少数几次)

5.3 拨码开关输入程序框图

用于判断P3.1、P3.2、P3.3、P3.4,

6 总结

6.1心得

这次课程设计,历时多天,失败多次,不断总结失败的经验,从中取得进步。经过这次课程设计,我明白了具体怎么来实现一个单片机的项目,熟悉了流程,获取信息的途径。彻底的了解了单片机的用途。

6.2 收获

1、能够将理论知识与实践相结合,对理论的理解更透彻。

2、对单片机C语言编程,有了初步的了解,为以后的进一步学习打下

了基础。

3、增强了自己的团队意识,在以后的学习和工作中能够更好的与他人

合作。

【附录二】电路图

步进电机的工作原理

1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式 步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的4号齿就和C、D相 绕组磁极产生错齿,2、5号齿就和D 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图、b、c所示: a. 单四拍 b. 双四拍c八拍 51单片机驱动步进电机的方法。 驱动电压12V,步进角为度 . 一圈 360 度 , 需要 48 个脉冲完成!!! 该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。采用51驱动ULN2003的方法进行驱动。 ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流

四相步进电机控制系统设计资料讲解

四相步进电机控制系 统设计

课题:四相五线单4拍步进制电动机的正反转控制专业:机械电子工程 班级:2班 学号: 20110259 姓名:周后银 指导教师:李立成 设计日期: 2014.6.9~2014.6.20 成绩:

1概述 本实验旨在通过控制STC89C52芯片,实现对四相步进电机的转动控制。具体功能主要是控制电机正转10s、反转10s,连续运行1分钟,并用1602液晶显示屏显示出来。 具体工作过程是:给系统上电后,按下启动开关,步进电机按照预先 实验具体用到的仪器:STC89C52芯片、开关单元、四项步进电机、等硬件设 备。 实验具体电路单元有:单片机最小系统、步进电机连接电路、开关连接电路、1602液晶显示屏显示电路。 2四相步进电机 2.1步进电机 步进电机是一种将电脉冲转化为角位移的执行机构。电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 2.2步进电机的控制 1.换相顺序控制:通电换相这一过程称为脉冲分配。 2.控制步进电机的转向控制:如果给定工作方式正序换相通电,步进 电机正转,如果按反序通电换相,则电机就反转。

3.控制步进电机的速度控制:如果给步进电机发一个控制脉冲,它就 转一步,再发一个脉冲,它会再转一步。两个脉冲的间隔越短,步进电机就转得越快。 2.3步进电机的驱动模块 ABCD四相工作指示灯指示四相五线步进电机的工作状态 2.4步进电机的工作过程 开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动, 1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,

步进电机的速度控制

步进电机的速度控制 步进电机区别于其他控制用途电机的最大特点是,它可接受数字控制信号(电脉冲信号)并转化成与之相对应的角位移或直线位移,因而本身就是一个完成数字模拟转化的执行元件。而且它能进行开环位置控制,输入一个脉冲信号就得到一个规定的位置增量。这样的增量位置控制系统与传统的直流伺服系统相比,其成本明显降低,几乎不必进行系统调整。因此,步进电机广泛应用于数控机床、机器人、遥控、航天等领域,特别是微型计算机和微电子技术的发展,使步进电机获得更为广泛的应用。 步进电机的速度特性 步进电机的转速取决于脉冲频率、转子齿数和拍数。其角速度与脉冲频率成正比,而且在时间上与脉冲同步。因而在转子齿数和运行拍数一定的情况下,只要控制脉冲频率即可获得所需速度。由于步进电机是借助它的同步转矩而启动的,为了不发生失步,启动频率是不高的。特别是随着功率的增加,转子直径增大,惯量增大,启动频率和最高运行频率可能相差10倍之多。 为了充分发挥电机的快速性能,通常使电机在低于启动频率下启动,然后逐步增加脉冲频率直到所希望的速度,所选择的变化速率要保证电机不发生失步,并尽量缩短启动加速时间。为了保证电机的定位精度,在停止以前必须使电机从最高速度逐步减小脉冲率降到能够停止的速度(等于或稍大于启动速度)。因此,步进电机拖动负载高速移动一定距离并精确定位时,一般来说都应包括“启动-加速-高速运行(匀速)-减速-停止”五个阶段,速度特性通常为梯形,如果移动的距离很短则为三角形速度特性,如图1所示。 图1 步进电机的速度曲线 步进电机控制系统结构 PC机在适当的时刻通过对硬件控制电路上的8253计数器0赋初值,设置好加减速过程的频率变化(即速度、加速度变化),以防止失步。例如,在点位控制中设置好速度曲线图,在起动和升速时,使步进电机产生足够的转矩驱动负载,跟上规定的速度和加速度;在减速时,下降特性使负载不产生过冲,停止在规定的位置。硬件控制电路板上的8253产生脉冲方波作为中断信号源,启动细分驱动电路中的固化程序以产生一定频率的脉冲,经功率放大后驱动步进电机运动。步进电机运动方向的改变及启动和停止均由计算机控制硬件控制电路实现。 图2 步进电机控制系统 软件和硬件结合起来一起进行控制,具有电路简单、控制方便等优点。在这种控制中,微机软件占用的存储单元少,程序开发不受定时限制。只要外部中断允许,微机就能在电机的每一步之间自由地执行其他任务,以实现多台步进电机的运动控制。 定时器初值的确定 步进电机的实时控制运用PC机,脉冲方波的产生采用8253定时器,其计数器0工作于方式0以产生脉冲方波,计数器 1工作于方式1起记数作用,8253计数器0的钟频由2MHz晶振提供。设计算机赋给8253计数器0的初值为D1,则产生的脉冲方波频率为f1=f0/D1,周期为T1=1/f1=D1/f0,D1=f0T1=f0/f1。其中,f1为启动频率,f0为晶振频率。步进电机升降速数学模型为使步进电机在运行中不出现失步现象,一般要求其最高运行频率应小于(或等于)步进响应频率fs。在该频率下,步进电机可以任意启动、停止或反转而不发生失步现象。步进电机升降速有两种驱动方式,即三角形与梯形驱动方式(见图1),而三角形驱动方式是梯形驱动的特例,因而我们只要研究梯形方式。电机的加速和减速是通过计算机不断地修改定时器初值来实现的。在电机加速阶段,从启动瞬时开始,每产生一个脉冲,定时器初值减小某一定值,则相应的脉冲周期减小,即脉冲频率增加;在减速阶段,定时器初值不断增加,

步进电机的简单电路控制

课程设计说明书 课程设计名称:数字电路课程设计 课程设计题目:步进电机简单的控制电路 学院名称:南昌航空大学信息工程学院 专业:班级: 学号:姓名: 评分:教师: 2013 年 9 月 9 日 数字电路课程设计任务书 20 13-20 14 学年第 1 学期第 2 周- 4 周

注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

步进电机是一种原理为利用电子电路的电脉冲信号转变为角位移或线位移的感应电机。通过简单的数字电路来控制它的转速并可以利用数码管来计算其转动的圈数,便可以实现电机的正反向转动,并且在数码管上精确的显示出它转动的圈数,从而广泛应用于实际生活当中。其中涉及到计算机,数字电路,电机,机械,完成了简单的自动化控制流程,将所学知识应用于工程中,增加实践动手能力。 关键词:分频、时序控制、脉冲计数

前言 (1) 第一章设计内容及要求 (1) 第二章系统的组成及工作原理 (2) 第三章单元电路设计 (2) 3.1多谐振荡器 (2) 3.2 步进电机信号控制电路 (3) 3.3转速的测量及显示电路 (4) 第四章调试 (5) 4.1电路排板及制作 (5) 4.2电路的调试 (5) 第五章总结 (6) 附录1:设计原理图 (7) 附录2:PCB电路图 (8) 附录3: 元件清单 (9)

前言 步进电机最早出现于上世纪,源于资本主义的造船工业,是一种可以自由转动的电磁铁,其工作原理和如今的反应式电机差不多,是依靠磁导来产生电磁矩,从而实现转动。 到了80年代之后,微型计算机逐步的应用于工业与生活中,使得步进电机的控制更加的灵活多样,最主要的是利用分立元件或者小型的集成电路来控制,但是对元件的需求量很大,调试也很复杂,出现问题需要花大量的精力来调试,因此,通过计算机软件来控制步进电机是必然的趋势,以提高工作效率。 现在的步进电机主要是由数字电路组成,也是利用集成电路来控制电路,但是大大的提高了其精度,更好的满足工业发展的需要。目前用到最多的是混合式步进电机,并具有很好的发展前景。 步进电机按照工作原理可分为永磁式、磁阻式和永磁感应子式三种。 今后步进电机将会有以下四个方面的发展,为减小其占用的空间从而会往小型方向发展,以更加的适用于工业制造当中;为增加力矩,从而会将圆形改为方形,以提高其工作效率;为体现其优越的控制性能,从而会偏向于一体化设计,以实现电子自动化控制,更加灵活方便;为降低其成本,增加其性能,从而会向三相和五相的方向发展,以充分实现其优越性能。 步进电机以其显着的特点,在电子数字化时代将发挥重大作用,将广泛应用于数控车床、机器人、航空工业和电子领域中,可完成工作量大,任务复杂、精度高的制造业以及代替人类完成不利于身体健康的工业中,为生活带来更多的便利。 第一章设计内容及要求 基本要求:1、利用proteus软件设计步进电机的工作原理图,并进行仿真。 2、调试及实现。 (1)实现步进电机根据输入的脉冲旋转的相应圈数。 (2)可以实现复位,正反转控制,由4个LED代替4个线圈。 (3)实现步进电机的加速、减速功能。

四相八拍步进电机调速

目录 引言 (1) 第1章绪论 (2) 1.1步进电机的概述 (2) 1.1.1 步进电机的特点 (2) 1.1.2步进电机的工作原理简述 (2) 1.2四相八拍步进电机 (2) 1.2.1 四相步进电机工作原理 (2) 1.2.2 八拍得工作方式 (4) 1.3单片机概述 (4) 1.3.1 单片机原理简述 (4) 1.3.2 8031单片机 (5) 1.4总体方案设计 (5) 1.4.1 系统的组成 (5) 1.4.2 系统的工作原理 (6) 第2章系统软件设计 (7) 2.1显示子程序的设计 (7) 2.2键盘子程序的设计 (8) 2.3正反转程序流程图 (11) 2.3.1 正反转程序流程图 (11) 2.3.2 转速快慢程序流程图 (14) 2.4定时中断流程图 (17) 2.5语音报警系统 (19) 2.6主程序设计 (20) 参考文献 (23) 致谢 (24)

引言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。步进电机的调速一般是改变输入步进电机的脉冲的频率来实现步进电机的调速,因为步进电机每给一个脉冲就转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电机的调速。在本设计方案中采用单片机内部的定时器改变脉冲的频率从而实现对步进电机的转速进行控制,实现电机调速与正反转的功能。 关键词:步进电机,单片机,调速系统

基于单片机步进电机速度控制研究(正式版)

文件编号:TP-AR-L2541 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 基于单片机步进电机速 度控制研究(正式版)

基于单片机步进电机速度控制研究 (正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 本文对步进机一个全面的介绍,再基于单片机对 步进电机的控制。本文采用硬件控制系统,通过单片 机MC9S12XS128与光电编码器对步进电机进行速度的 控制。最后对步进电机的速度曲线进行研究。 步进电机又称为脉冲电动机或者阶跃电动 机,作为执行元件,是机电一体化的关键产品之一, 广泛应用于各种自动化控制系统之中,比如当今电子 钟表、工业机械手、包装机械和汽车制动元件的测试 中等。步进电机在未来应用前景会往更加小型化、从 圆形电动机往方形电动机和四相、五相往三相电动机

发展。而这便需要对步进电机的控制提出了更高的要求。 1.步进电机综合介绍 1.1.步进电机分类 步进电动机的种类很多,从广义上讲,步进电机的类型分为机械式、电磁式和组合式三大类型。按结构特点电磁式步进电机可分为反应式(VR)、永磁式(PM)和混合式(HB)三大类;按相数分则可分为单相、两相和多相三种。目前使用最为广泛的为反应式和混合式步进电机。 1.1.1.反应式步进电机 反应式步进电机的转子是由软磁材料制成的,转子中没有绕组。一般为三相,可实现大扭矩的输出,步进角一般为1.5度。它的结构简单,成本低,但噪音大。

步进电机控制电路设计

黄冈职业技术院 系别:07 机电工程系 专业: 应用电子 班级:二班 设计者:戴久志、邓修海、徐凯 指导老师: 温锦辉 设计课题: 液晶8279步进电机系统 设计时间: 二0一一年四月二十号 步进电机控制电路设计 1、系统基本方案 根据设计要求,步进电机控制电路可以分为控制模块、显示模块、电源模块、键盘模块、电机驱动模块、步进电机部分。步进电机控制电路基本模块方框图如图1.1所示。 2、系统硬件设计与实现 2.1、步进电机介绍 随着工业技术的不断进步,在自动化控制、精密机械加工、航空航天技术及所有要求高

精度定位等高新技术领域,步进电机的得到了广泛的应用。步进电机是一种将脉冲信号转化为角位移的执行机构。若在其输入端加入有规律的脉冲信号,就能驱动步进电机按设定的方向移动一定的距离或转动一个角度(称为“步距角”)。从结构上步进电机分为单相、双相、三相、四相、五相、六相等多种。本次设计使用步进电机分为A、B、C、D四相绕组,每相通电一次称为一拍。四相步进电机根据不同的通电规律可分为几种工作模式: ⑴、四相单四拍:A-B-C-D; ⑵、四相双四拍:AB-BC-CD-DA; ⑶、四相单八拍:A-AB-B-BC-C-CD-D-DA; ⑷、四相双八拍:AB-ABC-BC-BCD-CD-CDA-DA-DAB。 步进电机的正反转与电机每相的通电顺序有关,可以改变相序来改变电机的正反转。步进电机每步所旋转角度的大小,称为步距角(βB)。它是由电机本身转子的齿数(Z R)。一个通电循环内通电节拍数(M Q)决定的。即βB=360/ Z R M Q。电机出厂的步距角是固定的。四相步进电机的步距角为0.90/1.80(表示半步工作时为0.90,整步工作时为1.80)。步进电机转速的高低与控制脉冲频率有关。改变控制脉冲频率,可改变电机转速。 2.2、步进电机驱动模块 步进电机的驱动电路采用常用的电动机驱动芯片L298,它能够接受标准的TTL电平控制信号,驱动电机。L298操作时能提供的电压能达到46V,直流电流4A,具有过热保护功能,逻辑“0”的输入电压达到1.5V。L298在控制器的控制下驱动一个步进电动机,控制器产生L298年需的控制信号,以控制步进电机的运动状态。为了防止定子绕组的电感作用,使得电流切换时产生过电压,步进电机每相绕组两端都须并联一个用天在换相时起续流作用的肖基特二极管。步进电机驱动电路原理图如图 图2.2.1 步进电机驱动电路原理图 2.3、控制子程序 2.3.1、四相单四拍正转子程序 四相单四拍正转子程序主要用于控制步进电机以步距角为 1.80角度顺时针旋转。控制器从端口依次向步进电机的每相输出脉冲信号。每输出一个脉冲信号步进电机转动一定的角度。其工作模式为:A-B-C-D。 ;******单四拍正转****** MOV P1,#01H ACALL DELAY2 MOV P1,#02H ACALL DELAY2 MOV P1,#04H ACALL DELAY2 MOV P1,#08H ACALL DELAY2 2.3.2、四相单四拍反转子程序 四相单四拍反转子程序主要用于控制步进电机以步距角为 1.80角度逆时针旋转。其工作模式为:D-C-B-A。 ;******四拍反转******

(整理)四相步进电机原理图.

四相步进电机原理图 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c 所示:

a. 单四拍 b. 双 四 c八拍 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 步进电机驱动器系统电路原理如图3: 图3 步进电机驱动器系统电路原理图 AT89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。图中L1为步进电机的一相绕组。AT89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。 图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。

基于单片机的步进电机控制系统的设计_毕业设计

本科毕业设计 基于单片机的步进电机控制系统的设计

摘要 随着自动控制系统的发展和对高精度控制的要求,步进电机在自动化控制中扮演着越来越重要的角色,区别于普通的直流电机和交流电机,步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为控制执行元件,是机电一体化的关键组成之一,广泛应用在各种自动化控制系统和精密机械等领域。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 本系统介绍了一种基于单片机的步进电机控制系统的设计,包括了硬件设计和软件设计两部分。其中,硬件设计包括单片机最小系统、键盘控制模块、LCD显示模块、步进电机驱动模块、位置检测模块共5个功能模块的设计。系统软件设计采用C语言编写,包括主程序、数字键处理程序、功能键处理程序、电机驱动处理程序、显示模块、位置采集模块。 本设计采用STC89C52单片机作为主控制器,4*4矩阵键盘作为输入,LCD1602液晶作为显示,ULN2003A芯片驱动步进电机。系统具有良好的操作界面,键盘输入步进电机的运行距离;步进电机能以不同的速度运行,可以在不超过最大转速内准确运行到任意设定的位置,可调性较强;显示设定的运行距离和实际运行距离;方便操作者使用。关键词:单片机步进电机液晶显示键盘驱动

Design of the Stepping Motor Control System Based on SCM Qiu Haizhao (College of Engineering, South China Agricultural University, Guangzhou 510642,China) Abstract:With the development of automatic control system and the requirements of high-precision control, stepping motor control in automation is playing an increasingly important role, different from the common DC and AC motor, stepper motor rotation angle and rotational speed can be high-precision controlled. Stepper motor as a control actuator is a key component of mechanical and electrical integration, widely used in a variety of automated control systems and precision machinery and other fields. Stepper motor is the open-loop control components changing electric pulse signals into angular displacement or linear displacement .In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, that is, to add a pulse motor, the motor is turned a step angle. This system introduces a design of stepper motor control system based on single chip microcomputer, including hardware design and software design in two parts. Among them, the hardware design, including single chip minimal system, keyboard control module, LCD display module, the stepper motor drive module, position detection module five functional modules. System software design using C language, including the main program, process number keys, the key of function processes, motor driver handler, the display module, position acquisition module. This design uses STC89C52 microcontroller as the main controller, 4 * 4 matrix keyboard as an input, LCD1602 LCD as a display, ULN2003A chip as stepper motor driver. System has a good user interface, keyboard input stepper motor running distance; Stepper motor can run at different speed, and run to any given position accurately in any speed without exceeding the maximum speed, with a strong adjustable ; Display the running distance and the actual running distance, which is more convenient for the operator to use. Key words: SCM stepper LCD keyboard driver

步进电机驱动电路设计

https://www.doczj.com/doc/136322260.html,/gykz/2010/0310/article_2772.html 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。

步进电动机的结构与工作原理

步进电动机的结构与工作原理 步进电机是利用电磁铁原理,将脉冲信号转换成线位移或角位移的电机。每来一个电脉冲,电机转动一个角度,带动机械移动一小段距离。 步进电动机 步进机将脉冲信号转换为角位移或线位移。主要要求:动作灵敏、准确、重量轻、体积小、运行可靠、耗电少等。 步进电动机的特点: (1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变方向。 步进电动机的种类 根据励磁式方式的不同分为:反应式、永磁式和混合式(又叫感应子式)三种。反应式步进电机的应用较多。 下面以反应式步进电机为例说明步进电机的结构和工作原理。 图7-20 (a)三相反应式步进电动机工作原理图 A 相通电,A 方向的磁通经转子形成闭合回路。若转子和磁场轴线方向原有一定角度,则在磁场的作用下,转子被磁化,吸引转子,使转子的位置力图使通电相磁路的磁阻最小,使转、定子的齿对齐停止转动。

A 相通电使转子1、3齿和AA' 对齐。 图7-20 (b)三相反应式步进电动机工作原理图 同理,B相通电,转子2、4齿和B相轴线对齐,相对A相通电位置转30; 图7-20 (c)三相反应式步进电动机工作原理图 最后,C相通电,转子1、3齿和C相轴线对齐,相对B相通电比较,转子再次转动30。 步进电动机的结构 步进机主要由两部分构成:定子和转子。它们均由磁性材料构成,以三相为例其定子和转子上分别有六个、四个磁极。

步进电动机结构简图 定子的六个磁极上有控制绕组,两个相对的磁极组成一相。 注意:这里的相和交流电中的“相”的概念不同。步进机通的是直流电脉冲,这主要是指线图的联接和组数的区别。

步进电机控制系统设计.

毕业设计论文 论文题目:基于单片机的步进电机控制电路板设计 摘要 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 步进电机是一种能将电脉冲信号转换成角位移或线位移的机电元件,步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成。采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加。软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式。 本设计是采用AT89C51单片机对步进电机的控制,通过IO口输出的时序方波作为步进电机的控制信号,信号经过芯片ULN2003驱动步进电机;同时,用 4个按键来对电机的状态进行控制,并用数码管动态显示电机的转速。 系统由硬件设计和软件设计两部分组成。其中,硬件设计包括AT89C51单片机的最小系统、电源模块、键盘控制模块、步进电机驱动(集成达林顿ULN2003)模块、数码显示(SM420361K数码管)模块、测速模块(含霍尔片UGN3020)6个功能模块的设计,以及各模块在电路板上的有机结合而实现。软件设计包括键盘控制、步进电机脉冲、数码管动态显示以及转速信号采集模块的控制程序,最终实现对步进电机转动方向及转动速度的控制,并将步进电机的转动速度动态显示在LED数码管上,对速度进行实时监控显示。软件采用在Keil软件环境下编辑

************* 第1章绪论 1.1 课题背景 当今社会,电动机在工农业生产、人们日常生活中起着十分重要的作用。步进电机是最常见的一种控制电机,在各领域中得到广泛应用。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,其优点是结构简单、运行可靠、控制方便。尤其是步距值不受电压、温度的变化的影响、误差不会长期积累的特点,给实际的应用带来了很大的方便。它广泛用于消费类产品(打印机、照相机、雕刻机)、工业控制(数控机床、工业机器人)、医疗器械等机电产品中。研究步进电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。控制核心采用C51芯片,它以其独特的低成本,小体积广受欢迎,当然其易编程也是不可多得的优点为此,本文设计了一个单片机控制步进电机的控制系统,可以实现对步进电机转动速度和转动方向的高效控制。 1.2 设计目的及系统功能 本设计的目的是以单片机为核心设计出一个单片机控制步进电机的控制系统。本系统采用AT89C51作为控制单元,通过键盘实现对步进电机转动方向及转动速度的控制,并且将步进电机的转动速度动态显示在LED数码管上。 1

单片机汇编语言步进电机转速控制系统

大连理工大学本科设计报告题目:步进电机转速控制系统设计 课程名称:单片机综合设计 学院(系):电子信息与电气工程学部 专业: 班级: 学号: 学生姓名: 成绩: 2013 年7 月20 日

题目:步进电机转速控制系统设计 1 设计要求 1)利用ZLG7290的键盘控制直流电机(或步进电机的转速、转向); 2)也可以利用ADC模块(与电位器配合),利用电位器控制转速; 3)利用ZLG7290的8位LED数码管显示电机转向、转速参数显示。 2 设计分析及系统方案设计 实验要求使用步进电机作为被控制对象,由ZLG7290做人机对话平台,利用单片机的P1(8位)和P3(部分口线)构造系统。实验最终实现功能、设计思路以及方案设计如以下几个小节所述。 2.1 系统设计实现功能 根据设计要求、现有设备以及知识储备,完成功能如下: ①由按键S1~S8实现转速切换,其中S1~S4正转,S5~S8反转 ②按键S16作为停止键,按下S10后步进电机停止转动,再按S1~S16步进电机按 照按键对应转速以及转向转动 ③按键S10作为复位键,当按下S10后,无论当前处于何种状态,系统恢复至初 始态 ④8为LED数码管显示当前步进电机转速(speed=0/1 1~4),转速前0表示正转, 1表示反转 ⑤若按下停止键,数码管显示当前转速;若按下复位键,数码管显示初始态speed=00 2.2 设计思路 本次的设计是LED显示与步进电机相结合以及若干功能键的组合的一种设计。根据之前学习的按键中断显示实验和定时器实验,使用INT0和INT1,INT0作为按键中断,INT1作为定时器。在主程序中实现LED初始显示、定时器计时初始、按键中断初始。INT0中断调用中断服务子程序实现对按键键值的判断,并根据相应的按键值实现对应步进电机的变化,并显示该按键对应的转速。INT1定时器中断根据INT0的按键键值,对定时器设定相应的初值,实现步进电机按规定的转速转动。对于按键停止,则是利用中断优先级,当INT0的中断优先级高时,系统进入中断,此时INT1停止计时,也就实现了步进电机的停止,当改变定时器与按键中断的优先级时,即把INT0设为低优先级,INT1设为高优先级,步进电机重新开始转动。此时添加一个对INT0位地址的查询,若有按键即正/反转的4档转速所对应的按键,步进电机开始重新转动。对于复位功能,则同样是利用按键键值的判断,在对应键值下控制电机初始化。

毕业设计论文 基于单片机的步进电机控制器

第1章绪论 (2) 1.1引言 (2) 1.2步进电机常见的控制方案与驱动技术简介 (4) 1.2.1常见的步进电机控制方案 (4) 1.2.2步进电机驱动技术 (6) 1.3本文研究的内容 (8) 第2章步进电机概述 (9) 2.1步进电机的分类 (9) 2.2步进电机的工作原理 (10) 2.2.1结构及基本原理 (10) 2.2.2两相电机的步进顺序 (10) 2.3 步进电机的工作特点 (13) 2.4本章小结 (15) 第3章系统的硬件设计 (16) 3.1系统设计方案 (16) 3.1.1系统的方案简述与设计要求 (16) 3.1.2系统的组成及其对应功能简述 (16) 3.2单片机最小系统 (18) 3.2.1AT89S51简介 (18) 3.2.2单片机最小系统设计 (23) 3.2.3单片机端口分配及功能 (24) 3.3串口通信模块 (24) 3.4数码管显示电路设计 (25) 3.4.1共阳数码管简介 (25) 3.4.2共阳数码管电路图 (26) 3.5电机驱动模块设计 (27) 3.5.1L298简介 (27) 3.5.2电机驱动电路设计 (28) 3.6驱动电流检测模块设计 (30) 3.6.1OP07芯片简介 (30) 3.6.2ADC0804芯片简介 (32) 3.6.3电流检测模块电路图 (35) 3.7独立按键电路设计 (36) 3.8本章小结 (36) 第4章系统的软件实现 (37) 4.1系统软件主流程图 (37) 4.2系统初始化流程图 (38) 4.3按键子程序 (39) 结论 (43) 1

第1章绪论 1.1引言 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率范围内通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正是由于步进电机具有突出的优点,所以成了机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用[2]。比如在数控系统中就得到广泛的应用。目前世界各国都在大力发展数控技术,我国的数控系统也取得了很大的发展,我国已经能够自行研制开发适合我国数控机床发展需要的各种档次的数控系统。虽然与发达国家相比,我们我国的数控技术方面整体发展水平还比较低,但已经在我国占有非常重要的地位,并起了 2

步进电机控制电路

北京工业大学电子课程设计报告 (数电部分) 题目:步进电机

目录 一、设计题目------------------------------------------------------------------------------------------------3 二、设计任务和设计要求 1.设计题目------------------------------------------------------------------------------------------------3 2.设计技术指标及设计要求----------------------------------------------------------------------------3 三、电路设计------------------------------------------------------------------------------------------------4 1.脉冲发生电路-------------------------------------------------------------------------------------------4 2.环形脉冲分配电路-------------------------------------------------------------------------------------5 3.控制电路-------------------------------------------------------------------------------------------------6 4.驱动电路-----------------------------------------------------------------------------------------------10 5.步进电机-----------------------------------------------------------------------------------------------11 四、电路的组装和调试------------------------------------------------------------------------------------12 1.电路的组装----------------------------------------------------------------------------------------------12 2.电路的调试----------------------------------------------------------------------------------------------13 五、收获和体会---------------------------------------------------------------------------------------------14 六、附录------------------------------------------------------------------------------------------------------15 1.列表-------------------------------------------------------------------------------------------------------15 2.参考资料-------------------------------------------------------------------------------------------------15 3.部分芯片管脚图----------------------------------------------------------------------------------------16

相关主题
文本预览
相关文档 最新文档