当前位置:文档之家› 基于单片机的步进电机控制系统设计方案

基于单片机的步进电机控制系统设计方案

基于单片机的步进电机控制系统设计方案
基于单片机的步进电机控制系统设计方案

基于单片机的步进电机控制系统设计方案

第1章绪论

1.1引言

随着材料科学、工艺技术、计算机技术的发展与进步,电路系统向着集成度极高的方向发展。CPU的生产制造技术,也朝着综合性、技术性、实用性发展。如CPU的运算位数从4位、8位……到32位机的发展,运算速度从8 MHz、32 MHz……到1.6 GHz。可以说是日新月异的发展着。其中单片机在控制系统中的应用是越来越普遍了。单片机控制系统是以单片机(CPU)为核心部件,扩展一些外部接口和设备,组成单片机工业控制机,主要用于工业过程控制。要进行单片机系统设计首先必须具有一定的硬件基础知识;其次,需要具有一定的软件设计能力,能够根据系统的要求,灵活地设计出所需要的程序;第三,具有综合运用知识的能力。最后,还必须掌握生产过程的工艺性能及被测参数的测量方法,以及被控对象的动、静态特性,有时甚至要求给出被控对象的数学模型。由此可以认识到,单片机在工业领域运用中,对工业发展、提高工业生产力等有重大意义。因此,掌握好单片机的应用,对以后的生产生活有很强的指导意义。科技的进步需要技术不断的提升。一块大而复杂的模拟电路花费了巨大的精力,繁多的元器件增加了成本。而现在,只需要一块几厘米见方的单片机,写入简单的程序,就可以使以前的电路简单很多。由此可见掌握了单片机技术后,不管今后开发或是工作上,一定会带来意想不到的惊喜。

1.2国外设计现状

1.2.1国外发展回顾及产生背景

如果将8位单片机的推出作为起点,那么单片机的发展历史大致可分为以下几个阶段:

(1)第一阶段(1976-1978):单片机的控索阶段。以Intel公司的MCS –48为代表。MCS –48的推出是在工控领域的控索,参与这一控索的公司还有Motorola 、Zilog等,都取得了满意的效果。这就是SCM的诞生年代,“单机片”

一词即由此而来。

(2)第二阶段(1978-1982)单片机的完善阶段。Intel公司在MCS –48 基础上推出了完善的、典型的单片机系列MCS –51。它在以下几个方面奠定了典型的通用总线型单片机体系结构。

①完善的外部总线。MCS-51设置了经典的8位单片机的总线结构,包括8位数据总线、16位地址总线、控制总线及具有很多机通信功能的串行通信接口。

②CPU外围功能单元的集中管理模式。

③体现工控特性的位地址空间及位操作方式。

④指令系统趋于丰富和完善,并且增加了许多突出控制功能的指令。

(3)第三阶段(1982-1990):8位单片机的巩固发展及16位单片机的推出阶段,也是单片机向微控制器发展的阶段。Intel公司推出的MCS –96系列单片机,将一些用于测控系统的模数转换器、程序运行监视器、脉宽调制器等纳入片中,体现了单片机的微控制器特征。随着MCS –51系列的广应用,许多电气厂商竞相使用80C51为核,将许多测控系统中使用的电路技术、接口技术、多通道A/D转换部件、可靠性技术等应用到单片机中,增强了外围电路路功能,强化了智能控制的特征。

(4)第四阶段(1990—):微控制器的全面发展阶段。随着单片机在各个领域全面深入地发展和应用,出现了高速、大寻址围、强运算能力的8位/16位/32位通用型单片机,以及小型廉价的专用型单片机。

1.2.2国外单片机发展研究现状

单片机的应用在后PC时代得到了前所未有的发展,但对处理器的综合性能要求也越来越高。综观单片机的发展,以应用需求为目标,市场越来越细化,充分突出以“单片”解决问题,而不像多年前以MCS51/96等处理器为中心,外扩各种接口构成各种应用系统。单片机系统作为嵌入式系统的一部分,主要集中在中、低端应用领域(嵌入式高端应用主要由DSP、ARM、MIPS等高性能处理器构成),在这些应用中,目前也出现了一些新的需求,主要体现在以下几个方面:

(1)以电池供电的应用越来越多,而且由于产品体积的限制,很多是用钮扣电池供电,要求系统功耗尽可能低,如手持式仪表、水表、玩具等。

(2)随着应用的复杂,对处理器的功能和性能要求不断提高。既要外设丰富、功

能灵活,又要有一定的运算能力,能做一些实时算法,而不仅仅做一些简单的控制。

(3)产品更新速度快,开发时间短,希望开发工具简单、廉价、功能完善。特别是仿真工具要有延续性,能适应多种MCU,以免重复投资,增加开发费用。

(4)产品性能稳定,可靠性高,既能加密保护,又能方便升级。

单片机出现至今,单片机技术已走过了近20年的发展路程。纵观20年来单片机发展历程可以看出,单片机技术的发展以微处理器(MPU)技术及超大规模集成电路技术的发展为先导,以广泛的应用领域拉动,表现出较微处理器更具个性的发展趋势。单片机长寿命这里所说的长寿命,一方面指用单片机开发的产品可以稳定可靠地工作十年、二十年,另一方面是指与微处理器相比的长寿命。

随着半导体技术的飞速发展,MPU更新换代的速度越来越快,以386、486、586为代表的MPU,很短的时间就被淘汰出局,而传统的单片机如68HC05、8051等年龄已有15岁,产量仍是上升的。这一方面是由于其对相应应用领域的适应性,另一方面是由于以该类CPU为核心,集成以更多I/O功能模块的新单片机系列层出不穷。可以预见,一些成功上市的相对年轻的CPU核心,也会随着I/O功能模块的不断丰富,有着相当长的生存周期。新的CPU类型的加盟,使单片机队伍不断壮大,给用户带来了更多的选择余地。 8位、16位、32位单片机共同发展这是当前单片机技术发展的另一动向。

长期以来,单片机技术的发展是以8位机为主的。随着移动通讯、网络技术、多媒体技术等高科技产品进入家庭,32位单片机应用得到了长足发展。以Motorola 68K 为CPU的32位单片机97年的销售量达8千万枚。过去认为由于8位单片机功能越来越强,32位机越来越便宜,使16位单片机生存空间有限,而16位单片机的发展无论从品种和产量方面,近年来都有较大幅度的增长。单片机速度越来越快 MPU发展中表现出来的速度越来越快是以时钟频率越来越高为标志的。而单片机则有所不同,为提高单片机抗干扰能力,降低噪声,降低时钟频率而不牺牲运算速度是单片机技术发展之追求。一些8051单片机兼容厂商改善了单片机的部时序,在不提高时钟频率的条件下,使运算速度提高了很多,Motorola单片机则使用了琐相环技术或部倍频技术使部总线速度大大高于时钟产生器的频率。68HC08单片机使用4.9M外部振荡器而部时钟

达32M,而M68K系列32位单片机使用32K的外部振荡器频率部时钟可达16MHz以上。低电压与低功耗自80年代中期以来,NMOS工艺单片机逐渐被CMOS工艺代替,功耗得以大幅度下降,随着超大规模集成电路技术由3μm工艺发展到1.5、1.2、0.8、0.5、0.35近而实现0.2μm工艺,全静态设计使时钟频率从直流到数十兆任选,都使功耗不断下降。

8051类单片机最早由Intel公司推出的8051/31类单片机也是世界上用量最大的几种单片机之一。由于Intel公司在嵌入式应用方面将重点放在186、386、奔腾等与PC类兼容的档芯片的开发上,8051类单片机主要由Philips、三星、华邦等公司接产。这些公司都在保持与8051单片机兼容的基础上改善了8051许多特性(如时序特性)。提高了速度、降低了时钟频率,放宽了电源电压的动态围,降低了产品价格。

1.2.2.1 单片机步进电机控制系统的研究成果

由于单片机具有显著的优点,它已成为科技领域的有力工具,人类生活的得力助手。它的应用遍及各个领域,主要表现在以下几个方面:

(1)在智能仪表中的应用

单片机广泛地用于各种仪器仪表,使仪器仪表智能化,并可以提高测量的自动化程度和精度,简化仪器仪表的硬件结构,提高其性能价格比。

(2)在机电一体化中的应用

机电一体化是械工业发展的方向。机电一体化产品是指集成机械技术、微电子技术、计算机技术于一体,具有智能化特征的机电产品,例如微机控制的车床、钻床等。单片机作为产品中的控制器,能充分发挥它的体积小、可靠性高、功能强等优点,可大大提高机器的自动化、智能化程度。

(3)在实时控制中的应用

单片机广泛地用于各种实时控制系统中。例如,在工业测控、航空航天、尖端武器、机器人等各种实时控制系统中,都可以用单片机作为控制器。单片机的实时数据处理能力和控制功能,可使系统保持在最佳工作状态,提高系统的工作效率和产品质量。

(4)在分布式多机系统中的应用

在比较复杂的系统中,常采用分布式多机系统。多机系统一般由若干台功能各异的单片机组成,各自完成特定的任务,它们通过串行通信相互联系、协调工作。单片机在这种系统中往往作为一个终端机,安装在系统的某些节点上,对现场信息进行实时的测量和控制。单片机的高可靠性和强抗干扰能力,使它可以置于恶劣环境的前端工作。

(5)在人类生活中的应用

自从单片机诞生以后,它就步入了人类生活,如洗衣机、电冰箱、电子玩具、收录机等家用电器配上单片机后,提高了智能化程度,增加了功能,倍受人们喜爱。单片机将使人类生活更加方便、舒适、丰富多彩。

综合所述,单片机已成为计算机发展和应用的一个重要方面。另一方面,单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。

1.2.2.2 单片机在国的发展

我国开始使用单片机是在1982 年,短短五年时间里发展极为迅速。1986年在召开了全国首届单片机开发与应用交流会,有的地区还成立了单片微型计算机应用协会,那是全国形成的第一次高潮。截止今日,单片机应用技术飞速发展,我们上因特网输入一个“单片机”的搜索,将会看到上万个介绍单片机的,这还不包括国外的。与它相应的专业杂志现在也有很多,比如由单片机界的权威何立编的《单片机与嵌入式系统应用》杂志现以风靡电子界,在2003年7月,https://www.doczj.com/doc/d82850386.html,在、、等大城市所做的一次专业人才需求报告中,单片机人才的需求量位居第一。单片机,亦称单片为微电脑或单片微型计算机。它是把中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(I/0)等主要计算机功能部件都集成在一块集成电路芯片上的微型计算机。计算机的产生加快了人类改造世界的步伐,但是毕竟它体积大。所以微计算机(单片机)在这种情况下诞生了。

纵观我们现在生活的各个领域,从导弹的导航装置,到飞机上各种仪表的控制,从计算机的网络通讯与数据传输,到工业自动化过程的实时控制和数据处理,以及我们生活中广泛使用的各种智能IC 卡、电子宠物等,这些都离不开单片机。以前没有单片机时,这些东西也能做,但是只能使用复杂的模拟电路,然而这样做出来的产品不仅体积大,而且成本高,并且由于长期使用,元器件不断老化,控制的精度自然也会达不到标准。在单片机产生后,我们就将控制这些东西变为智能化了,我们只需要在单片机外围接一点简单的接口电路,核心部分只是由人为的写入程序来完成。这样产品的体积变小了,成本也降低了,长期使用也不会担心精度达不到了。所以,它的魔力不仅是在现在,在将来将会有更多的人来接受它、使用它。

据统计,我国的单片机年容量已达 1——3 亿片,且每年以大约16%的速度增长,但相对于世界市场我国的占有率还不到1%。特别是沿海地区的玩具厂等生产产品多数用到单片机,并不断地辐射向地。所以,学习单片机在我国是有着广阔前景的。

1.2.3单片机的未来发展方向

目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗、小体积、大容量、高性能、低价格和外围电路装化等几个方面发展。下面是单片机的主要发展方向。

CMOS化近年,由于CHMOS技术的进小,大促进了单片机的CMOS化。CMOS芯片除了低功耗特性之外,还具有功耗的可控性,使单片机可以工作在功耗精细管理状态。这也是今后以80C51取代8051为标准MCU芯片的原因。因为单片机芯片多数是采用CMOS(金属栅氧化物)半导体工艺生产。CMOS电路的特点是低功耗、高密度、低速度、低价格。采用双极型半导体工艺的TTL电路速度快,但功耗和芯片面积较大。随着技术和工艺水平的提高,又出现了HMOS(高密度、高速度MOS)和CHMOS工艺。CHMOS 和HMOS工艺的结合。目前生产的CHMOS电路已达到LSTTL的速度,传输延迟时间小于2ns,它的综合优势已在于TTL电路。因而,在单片机领域CMOS正在逐渐取代TTL电路。

低功耗化单片机功耗使用电压在3~6V之间,完全适应电池工作。低功耗化的效应不仅是功耗低,而且带来了产品的高可靠性、高抗干扰能力以及产品的便携化。

低电压化几乎所有的单片机都有WAIT、STOP等省电运行方式。允许使用的电压围越来越宽,一般在3~6V围工作。低电压供电的单片机电源下限已可达1~2V。目前0.8V供电的单片机已经问世。

低噪声与高可靠性为提高单片机的抗电磁干扰能力,使产品能适应恶劣的工作环境,满足电磁兼容性方面更高标准的要求,各单片厂家在单片机部电路中都采用了新的技术措施。

大容量化以往单片机的ROM为1KB~4KB,RAM为64~128B。但在需要复杂控制的场合,该存储容量是不够的,必须进行外接扩充。为了适应这种领域的要求,须运用新的工艺,使片存储器大量化。目前,单片机ROM最大可达64KB,RAM最大为2KB。

高性能化主要是指进一步改进CPU的性能,加快指令运算的速度和提高系统控制的可靠性。采用精简指令集(RISC)结构和流水线技术,可以大幅度提高运行速度。现指令速度最高者已达100MIPS(Million Instruction Per Seconds,即兆指令每秒),并加强了位处理功能、中断和定时控制功能。这类单片机的运算速度比标准的单片机高出10倍以上。由于这类单片机有极高的指令速度,就可以用软件模拟其I/O 功能,由此引入了虚拟外设的新概念。

小容量、低价格化与上述相反,以4位、8位机为中心的小容量、低价格化也是发展动向之一。这类单片机的用途是把以往用数字逻辑集成电路组成的控制电路单片化,可广泛用于家电产品。

外围电路装化这也是单片机发展的主要方向。随着集成度的不断提高,有可能把众多的各种处围功能器件集成在片。除了一般必须具有的CPU、ROM、RAM、定时器/计数器等以外,片集成的部件还有模/数转换器、DMA控制器、声音发生器、监视定时器、液晶显示驱动器、彩色电视机和录像机用的锁相电路等。

串行扩展技术在很长一段时间里,通用型单片机通过三总线结构扩展外围器件成为单片机应用的主流结构。随着低价位OTP(One Time Programble)及各种类型片程序存储器的发展,加之处围接口不断进入片,推动了单片机“单片”应用结构的发展。特别是I C、SPI等串行总线的引入,可以使单片机的引脚设计得更少,单片机系统结构更加简化及规化。

单片机控制步进电机和数码管显示

一、设计任务书 设计内容:用80C51单片机设计一个步进电机控制器 设计要求: 1.用8015设计一个四相步进电机。 2.可控制步进电机的启动与停止,正转与反转。 3.10档速度调节。 4.点动控制。 5.可显示电机运行参数。 二、设计总体方案 (一)控制方式的选择 控制主要用于电机速度和方向的转换。控制方式有按键控制和开关控制两种。按键较开关而言,操作更加简便,故选按键控制。 方案一:独立按键。独立按键可自由连接,线路简单。 方案二:编码式键盘。编码式键盘的按键接触点接于74LS148芯片。当键盘上没有闭合时,所有按键都断开,当某一键闭合时,该键对应的编码由74LS148输出。 本次设计所需按键不多,不需要采用复杂编码,考虑硬件条件、线路连接和经济性等方面,选择方案一。 (二)电机电路设计方案的选择 由于条件的限制,对于电机的选择只能是实验台上最小步距角18°的电机,其中已包含了驱动电路。 (三)单片机的选择 方案一:AT89C51高性能8位单片机,内部集成CPU、存储器、寄存器、I/O接口,从而构成较为完整的计算机,价格便宜。 方案二:C8051F005单片机,该单片机是完全集成的混合信号系统及芯片,具有8051兼容的微控制器内核,与MCS-51指令集完全兼容。除了具有标准8052的数字外设部件,片内还继承了数据采集和控制系统中常用的模拟部件和其他数字外设及功能部件,执行速度快,但价格较贵。 本次课程设计是在仿真环境下进行,没有太过考虑单片机选择的问题,但就设计本身来讲,从物美价廉的角度考虑,选择方案一较合适。 (四)显示方案的选择 方案一:采用LED数码管。LED数码管是轮流现实的,其利用人烟的视觉暂留特性,使人感觉不到数码管闪动,看到每只数码管都常亮。利用其显示必须不停给数码管数据输入口循环赋值,显示内容较多,编程和接线较为复杂。 方案二:采用LCD1602液晶显示器。LCD1602具有功率小,效果明显,变成容易等优点,且它最多能显示2×16个字符,可以轻松满足设计要求。 由上可知,LCD1602液晶显示器的优点突出,故选择方案二。 (五)软件部分的选择 软件部分的选择主要是指编程语言的选择,编译调试工具根据设计平台选择伟福软件。编程语言主要有以下两种方案。

51单片机控制的步进电机C语言程序

我上周刚做的这个实验成功拉,给你参考一下吧这可是我当时辛辛苦苦编出来的啊,不过我用的是L298驱动的和ULN2003一样,你把它换成2003就行拉 #include unsigned char code table[]={0xf1,0xf3,0xf2,0xf6,0xf4,0xfc,0xf8,0xf 9,0x00,0xf1,0xf9,0xf8,0xfc,0xf4,0xf6,0xf2,0xf3,0x00}; unsigned char temp,temp_old; unsigned char key; unsigned char i,j,k,m,s; void delay(int i) { for(m=i;m>0;m--) for(j=250;j>0;j--) for(k=10;k>0;k--); } void saomiao() { P3=0xff; P3_4=0; temp=P3; temp=temp&0x0f; if(temp!=0x0f) { for(i=50;i>0;i--)

for(j=200;j>0;j--); temp=P3; temp=temp&0x0f; if(temp!=0x0f) { temp=P3; temp=temp&0x0f; switch(temp) { case 0x0e: key=1; break; case 0x0d: key=2; break; case 0x0b: key=3; break; case 0x07: key=4; break; } temp=P3;

temp=temp&0x0f; while(temp!=0x0f) { temp=P3; temp=temp&0x0f; } } } P3=0xff; P3_5=0; temp=P3; temp=temp&0x0f; if(temp!=0x0f) { for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3; temp=temp&0x0f; if(temp!=0x0f) { temp=P3; temp=temp&0x0f; switch(temp)

基于51系列单片机控制步进电机调速实验 (自动保存的)

基于51系列单片机控制步进电机调速实验 实验指导书 仇国庆编写 重庆邮电大学自动化学院 自动化专业实验中心 2009年2月

基于51系列单片机控制步进电机调速实验 实验目的及要求: 1、熟悉步进电机的工作原理 2、熟悉51系列单片机的工作原理及调试方法 3、设计基于51系列单片机控制的步进电机调速原理图(要求实现电机的速度反馈测量,测量方式:数字测量) 4、实现51系列单片机对步进电机的速度控制(步进电机由实验中心提供,具体型号42BYG )由按钮控制步进电机的启动与停止;实现加速、匀速、和减速控制。速度设定由键盘设定,步进电机的反馈速度由LED 数码管显示。 实验原理: 步进电机控制原理 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。因此步进电动机是一种把脉冲变为角度位移(或直线位移)的执行元件。步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所 以又称为脉冲电动机。随着数字控制系统的发展,步进电动机的应用将 逐渐扩大。 步进电机区别于其他控制电机的最大特点是,它是通过输入脉冲信号来 进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由 脉冲信号频率决定。步进电机的驱动电路根据控制信号工作,控制信号 可以由单片机产生。 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几 何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻 两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐, B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:(图2所示)

基于单片机的步进电机控制系统的设计_毕业设计

本科毕业设计 基于单片机的步进电机控制系统的设计

摘要 随着自动控制系统的发展和对高精度控制的要求,步进电机在自动化控制中扮演着越来越重要的角色,区别于普通的直流电机和交流电机,步进电机可以对旋转角度和转动速度进行高精度控制。步进电机作为控制执行元件,是机电一体化的关键组成之一,广泛应用在各种自动化控制系统和精密机械等领域。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 本系统介绍了一种基于单片机的步进电机控制系统的设计,包括了硬件设计和软件设计两部分。其中,硬件设计包括单片机最小系统、键盘控制模块、LCD显示模块、步进电机驱动模块、位置检测模块共5个功能模块的设计。系统软件设计采用C语言编写,包括主程序、数字键处理程序、功能键处理程序、电机驱动处理程序、显示模块、位置采集模块。 本设计采用STC89C52单片机作为主控制器,4*4矩阵键盘作为输入,LCD1602液晶作为显示,ULN2003A芯片驱动步进电机。系统具有良好的操作界面,键盘输入步进电机的运行距离;步进电机能以不同的速度运行,可以在不超过最大转速内准确运行到任意设定的位置,可调性较强;显示设定的运行距离和实际运行距离;方便操作者使用。关键词:单片机步进电机液晶显示键盘驱动

Design of the Stepping Motor Control System Based on SCM Qiu Haizhao (College of Engineering, South China Agricultural University, Guangzhou 510642,China) Abstract:With the development of automatic control system and the requirements of high-precision control, stepping motor control in automation is playing an increasingly important role, different from the common DC and AC motor, stepper motor rotation angle and rotational speed can be high-precision controlled. Stepper motor as a control actuator is a key component of mechanical and electrical integration, widely used in a variety of automated control systems and precision machinery and other fields. Stepper motor is the open-loop control components changing electric pulse signals into angular displacement or linear displacement .In the case of non-overloaded, the motor speed, stop position depends only on the pulse frequency and pulse number, regardless of load changes, that is, to add a pulse motor, the motor is turned a step angle. This system introduces a design of stepper motor control system based on single chip microcomputer, including hardware design and software design in two parts. Among them, the hardware design, including single chip minimal system, keyboard control module, LCD display module, the stepper motor drive module, position detection module five functional modules. System software design using C language, including the main program, process number keys, the key of function processes, motor driver handler, the display module, position acquisition module. This design uses STC89C52 microcontroller as the main controller, 4 * 4 matrix keyboard as an input, LCD1602 LCD as a display, ULN2003A chip as stepper motor driver. System has a good user interface, keyboard input stepper motor running distance; Stepper motor can run at different speed, and run to any given position accurately in any speed without exceeding the maximum speed, with a strong adjustable ; Display the running distance and the actual running distance, which is more convenient for the operator to use. Key words: SCM stepper LCD keyboard driver

基于单片机的步进电机控制系统

编号: 综合智能电子 实训 (论文)说明书题目: 院(系):使用科技学院 专业:电子信息工程 学生姓名: 学号: 指导教师: 2010年 1 月 6 日

目录 引言 第1章简介 1.1 步进电机 第2章步进电机原理 2.1 步进电机的工作原理 2.1.1结构及基本原理 2.1.2 电机的步进顺序 第3章系统的硬件设计 3.1 系统设计方案 3.2 主从机硬件部件介绍 3.2.1A T89S51简介 3.2.2 TGI2864E简介 3.2.3MAX485 串行通信 3.2.4TIP122 3.2.5 MOC70T2 3.3 LCD显示电路设计 3.4 电机驱动模块设计 第4章系统的软件实现 4.1 系统软件主流程图 4.2 系统初始化流程图 4.3 部分子程序 第五章总结 致谢 参考文献 摘要:本文使用单片机、步进电机驱动芯片、字符型LCD和键盘阵列,构建了集步进电机控制器和驱动器为一体的步进电机控制系统。二维工作台作为被控对象通过步进电机驱动滚珠丝杆在X/Y轴方向联动。文中讨论了一种以最少参数确定一条圆弧轨迹的插补方法和步进电机变频调速的方法。步进电机控制系统的开发采用了软硬件协同仿真的方法,可以有效地减少系统开发的周期和成本。最后给出了步进电机控制系统的使用实例。

关键词:步进电机控制系统,插补算法,变频调速,软硬件协同仿真 In this paper, microcontroller, stepper motor driver chips, character LCD and keypad array, build a set of stepper motor controller and driver as one of the stepping motor control system. Two-dimensional table as a charged object by stepper motor drive ball screw in X / Y axis linkage. This paper discusses a minimum of parameters to determine the trajectory of a circular interpolation method and the method of frequency control stepper motor. Stepper motor control system has been developed using the software and hardware co-simulation method, can effectively reduce the system development cycle and cost. Finally, the stepper motor control system application examples.

基于单片机的步进电机驱动控制

基于单片机的步进电机驱动控制 一、步进电机概述 1.步进电机的定义 步进电机指的是以数字脉冲信号作为电机线或教位移的控制信号,并以数字脉冲频率对电机的转速进行控制的动力控制系统。 在负载正常范围的情况下,步进电机的运行状态只和数字脉冲发生器提供的信号的频率和脉冲占空比有关,一般情况下,电机的状态不受负载的影响。电机的运行角度只和每次所给予的脉冲信号强度有关,而电机的运行速度也只和脉冲信号的频率有直接关 系。这种采用弱点控制强电的控制方式使得步进电机在速度、位移等控制领域有着普通电机不能比拟的优势。 2.驱动控制系统框图 步进电机控制系统有着精确控制、运行稳定的特性,这一其他电机不能比拟的优势使得步进电机得到了广泛的应用。而一般对步进电机控制系统的驱动必须要包含脉冲信 号发生部分,功放部分和驱动控制部分等几个模块电路,我们根据这些通过的模块电路,可将步进电机控制系统的通用框图绘制如下: 在上图的步进电机驱动控制系统方框图中,控制步进电机运行状态的脉冲信号一 般由集成芯片产生,可以是单片机、等智能芯片,也可以是一般的数字电路集成芯片。信号分配环节则要根据步进电机的型号来选择,如四相步进电机有四相四拍和四相 八拍种信号分配的方式;两相步进电机有两相四拍和八拍等脉冲加载形式。功放部分 在驱动环节上显得尤为重要。动态平均电流是步进电机转矩大小的决定因素,前提条件 是电机的速度。电机力矩与平均电流成正比,驱动系统对电机的反电势消弱越多,则平 均电流就越大。 我们一般可以用恒压和恒压串电阻的方法来驱动,或者在条件允许的情况下我们可以用高低压驱动、恒流和细分数等方法来驱动实际的应用过程种,多采用数字集成驱 动芯片作为步进电机的驱动手段。 二、现阶段国内外步进电机驱动的常用方式 1.变频器控制方式 使用变频器对步进电机进行驱动控制时,可以很好的解决步进电机在启动和停止时 容易失步的问题,提高了系统的控制精度。但是变频器的应用成本较高,结构和操作也 比较复杂,无形中提高步进电机的控制难度。 2.PLC控制方式 使用ABB、西门子、欧姆龙等国际知名生产制造商研发的系列产品可以 实现对步进电机的理想化控制,但是基于核心的步进电机控制系统成本高昂,且 难以实现精确控制,在本系统中不太适合。 3.单片机控制方式 随着嵌入式系统在工业控制领域中的广泛应用,以单片机特别是系列单片机 作为控制核心的步进电机控制电路在生产生活领域得到了普及,单片机有着大规模数字

基于51单片机控制步进电机

单片机原理及系统课程设计 1 引言 步进电机又称为脉冲电动机或阶跃电动机,它是基于最基本的电磁感应作用,将电脉冲信号转变为角位移或线位移的开环控制元件。单片机控制的步进电机广泛地应用于工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,大型望远镜,卫星天线定位系统等等。 随着经济的发展,技术的进步和电子技术的发展,步进电机的应用领域更加广阔,同时也对步进电机的运行性能提出了更高的要求。 步进电机的原始模型起源于1830年至1860年,1870年前后开始以控制为目的的尝试,应用于氩弧灯的电极输送机构中,这被认为最早的步进电机。 1950年后期晶体管的发明也逐渐应用在步进电机上,对于数字化的控制变得更为容易。到20世纪60年代后期,在步进电机本体方面随着永磁材料的发展,各种实用性步进电机应运而生。步进电机往后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解能、高响应性、信赖性等灵活控制性高的机械系统中。 在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。

2 设计方案与原理 4.1 设计方案 设计一个51单片机四相步进电机控制系统要求系统具有如下功能: (1)由I/O口产生的时序方波作为电机控制信号; (2)信号经过驱动芯片驱动电机的运转; (3)电机的状态通过键盘控制,包括正转,反转,加速,减速,停止和单步运行。 4.2 设计原理 步进电机实际上是一个数字\角度转换器,也是一个串行的数\模转换器。步进电机的基本控制包括启停控制、转向控制、速度控制、换向控制4个方面。从结构上看,步进电机分为三相、四相、五相等类型,本次设计的是四相电机。四相步进电机的工作方式有单四拍、双四拍和单双八拍三种。 在本次设计中,我们使用的是四相单八拍的工作方式。通过P1口给A,B,C,D四相依次输出高电平即可实现步进电机的旋转,通过控制两次输出的间隔,即可实现对步进电机的速度控制。 图 2.1 步进电机内部结构截图 根据步进电机的相关相序表我们可以正常的控制电机的步进运行。

完整的单片机控制步进电机程序

#include "reg52.h" #include "INTRINS.H" #include #include #define uint unsigned int #define uchar unsigned char void check_addr(void); /*地址核对*/ uchar code slave_addr[4]={00, 01, 02, 255}; /*从机地址*/ uchar idata T0low, T0high,common_count,input_order,cmd_in_permit,interval; uchar sent_ok,speed_change,start_up,start_end,address_true,i; uint y1; uint code add[100]={60006,62771,63693,64154,64430,64614,64746,64845,64922,64983,65033,65075,651 11,65141,65167,65190,65211,65229,65245,65260,65273,65285,65296,65306,65315,65323,65331 ,65339,65345,65352,65358,65363,65368,65373,65378,65382,65387,65390,65394,65398,65401,6 5404,65407,65410,65413,65416,65418,65421,65423,65425,65428,65430,65432,65434,65435,654 37,65439,65441,65442,65444,65445,65447,65448,65450,65451,65452,65453,65455,65456,65457 ,65458,65459,65460,65461,65462,65463,65464,65465,65466,65467,65468,65469,65469,65470,6 5471,65472,65472,65473,65474,65475,65475,65476,65477,65477,65478,65478,65479,65480,654 80,65481}; sbit P2_0=P2^0; /*作输入步进电机的脉冲信号发送口*/ sbit P2_2=P2^2; /*作输入步进电机的旋转方向信号发送口*/ sbit P1_0=P1^0; /*作串口输出信号的使能口, P1_0=0时接通串口,输出信号*/ sbit WD=P1^7; /*看门狗*/ main() { P2_0=0; P2_2=0; /*步进电机的旋转方向待试验后确定*/ P1_0=1; /*开机时需要关断,串口发送功能,需要时再接通*/ WD=1; /*看门狗先为1,电平翻转为喂狗*/ i=0; common_count=0; cmd_in_permit=0; input_order=0; interval=0; address_true=1; speed_change=0; start_up=0;

基于单片机的步进电机控制器 毕业设计论文

基于单片机的步进电机控制器毕业设计论文 目录 第1章绪论 (3) 1.1引言 (3) 1.2步进电机常见的控制方案与驱动技术简介 (5) 1.2.1常见的步进电机控制方案 (5) 1.2.2步进电机驱动技术 (7) 1.3本文研究的内容 (9) 第2章步进电机概述 (10) 2.1步进电机的分类 (10) 2.2步进电机的工作原理 (11) 2.2.1结构及基本原理 (11) 2.2.2两相电机的步进顺序 (11) 2.3 步进电机的工作特点 (14) 2.4本章小结 (16) 第3章系统的硬件设计 (17) 3.1系统设计方案 (17) 3.1.1系统的方案简述与设计要求 (17) 3.1.2系统的组成及其对应功能简述 (17) 3.2单片机最小系统 (19) 1

3.2.1AT89S51简介 (19) 3.2.2单片机最小系统设计 (24) 3.2.3单片机端口分配及功能 (25) 3.3串口通信模块 (25) 3.4数码管显示电路设计 (26) 3.4.1共阳数码管简介 (26) 3.4.2共阳数码管电路图 (27) 3.5电机驱动模块设计 (28) 3.5.1L298简介 (28) 3.5.2电机驱动电路设计 (29) 3.6驱动电流检测模块设计 (31) 3.6.1OP07芯片简介 (31) 3.6.2ADC0804芯片简介 (33) 3.6.3电流检测模块电路图 (36) 3.7独立按键电路设计 (37) 3.8本章小结 (37) 第4章系统的软件实现 (38) 4.1系统软件主流程图 (38) 4.2系统初始化流程图 (39) 4.3按键子程序 (40) 结论 (44) 2

51单片机控制四相步进电机解析

51单片机控制四相步进电机 2009年07月21日星期二 12:44 51单片机控制四相步进电机 2009-03-01 18:53 接触单片机快两年了,不过只是非常业余的兴趣,实践却不多,到现在还算是个初学者吧。这几天给自己的任务就是搞定步进电机的单片机控制。以前曾看过有关步进电机原理和控制的资料,毕竟自己没有做过,对其具体原理还不是很清楚。今天从淘宝网买了一个EPSON的UMX-1型步进电机,此步进电机为双极性四相,接线共有六根,外形如下 图所示: 详细内容: https://www.doczj.com/doc/d82850386.html,/31907887_d.h tml

拿到步进电机,根据以前看书对四相步进电机的了解,我对它进行了初步的测试,就是将5伏电源的正端接上最边上两根褐色的线,然后用5伏电源的地线分别和另外四根线(红、兰、白、橙)依次接触,发现每接触一下,步进电机便转动一个角度,来回五次,电机刚好转一圈,说明此步进电机的步进角度为360/(4×5)=18度。地线与四线接触的顺序相反,电机的转向也相反。 如果用单片机来控制此步进电机,则只需分别依次给四线一定时间的脉冲电流,电机便可连续转动起来。通过改变脉冲电流的时间间隔,就可以实现对转速的控制;通过改变给四

线脉冲电流的顺序,则可实现对转向的控制。所以,设计了如下电路图: C51程序代码为: 代码一 #include static unsigned int count; static unsigned int endcount; void delay(); void main(void)

51单片机控制步进电机程序及硬件电路图

#include static unsigned int count; //计数 static int step_index; //步进索引数,值为0-7 static bit turn; //步进电机转动方向 static bit stop_flag; //步进电机停止标志 static int speedlevel; //步进电机转速参数,数值越大速度越慢,最小值为1,速度最快static int spcount; //步进电机转速参数计数 void delay(unsigned int endcount); //延时函数,延时为endcount*0.5毫秒 void gorun(); //步进电机控制步进函数 void main(void) { count = 0; step_index = 0; spcount = 0; stop_flag = 0; P1_0 = 0; P1_1 = 0; P1_2 = 0; P1_3 = 0; EA = 1; //允许CPU中断 TMOD = 0x11; //设定时器0和1为16位模式1 ET0 = 1; //定时器0中断允许 TH0 = 0xFE;

TL0 = 0x0C; //设定时每隔0.5ms中断一次TR0 = 1; //开始计数 turn = 0; speedlevel = 2; delay(10000); speedlevel = 1; do{ speedlevel = 2; delay(10000); speedlevel = 1; delay(10000); stop_flag=1; delay(10000); stop_flag=0; }while(1); } //定时器0中断处理 void timeint(void) interrupt 1 { TH0=0xFE; TL0=0x0C; //设定时每隔0.5ms中断一次count++; spcount--; if(spcount<=0) { spcount = speedlevel; gorun(); } } void delay(unsigned int endcount) { count=0; do{}while(count

基于51单片机的步进电机控制-

基于51单片机的步进电机控制 [摘要]本课程设计的内容是利用51单片机,达到控制步进电机的启动、 停止、正转、反转、两档速度和状态显示的目的,使步进电机控制更加灵活。步进电机驱动芯片采用ULN2803,ULN2803具有大电流、高电压,外电路简单等优点。利用四位数码管增设电机状态显示功能,各项数据更直观。实测结果表明,该控制系统达到了设计的要求。 关键字:步进电机、数码管、51单片机、ULN2803 一步进电机与驱动电路 1.1 什么是步进电机 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 1.2 步进电机的种类 步进电机分永磁式(PM)、反应式(VR)、和混合式(HB)三种。永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。这种步进电机的应用最为广泛。 1.3 步进电机的特点 1.精度高一般的步进电机的精度为步进角的3-5%,且不累积。可在宽广的频率范围内通过改变脉冲频率来实现调速,快速起停、正反转控制及制动等,这是步进电动机最突出的优点 2.过载性好其转速不受负载大小的影响,不像普通电机,当负载加大时就会出现速度下降的情况,所以步进电机使用在对速度和位置都有严格要求的场合; 3.控制方便步进电机是以“步”为单位旋转的,数字特征比较明显,这样就给计算机控制带来了很大的方便,反过来,计算机的出现也为步进电机开辟了更为广阔的使用市场;

51单片机驱动步进电机的方法(详解)

51单片机驱动步进电机的方法2019.02 这款步进电机的驱动电压12V,步进角为7.5度. 一圈360 度, 需要48 个脉冲完成!!! 该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。 采用51驱动ULN2003的方法进行驱动。 ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。 ;****************************************************************************** ;*************************步进电机的驱动*************************************** ; DESIGN BY BENLADN911 FOSC = 12MHz 2005.05.19

;--------------------------------------------------------------------------------- ; 步进电机的驱动信号必须为脉冲信号!!! 转动的速度和脉冲的频率成正比!!! ; 本步进电机步进角为7.5度. 一圈360 度, 需要48 个脉冲完成!!! ;--------------------------------------------------------------------------------- ; A组线圈对应P2.4 ; B组线圈对应P2.5 ; C组线圈对应P2.6 ; D组线圈对应P2.7 ; 正转次序: AB组--BC组--CD组--DA组(即一个脉冲,正转7.5 度) ;---------------------------------------------------------------------------------- ;----------------------------正转-------------------------- ORG 0000H LJMP MAIN ORG 0100H MAIN: MOV R3,#144 正转3 圈共144 脉冲 START: MOV R0,#00H START1: MOV P2,#00H MOV A,R0 MOV DPTR,#TABLE MOVC A,@A+DPTR JZ START 对A 的判断,当A = 0 时则转到START MOV P2,A LCALL DELAY INC R0 DJNZ R3,START1 MOV P2,#00H LCALL DELAY1 ;-----------------------------反转------------------------ MOV R3,#144 反转一圈共144 个脉冲 START2: MOV P2,#00H

单片机课程设计-单片机控制步进电机

课程设计报告 题目单片机控制步进电机 课程名称单片机原理及接口技术 院部名称 专业自动化 班级M10自动化 学生姓名 学号 课程设计地点 课程设计学时 指导教师高峰 金陵科技学院教务处制 【注:根据课程设计大纲第四项具体要求撰写课程设计报告】

目录 1设计任务和要求 (3) 2设计思路 (4) 3系统硬件设计 (5) 3.1 硬件电路的工作原理 (5) 3.2步进电机模块 (5) 3.3控制模块 (6) 3.4主要元件介绍: (6) 4软件编程 (11) 5 调试过程与结果 (20) 5.1正转结果显示: (20) 5.1.1正转加速: (21) 5.1.2正转减速: (21) 6 总结与体会 (24) 7 参考资料 (26) 8 附录 (26)

1设计任务和要求 单片机课程设计是考察学生利用所学过的专业知识,进行综合的电机控制系统设计并最终完成实际系统连接,能够使学生对电气与自动化的专业知识进行综合应用,培养学生的创新能力和团队协作能力,提高学生的动手实践能力。最终形成一篇符合规范的设计说明书,并参加综合实践答辩,为后期的毕业设计做好准备。 本次设计考核的能力主要有: 1)专业知识应用能力,包括电路分析、电子技术、单片机、检测技术、电 气控制、电机与拖动、微特电机及其驱动、计算机高级语言、计算机辅 助设计、计算机办公软件等课程,还包括本专业的拓展性课程如变频器、组态技术、现场总线技术、伺服电机等课程。 2)项目设计与运作能力,团队协作能力,技术文档撰写能力,PPT汇报与 口头表达能力。 3)电气与自动化系统的设计与实际应用能力。 要求完成的工作量包括: 1)现场仿真演示效果。 2)学生结合课题进行PPT演讲与答辩。 3)学生上交课题要求的各类设计技术文档。

用单片机控制步进电机

用单片机控制步进电机 步进电机是机电控制中一种常用的执行机构,它的用途是将电脉冲转化为角位移,通俗地说:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。通过控制脉冲个数即可以控制角位移量,从而达到准确定位的目的;同时通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 一、步进电机常识 常见的步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB),永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛。 二、永磁式步进电机的控制 下面以电子爱好者业余制作中常用的永磁式步进电机为例,来介绍如何用单片机控制步进电机。 图1是35BY型永磁步进电机的外形图,图2是该电机的接线图,从图中可以看出,电机共有四组线圈,四组线圈的一个端点连在一起引出,这样一共有5根引出线。要使用步进电机转动,只要轮流给各引出端通电即可。将COM端标识为C,只要AC、 C、BC、 C,轮流加电就能驱动步进电机运转,加电的方式可以有多种,如果将COM端接正电源,那么只要用开关元件(如三极管),将A、、B、轮流接地。 下表列出了该电机的一些典型参数: 表1 35BY48S03型步机电机参数 型号步距角相数电压电流电阻最大静转距定位转距转动惯量 35BY48S03 7.5 4 12 0.26 47 180 65 2.5 有了这些参数,不难设计出控制电路,因其工作电压为12V,最大电流为0.26A,因此用一块开路输出达林顿驱动器(ULN2003)来作为驱动,通过P1.4~P1.7来控制各线圈的接通与切断,电路如图3所示。开机时,P1.4~P1.7均为高电平,依次将P1.4~P1.7切换为低电平即可驱动步进电机运行,注意在切换之前将前一个输出引脚变为高电平。如果要改变电机的

基于单片机AT89C52的步进电机的控制器设计

2012届毕业生毕业设计说明书 题目:基于单片机的步进电机的控制器设计 院系名称:信息科学与工程学院 专业班级:电子信息科学与技术 学生姓名:学号: 指导教师:教师职称: 2012年月日

毕业设计中文摘要 摘要 步进电机控制方式的实现有多种,可以采用电子电路控制,PLC控制和单片机控制的方式。近些年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测的更新,用单片机控制步进电机显得更加灵活和方便。本设计是用AT89C52单片机作为核心部件进行逻辑控制及信号产生,用单片机技术和C语言编程设计来进行步进电机的控制。通过人手动按开关实现步进电机的启动与停止。此外此系统还添加了步进电机的正转反转,加速及减速,屏幕显示功能。同时本文也通过了proteus软件的仿真,在仿真结果过能看出近似真实的效果。 关键词:步进电机单片机控制 AT89C52 proteus仿真

毕业设计外文摘要 Title The design of the control system of Step—motor Abstract Stepper motor control can be achieved in different ways, can be used early analog circuits, digital circuits or a combination of analog and digital circuit means. With the rapid development of science and technology in recent years, the application of SCM is a growing, while traditional control test drive rapid updates. This paper describes a core component of the AT89C52, as the signal generated by logic control and microcontroller technology and assembly language programming designed stepper motor control system, Start and stop of the stepping motor to handle the switch manually by people. In addition, this system also adds a stepper motor forward reverse, acceleration and deceleration, the screen display. Meanwhile, through software simulation in proteus, too can be seen that the approximation of the true effect of the simulation results. Keywords stepper motor microcontroller AT89C52 proteus simulation

最新51单片机控制四相步进电机电路图汇总

51单片机控制四相步进电机电路图

51单片机控制四相步进电机 接触单片机快两年了,不过只是非常业余的兴趣,实践却不多,到现在还算是个初学者吧。这几天给自己的任务就是搞定步进电机的单片机控制。以前曾看过有关步进电机原理和控制的资料,毕竟自己没有做过,对其具体原理还不是很清楚。今天从淘宝网买了一个EPSON的UMX-1型步进电机,此步进电机为双极性四相,接线共有六根,外形如下图所 示: 拿到步进电机,根据以前看书对四相步进电机的了解,我对它进行了初步的测试,就是将5伏电源的正端接上最边上两根褐色的线,然后用5伏电源的地线分别和另外四根线(红、兰、白、橙)依次接触,发现每接触一下,步进电机便转动一个角度,来回五次,电机刚好转一圈,说明此步进电机的步进角度为360/(4×5)=18度。地线与四线接触的顺序相反,电机的转向也相反。 如果用单片机来控制此步进电机,则只需分别依次给四线一定时间的脉冲电流,电机便可连续转动起来。通过改变脉冲电流的时间间隔,就可以实现对转速的控制;通过改变给四线脉冲电流的顺序,则可实现对转向的控制。所以,设计了如下电路图:

C51程序代码为: 代码一 #include static unsigned int count; static unsigned int endcount; void delay(); void main(void) { count = 0; P1_0 = 0; P1_1 = 0; P1_2 = 0; P1_3 = 0;

EA = 1; //允许CPU中断TMOD = 0x11; //设定时器0和1为16位模式1 ET0 = 1; //定时器0中断允许TH0 = 0xFC; TL0 = 0x18; //设定时每隔1ms中断一次 TR0 = 1; //开始计数 startrun: P1_3 = 0; P1_0 = 1; delay(); P1_0 = 0; P1_1 = 1; delay(); P1_1 = 0; P1_2 = 1; delay(); P1_2 = 0; P1_3 = 1; delay(); goto startrun; } //定时器0中断处理 void timeint(void) interrupt 1

相关主题
文本预览
相关文档 最新文档