当前位置:文档之家› 电流模式控制反激变换器反馈环路的设计

电流模式控制反激变换器反馈环路的设计

电流模式控制反激变换器反馈环路的设计
电流模式控制反激变换器反馈环路的设计

电流模式控制反激变换器反馈环路的设计

首先要搞清系统稳定所必需的几个条件:

系统稳定的原则:

A,系统环路总增益在穿越频率(或叫剪切频率,截止频率,交越频率,带宽都是它)处的增益为1或0Db。高的穿越频率能保正电源快速响应线性和负载的突变,穿越频率受

到开关频率的限制,根据采样定理穿越频率必需小于开关频率的一半,因为开关频率可以在输出端开出来,但这个频率必须不被反馈环传递,否则系统将会振荡并如此恶性循环。实际应用中一般取开关频率的1/4或1/5。

B,在系统在穿越频率处的总相位延迟必需小于(360-45)315度。

45度为相位裕量。当相位裕量大于45度时,能提供最好的动态响应,高的相位裕量能阻尼振荡并缩短瞬态调节时间获得最少的过冲。

C,系统的开环增益曲线在穿越频率附近的斜率应为-1过0Db。

因为具有-1增益斜率的电路,相位延迟不会超过90度(这里指的是系统总的开环增益曲线)。

要满足上面的三个准则,必需知道如何计算系统中各环节的增益和相位延迟。要知道如何计算必需先搞清楚以下几个概念:

1.系统的传递函数:系统的传递函数定义为输出变动量除以输入变动量也叫增益。每一部份的传递函数均为该部份的输出除以输入,也叫该部份的增益。系统的增益即为各环节部份增益的乘积。增益可以用数值方式表示也可以用Db(分贝)方式表示。传递函数由幅值和相位因素组成(幅值也就是增益),并可以在博得图上分别以图形表示。通常我们要把传输函数因式分解成各因式相乘的形式,以便于得到零点各极点。2.极点:数学上,在传输函数方程中,当分母等于零时出现极点,在博得图上当增益以-1斜率开始递减时的点为一个极点。

3.零点:数学上,在传输函数方程中,当分子等于零时出现零点,在博得图上当增益以+1斜率开始递增时的点为零点,并伴随着90度的相位超前。第二种零点,即右半平面零点,增益仍以+1斜率递增,它将引起90度的相位滞后而非超前,设计时应使系统的穿越频率大大低于右半平面零点。

4.对数运算法则:两个数乘积的对数等于它们各自对数的和。所以只要将各部分增益表示为分贝后再将它们相加就可以得到系统的总增益。

5.数值与对数的相互转换计算:

例:0.5=20xlog0.5=-6Db

-6Db=1/(10^(6/20))=0.5 分开来一步步的更容易理解:-6/20=-0.3, 10的-0.3次方就等于10

的0.3次方分之1,从而计算出数值。

在实际设计中我们实际是要确定431环节的3个量:(这里我们主要考虑2型误差放大器)A,431环节的放大倍数即增益;

首先要写出除431环节外的各环节的传输函数,并计算出它们在穿越频率处的增益,再把这个增益转换成分贝数,再把它们相加,这个和的相反数即为我们需要设计的431环节的放大倍数的分贝形式,我们要把这个分贝数再转换成数值形式,这个值也就是431R,K脚电阻除以R脚到输出端的电阻值,R脚到输出端的电阻值也就是上分压电阻由我们自已随便定。

在这里我需要先确定一个参数穿越频率Fco,可以取开关频率的1/4或1/5,不能取太大,以免进入右半平面零点或无法阻止输出端的开关纹波进入反馈环。

B,确定431放大环节的零点Fz,只有确定了这个才有办法计算出431RK脚之间与电阻串联的电容的值。

这个主要是抑制系统的低频振荡。这个点的确定是跟据系统各环节在穿越频率处的相移情况来决点。

在整个环路中只有输出滤波部份和431放大环节部份才会引起相移,根据穿越频率Fco与输出滤波器零点频率的比值可以从下表中查出输出滤波部份相位延迟的度数。用360度-45度-滤波部分的相位延迟度数就可以得到误差放大器环节可允许的最大相位延迟度数。再根据Venable的方法可以选定比率K=Fco/Fz=Fp/Fco,从而得到误差放大器的零点和极点。对应于不同的K值,二型误差放大器的相位滞后也可跟据表中查得。根据为保证足够相位裕度而选定的K值而得出的零点频率,带入误差放大器的传输方程中的零点式可计算出RC串联中的电容值

C,根据上一步确定的K值所得到的极点频率带入传输方程中的极点式可算出二型误差放大器431RK脚之间直接并接的小电容值,这个电容主要是抑抑制系统的高频振荡。

选定不同K值时,二型误差放大器的相位延迟

那就是传输函数的定义:等于输出除以输入,不论它输出的是什么量,输入的是什么量都是如此。还有一点不要忘了,那就是要把这个函数因式分解成各因式相乘的形式。

了解了上面的知识和方法,我们来进行实际设计分析:

为了便于描述,我们先来定议一下,输出电容我们定议为C,431R端的取样电阻,上分压电阻为R1,下分压电阻为R2,431RK脚的RC串联电阻为R3,电容为C1,431RK脚直接接的小电容为C2,光耦二极管上端限流电阻为R4,初级MOS管下在的电流取样电阻为Rsense.

1.首先我们来写出反馈取样处的增益H(s)=R2/(R1+R2),把它算出来转换成分贝数.显然它是一个常数,与频

率无关,所以不成在相移问题。

2.输出滤波部分:在电流模式控制系统中,输出的电流被调节以达到目标的输出电压,输出滤波部份把脉

动的输出电流转换成目标输出电压。通过小信号分析得到:

Rfb=R1+R2

V out(s)=Iout(s)*[Rfb//(1/Cs+Resr)] 这个很好理解吧,电流乘以阻抗等于电压,阻抗当然是

电容在不同频率下的阻抗加上它的ESR后再与假负载

并联了,这里Rfb实际上也充当假负载了。Iout(s)也就

是滤波部份的入变量电流了

G1(s)=Vout(s)/Iout(s)=Rfb//(1/Cs+Resr)

Rfb*(1/Cs+Resr)

Rfb+1/Cs+Resr 将分子分母分别通分后再相除,就得到下式:

Rfb*(1+Cs*Resr)

Cs(Rfb+Resr)+1

这个就是输出滤波部分的转输函数了,这时的S=j2Πf, 之所以要用j,是因为它还包含虚部相移分

量。只要确定频率f就可以算出增益,不同的频率当然有不同的增益,我们只关心穿越频率处的

增益,所以只要确定穿越频率就可以得到穿越频率处的增益。

当然这里只考滤只有一个输出电容的情况,多个电容你就自已去并吧,还有输出负载也应算入假

负载中吧!

从这个传输函数我们可以得到输出滤波环节的零点,当Rfb*(1+Cs*Resr)=0时出现0点,即1+ Cs*Resr=0 时,所以Fesro=1/(2*Π*C*Resr)如此得出输出滤波环节的零点频率。同样我们可以得出它的极点频率:Fpo=1/[2*Π*C*(Rfb+Resr)],这样我们可以想象出在波特图上的形状为先出现一个极点,随着频率的增大再出现一上个零点,如下图所示:

从穿越频率Fco与零点频率Fesro的比值我们可以从前面的表中得出输出输出滤波部分的相位延迟度数。

3.PWM部分的传输函数:

从431的输出到3842的1脚的传递函数即为光耦的传输函数:

ΔVcomp CTR*Rcomp

△Vcathode R4

△Vcathode为431的K脚电压,ΔVcomp为3842 1脚电压,Rcomp是1脚拉电流试图超过最大时的输出阻抗,CRT为光耦的传输比,R4为光耦二极管端的限流电阻。

当这个信号传到3842 1脚后与初级电流检测信号进行比较,在闭环系统中Vcomp与Isense维持同样的电平,因此:

Iprimary ΔVcomp Iprimary ΔIsecondary

Rsense N

Isecondary也就是输出电流ΔIout,

ΔVcomp ΔIout

Rsense N

ΔVcomp*N=ΔIout*Rsense

ΔIout=Vcomp*N/Rsense

ΔVcomp=CTR*Rcomp*△Vcathode/R4

ΔIout= CTR*Rcomp*△Vcathode *N /(R4* Rsense)

G2(s)=ΔIout/△Vcathode= CTR*Rcomp*N /(R4* Rsense)

从传递函数G2(s)可以看出此部分也是一个常数,与频率F无关,也就是说这部份环节不存在相移。这个环节中的所有参数都是已知的,CTR可以从光耦的参数查得,Rcomp可以从IC的资料中计算得出,以最大输出摆动工作电压ΔVcomph除以变化的Output Source current ΔIcomp得出Rcomp的值。.R4是根据Icomph和光耦的传输比CTR确定的。把实际的值代入方程就可以得到此环节的增益。也把它转换成分贝数形式。

4.误差放大器环节的传递函数G3(s):

到此我们已经计算出了除误差放大器(TL431)环节以外的所有环节在穿越频率处的增益,跟据在穿越频率处的环路总增益为0的原则,可以确定431环节的放大倍数G3(s)为:

G3(S)+G2(s)+G1(s)+H(s)=0

G3(s)= -[G2(s)+G1(s)+H(s)]

我们将G3(s)的分贝数转换成数值形式,这个数值就是R3/R1的值。R1的值我们可以随便定,一旦R1确定后,R2及R3也就定下来了。现在我们要确定C1和C2的值:

我们再来看允许误差放大器的最大相移度数,以便确定K值:

允许最大相移度数为:360-45-滤波环节在穿越频率的相位延迟,根据这个值我们可以从前面的表中选出对应的K值,根据这个K值和穿越频率Fco我们可以计算出误差放大器的零点频率Fz=Fco/K,极点频率Fp=Fco*K,将这两个值分别带入431环节的传输函数的零点式和极点式,就可以计算出C1,C2的值。

现在我们来看431环节的传输函数的书写:

Iopto=(V0-V1)/Rb V1即为431K端电压

V1=-(V0/R1)*(R+1/Cs) 这里是根据交流等效分析中反相端虚短的方法来计算的

Iopto=[V0+(V0/R1)*(R+1/Cs)]/Rb, 先将这个式子整理得出:

[1+(R+R1)Cs ] *V0

R1*Rb*Cs

G3(s)=Iopto/V0 1+(R+R1)Cs

R1*Rb*Cs

由这个传递函数可以看出,误差放大器的零点是当分子1+(R+R1)Cs=0时,即Fz=1/[2*Π*(R+R1)*C]时

出现零点,前面我们已经根据K值确定了Fz的值,R和R1的值在前面也已经确定,现在就可以算出C的值了,即我们前面的C1值。从这个传输方程中我们可以看出函数没有极点,因为:R1*Rb*Cs不管F取何值均不可能为为0,除非f或者C为零。

到此环路设计完成,在整个过程中关键是各环节的传输方程不要写错,如果某个环节的传输方程写错了,那将会得到一个错误的R值,R值错了,串联的电容值也就跟着错了。不同的电路结构将会不同的传输方程,这个只有跟据实际情况书写了,只要记住传输函数的定义,在实际应用中慢慢体会吧。

上面这个例子中仅以3842做成的电流控制型拓补进行的分析,且3842 1,2脚内部的误差放大器没有使用(如果要用就自已去加入此环节的增益和相益吧),输出也只有电容滤波的情况,当实际应用中通常是有一个小电感两端各放一个电容的Π型滤波器,不过这个电感值很小,通常只有1-2μh,你完全可以把它当做短路,两个电容进行并联来进行近似计算(如果电感较大时就必需考虑了,比如正激变换器中的储能电感,其传输函数就不一样了)。理论计算如此,但实际应用中还得跟据实际上调试!

反激变换器课程设计报告

电力电子课程实习报告 班级:电气10-3班 学号: 10053303 姓名:李乐

目录 一、课程设计的目的 二、课程设计的要求 三、课程设计的原理 四、课程设计的思路及参数计算 五、电路的布局与布线 六、调试过程遇到的问题与解决办法 七、课程设计总结

一、课程设计的目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的应用; (3)增强设计、制作和调试电力电子电路的能力。 二、课程设计的要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的反击式开关电源。 电源输入电压:220V 电源输出电压电流:12V/1.5A 电路板:万用板手焊。 三、课程设计原理 1、引言 电力电子技术有三大应用领域:电力传动、电力系统和电源。在各种用电设备中,电源是核心部件之一,其性能影响着整台设备的性能。电源可以分为线性电源和开关电源两大类。 线性电源是把直流电压变换为低于输入的直流电压,其工作原理是在输入与输出之间串联一个可变电阻(功率晶体管),让功率晶体管工作在线性模式,用线性器件控制其“阻值”的大小,实现稳定的输出,电路简单,但效率低。通常用于低于10W的电路中。通常使用的7805、7815等就属于线性电源。 开关电源是让功率晶体管工作在导通和关断状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小),所以开关电源具有能耗小、效率高、稳压范围宽、体积小、重量轻等突出优点,在通讯设备、仪器仪表、数码影音、家用电器等电子产品中得到了广泛的应用。反激式功率变换器是开关电源中的一种,是一种应用非常广泛的开关电源。 2、基本反激变换器工作原理 基本反激变换器如图1所示。假设变压器和其他元件均为理想元器件,稳态工作下。

电流模式控制反激变换器反馈环路的设计

电流模式控制反激变换器反馈环路的设计 首先要搞清系统稳定所必需的几个条件: 系统稳定的原则: A,系统环路总增益在穿越频率(或叫剪切频率,截止频率,交越频率,带宽都是它)处的增益为1或0Db。高的穿越频率能保正电源快速响应线性和负载的突变,穿越频率受 到开关频率的限制,根据采样定理穿越频率必需小于开关频率的一半,因为开关频率可以在输出端开出来,但这个频率必须不被反馈环传递,否则系统将会振荡并如此恶性循环。实际应用中一般取开关频率的1/4或1/5。 B,在系统在穿越频率处的总相位延迟必需小于(360-45)315度。 45度为相位裕量。当相位裕量大于45度时,能提供最好的动态响应,高的相位裕量能阻尼振荡并缩短瞬态调节时间获得最少的过冲。 C,系统的开环增益曲线在穿越频率附近的斜率应为-1过0Db。 因为具有-1增益斜率的电路,相位延迟不会超过90度(这里指的是系统总的开环增益曲线)。 要满足上面的三个准则,必需知道如何计算系统中各环节的增益和相位延迟。要知道如何计算必需先搞清楚以下几个概念: 1.系统的传递函数:系统的传递函数定义为输出变动量除以输入变动量也叫增益。每一部份的传递函数均为该部份的输出除以输入,也叫该部份的增益。系统的增益即为各环节部份增益的乘积。增益可以用数值方式表示也可以用Db(分贝)方式表示。传递函数由幅值和相位因素组成(幅值也就是增益),并可以在博得图上分别以图形表示。通常我们要把传输函数因式分解成各因式相乘的形式,以便于得到零点各极点。2.极点:数学上,在传输函数方程中,当分母等于零时出现极点,在博得图上当增益以-1斜率开始递减时的点为一个极点。 3.零点:数学上,在传输函数方程中,当分子等于零时出现零点,在博得图上当增益以+1斜率开始递增时的点为零点,并伴随着90度的相位超前。第二种零点,即右半平面零点,增益仍以+1斜率递增,它将引起90度的相位滞后而非超前,设计时应使系统的穿越频率大大低于右半平面零点。 4.对数运算法则:两个数乘积的对数等于它们各自对数的和。所以只要将各部分增益表示为分贝后再将它们相加就可以得到系统的总增益。 5.数值与对数的相互转换计算: 例:0.5=20xlog0.5=-6Db -6Db=1/(10^(6/20))=0.5 分开来一步步的更容易理解:-6/20=-0.3, 10的-0.3次方就等于10 的0.3次方分之1,从而计算出数值。 在实际设计中我们实际是要确定431环节的3个量:(这里我们主要考虑2型误差放大器)A,431环节的放大倍数即增益;

开关电源拓扑电压模式与电流模式的比较

开关电源拓扑电压模式与电流模式的比较 作者:罗伯特.曼诺 Unitrode公司的IC公司拥有自成立以来一直活跃在前沿的发展控制电路来实现国家的最先进的级数在电源技术。在多年来许多新产品已推出使设计人员能够在易于应用新的创新电路拓扑结构。由于每一种新的拓扑声称提供改进过的这以前是可用的,它是合理的期望一些混乱将与引进的UCC3570的生成 - 一种新的电压模式控制器介绍我们告诉了近10年后世界上目前的模式是这样的优越方法。 但事实却是,没有一个统一的拓扑结构是最适合所有的应用程序。此外,电压模式控制如果更新了现代化的电路和工艺的发展 - 大有作为今天的高性能用品的设计师和是一个可行的竞争者为电源设计人员的重视。要回答的问题是,它的电路拓扑结构最好是为一个特定的应用程序时,必须从的每一种方法的两个优点和缺点的认识。下面的讨论尝试这样做以一致的方式为这两个电源的控制算法。 电压模式控制这是用于在第一开关的方法调节器的设计和它服务的行业以及为多年本电压模式配置。这种设计的主要特点是:有一个单一的电压反馈路径,以脉冲宽度调制,通过比较所执行的以恒定的倾斜波形电压误差信号。电流限制必须分开进行。 电压模式控制的优点有: 1.单个反馈回路更易于设计和分析。 2.大振幅锯齿波为一个稳定的调制过程提供良好的噪声容限。 3. 低阻抗功率输出为多路输出电源提供更佳交叉调整。 电压模式控制的缺点: 1.任何改变线路或负载必须首先被检测作为输出的变化,然后由校正反馈回路。 这通常意味着响应速度慢。 2.输出滤波器将两个极点的控制循环要求无论是占主导地位的极低频滚降在误 差放大器或在补偿加零。 3.补偿是通过进一步复杂化,即环增益随输入电压而变化。 电流模式控制上述的缺点是相对显著,因为,设计师们在它的介绍非常积极地考虑所有被缓解电流模式控制这种拓扑结构。如可以看到的从图2中,基本电流模式的图 控制使用振荡器只能作为一个固定频率时钟和斜坡波形被替换为从输出电感电流产生的信号。 而这种控制技术提供的优点包括以下内容: 1. 由于电感电流上升与输入电压 - 武定一个斜坡,这个波形会回应马上到线电压的变化,消除双方的延迟反应和增益变化与输入电压变化。 2. 由于误差放大器现在用命令的输出电流而不是电压,输出电感的影响被最小化现在的过滤器只提供一个单极到反馈回路(至少在感兴趣的正常区域)。这允许在可比的电压模式电路更简单补偿和更高的增益带宽。 3. 电流模式电路额外的好处包括固有的脉冲逐脉冲限流仅仅通过钳位误差放大器的命令,当多个功率单元并联共享以及提供方便的负荷。 而改进提供了电流模式令人印象深刻的是,这项技术在设计过程中还带有其独特的一套必须解决的问题。一些这些清单已概述如下:

(完整版)50W反激变换器的设计

50W反激变换器的设计(CCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.45 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则主功率管开通时间为: Ton=T*D=10uS*0.45=4.5uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Toff ( 设定整流管压降为1V ) 变压器的匝比n: n = 13.67 设定电源工作在连续模式Ip2 = 0.4 * Ip1 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η ( 设定电源的效率η为0.8 ) Ip1 = 1.98 A Ip2 = 0.79 A 变压器的感量 L = ( Vin * Ton ) / ( Ip1 – Ip2 ) = 379 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 27 T 变压器的次级匝数Ns = Np / n = 2 T 变压器的实际初次级匝数可以取 Np = 27 T Ns = 2 T 重新核算变压器的设计 最大占空比:Vin * D = n * ( V o + Vf ) * ( 1 – D ) D = 0.447 最大磁通密度:Bmax = ( Vin * Ton ) / ( Np * Ae ) Bmax = 0.195 T 初级电流Ip1 和Ip2: 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η Ip2 + ( Vin * Ton ) / L = Ip1 Ip1 = 1.99 A Ip2 = 0.8 A Ip_rms = 0.93A 次级电流Is1和Is2 Is1 =Ip1*n=26.87A Is2=Ip2*n =10.8A Is_rms = 12.56A 次级电压折射到初级的电压 V or = n * ( V o + Vf ) = 81V 初级功率管Mosfet 的选择 Vmin = (√2 * 264 + V or +50 ) / 0.8 = 630 V Ip_rms = Ip_rms / 0.8 = 1.16 A ( 设定应力降额系数为0.8 ) 可以选择Infineon 的IPP60R450E6 次级整流管Diode 的选择 Vmin = (√2 * 264 / n + 5 +15 ) / 0.8 = 60 V Is_rms = Is_rms / 0.8 = 15.7 A ( 设定应力降额系数为0.8,噪音为15V ) 可以选择IR 的30CTQ060PBF 输出电容的选择 设定输出电压的纹波为50mv 输出电流的交流电流: Isac_rms = 0.5 * ( Is1 + Is2 ) * √D * ( 1- D ) Isac_rms = 9.36A Resr = Vripple / Isac_rms = 5.34 mohm 选择Nichicon 电容HD 系列6.3V/3900uF 四个并联使用50W反激变换器的设计(DCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.3 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则功率管开通时间:Ton=T*D=10uS*0.3=3uS 假设关断时间:Toff=7uS,Tr=4uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Tr ( 设定整流管压降为1V ) 变压器的匝比n: n = 12.53 设定电源工3作在续模式Io = Tr/T * Ip2 Ip2=Io*T/Tr=25A Ip1 = Ip2/n=1.99 A 变压器的感量 L = ( Vin * Ton ) / Ip1 = 151 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 18 T 变压器的次级匝数 Ns = Np / n = 1.4 T=2T 变压器的实际初次级匝数可以取 Ns = 2 T Np=Ns * n=25.1T=26T 开关电源一次滤波大电解电容 开关电源决定一次侧滤波电容,主要影响电源的性能参数为输出低频交流纹波与保持时间. 滤波电容越大,电容器上的Vin(min)越高,可以输出较大功率的电源,但相对价格也提高了。 输入电解电容计算方法(举例说明): 1.因输出电压12V 输出电流2A, 故输出功率:Pout=V o*Io=1 2.0V*2A=24W。 2.设定变压器的转换效率约为80%,则输出功率为24W的 电源其输入功率:Pin=Pout/效率=W W 30 % 80 24 =. 3.因输入最小交流电压为90V AC,则其直流输出电压为:Vin=90*1.2=108Vdc 故负载直流电流为:I= Vin Pin =A Vac W 28 .0 108 30 = 4.设计允许的直流纹波电压V ?/V o=20%,并且电容要维持电压的时间为1/4周期t(即半周期的工频率交流电压在约 是4ms,T= f 1 = 60 1 =0.0167S=16.7 ms)则: C=uF V t I 9. 51 6. 21 10 * 4 * 28 .0 *3 = = ? - 故实际选择电容量47uF. 5.因最大输入交流电压为264Vac,则最高直流电压为:V=264*2=373VDC. 实际选用通用型耐压400Vdc的电解电容,此电压等级,电容有95%的裕度. 6.电容器的承受的纹波电流值决定电容器的温升,进而决定电容器的寿命.(电容器的最大纹波电流值与其体积,材质有关.体积越大散热越好耐受纹波电流值越高)故在选用电容器要考虑实际纹波电流值<电容器的最大纹波电流值. 7.开关源元器件温升一般较高,通常选用105℃电容器,在特殊情况无法克服温升时可选用125℃电容器. 故选用47uF,400v, 105℃电解电容器可以满足要求(在实际使用时还考虑安装机构尺寸,体种大小,散热环境好坏等)

分析电流控制型开关电源方案

分析电流控制型开关电源方案 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。 电压控制型开关电源会对开关电流失控,不便于过流保护,并且响应慢、稳定性差。与之相比,电流控制型开关电源是一个电压、电流双闭环控制系统,能克服电流失控的缺点,并且性能可靠、电路简单。据此,我们用UC3842芯片设计了一个电流控制型开关电源。为了提高输出电压的精度,系统没有采用离线式结构,而采用直接反馈式结构。本系统在设计上充分考虑了电磁兼容性和安全性,可广泛应用于

工业、家电、视听和照明设备。 电流控制型开关电源的原理框图 电流型控制是针对电压型控制的缺点而发展起来的,在保留了电压控制型的输出电压反馈控制部分外,又增加了一个电流反馈环节,其原理框如图1所示。 图1 电流控制型开关电源的原理框图 电流控制型开关电源是一个电压、电流双闭环控制系统,内环为电流控制环,外环为电压控制环。当U O变化导致UF变化,或I变化导致US变化时,从而改变UO,达到输出电压稳定的目的。 电流型控制芯片UC3842 UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而

反激变换器拓扑的电路设计

反激变换器拓扑的电路设计 1.介绍反激变换器拓扑在5W到150W的小功率场合中得到广泛的应用。这个拓扑的重要优点是在变换器的输出端不需要滤波电感,从而节约了成本,减小了体积。在以往一些中文参考资料的叙述中,由于同时涉及电路和磁路的设计,容易造成设计过程中的混乱,反激变换器电路本身的一些特性却没有得到应有的体现。在文中,介绍了反激变换器的基本工作原理,对不连续模式反激变换器的设计过程,各参数之间的决定关系作了简练而准确的描述。由于电路设计和磁路设计分别介绍,对读者掌握反激变换器的设计有很好的帮助。 2.不连续模式反激变换器的基本原理反激变换器在开关管导通期间,变压器储能,负载电流由输出滤波电容提供。在开关管关断期间,储存在变压器中的能量转换到负载,提供负载电流,同时给输出滤波电容充电,并补偿开关管导通期间损失的能量。 图1a是反激变换器的基本拓扑。图中有两个输出电路,一个主输出和一个从输出。负反馈闭合环路采样主输出电压V om。V om的采样值与参考值比较,输出的误差信号放大信号控制Q1的导通时间脉冲,使得V om的采样值在电网和负载变化时等于参考电压,从而稳定输出电压。从输出跟随主输出得到相应的调节。 电路的工作过程如下:当Q1导通,所有线圈的同名端(带)相对于非同名端(不带)是负极性。输出整流二极管D1和D2反向偏置,输出负载电流由输出滤波电容C1和C2提供。 在Q1导通期间,Np上施加了一个固定的电压(Vdc-1)(这里假设开关管的导通压降是1V),并且流过以斜率dI/dt=(Vdc-1)Lp线性上升的电流,这里Lp是原边的磁化电感。在导通时间的最后,原边电流上升到Ip=(Vdc-1)Ton/Lp。这个电流代表电感上储存的能量为 (1) 这里E单位焦耳,Lp单位亨,Ip单位安培 当Q1关断,磁性电感上的电流强制使所有线圈上的极性反向。假设这时没有从次级绕组,

VF变换器设计报告

VF 变换器设计 姓 名 学 号 院、系、部 班 号 完成时间 ※ ※※※※※※※ ※ ※ ※ ※※ ※ ※ ※※※※※ ※※※※ 2013级 模拟电子技术课程设计

摘 要 电压/频率变换器的输入信号频率 f 。0 与输入电压 V i 的大小成正比,输入控制电压 V i 常为直流电压,也可根据要求选用脉冲信号做为控制电压,其输出信号可为正弦波或者脉冲波形电压。 本次课程设计利用输入电压的大小改变电容的充电速度,从而改变振荡电路的振荡频率,故采用积分器作为输入电路。积分器的输出信号去控制电压比较器或者单稳态触发器,可得到矩形脉冲输出,由输出信号电平通过一定反馈方式控制积分电容恒流放电,当电容放电到某一域值时,电容C 再次充电。由此实现V i 控制电容充放电速度,即控制输出脉冲频率。 关键词:电压变换器 积分器 单稳态触发器

目录 第1章设计任务与要求 (1) 第2章方案与论证 (1) 2.1 VF变换器设计思路 (1) 2.2 原理框图设计 (1) 第3章单元电路设计与参数计算 (2) 3.1 积分器设计 (2) 3.2 单稳态触发器设计 (3) 3.3 电子开关设计 (3) 3.4 恒流源电路设计 (4) 3.5 元件参数计算 (4) 3.6 主要元件参数 (5) 第4章仿真与调试 (6) 4.1 仿真电路 (6) 4.2 电路调试 (6) 4.3 调试结果 (7) 第5章结论与心得 (10) 5.1 结论 (10) 5.2 心得体会 (10) 参考文献 (10)

第1章 设计任务与要求 (1)设计一个振荡频率随外加控制电压变化的压控振荡器。 (2)输入外加控制电压信号为直流电压,输出信号频率为0f ,0f 与输入电压幅 度成正比。 (3)输入信号为矩形脉冲信号。 (4)输入电压的变化范围为0-10V 。 (5)0f 的变化范围为0-10kHz 。 (6)转换精度小于1%。 第2章 方案与论证 2.1 VF 变换器设计思路 (1)利用输入电压的大小改变电容器的充电速度,从而改变振荡器的振荡频率,可采用积分电路作为输入电路。积分器可由集成运算放大器和RC 元件组成。 (2)积分器的输出信号控制电压比较器、施密特触发器、单稳态触发器等,可得到矩形脉冲输出。 (3)输出信号电压通过一定反馈方式控制积分电容恒流放电,从而使积分电容的充放电速度控制了输出脉冲信号的频率,实现V/F 变换。 2.2 原理框图设计 图2-1 原理结构图输入 积分器 单稳态转换器 输出 恒流源 电子开关

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

boost变换器设计报告

直流稳压电源设计报告 摘要 本作品采用了boost拓扑,利用电感、场效应管和二极管完成了升压的功能,利用Tl494,和IR2110进行反馈控制。并加上前期的整流滤波电路,实现可以用从市电开始转换。本作品基本实现了题目的功能,实现了30V到36V,2A的输出。 一、方案比较论证 1.主拓扑方案的论证 方案一:采用反激式变换器。反激式变换器适合小功率的输 出,输入电压大范围波动时,仍可以有较稳定的输出,并且 可以实现带隔离的DC/DC变换,但其中的反激式变压器设计 比较复杂,且整体效率较低。 方案二:采用boost变换器,boost是一种斩波升压变换器, 该拓扑效率高,电路结构简单,参数设计也比较容易。 方案三:采用SPICE变换器,开关环路的对称性使其可以达 到较高效率,电感的适当耦合也可以尽量减小纹波。但该方 案成本较高,对电容电感值要求较高,检测和控制电路较为 复杂。 为节约成本,并从简单考虑,本作品选用方案二。 2.控制反馈方案的选择 方案一:系统由Boost模块实现升压任务,各模块所需PWM 信号的由单片机提供,单片机AD采集实时输出量,经运算

后通过改变占空比调整模块工作状态。该方案电路最简单, 各种控制灵活,缺点有单片机运算量过大,开关信号占空比 受单片机限制,浮点运算的时延影响电路跟随,另外单片机 容易受到功率管开关干扰而失灵。 方案二:使用振荡器、比较器产生PWM波,由负反馈电路 实现输出控制,单片机负责状态切换和测量显示,该方案原 理易于理解,但自己装调的PWM电路在开关时容易出现振 铃毛刺,直接影响了系统效率,并且要完善反馈控制对回馈 信号要求较高。 方案三:借用现有成熟PWM控制器,该类集成电路输出波 形好,工作稳定,都具备至少一个反馈控制引脚,按照厂商 提供的典型电路就可装调出应用电路。但这类电路一般针对 专用场合设计,借用时需要较多设计计算,特别是该类芯片 的反馈有极高的控制灵敏度,在单片机参与时需要较多改动。 本作品采用方案三。 二、理论分析和计算 1.电路设计与分析 (1)提高效率的方法

反激变压器设计步骤及变压器匝数计算

1. 确定电源规格. 输入电压范围Vin=85 —265Vac; 输出电压/ 负载电 流:Vout1=5V/10A,Vout2=12V/1A; 变压器的效率?=0.90 2. 工作频率和最大占空比确定. 取: 工作频率fosc=100KHz, 最大占空比Dmax=0.45. T=1/fosc=10us.Ton(max)=0.45*10=4.5us Toff=10-4.5=5.5us. 3. 计算变压器初与次级匝数比n(Np/Ns=n). 最低输入电压Vin(min)=85* “2-20=100Vdc( 取低频纹波为20V). 根据伏特- 秒平衡,有: Vin(min)* Dmax= (Vout+Vf)*(1-Dmax)*n. n= [Vin(min)* Dmax]/ [(Vout+Vf)*(1-Dmax)] n=[100*0.45]/[(5+1.0)*0.55]=13.64 4. 变压器初级峰值电流的计算. 设+5V输岀电流的过流点为120%;+5v 和+12v整流二极管的正向压降均为 1.0V. +5V 输出功率Pout1=(V01+Vf)*I01*120%=6*10*1.2=72W +12V 输岀功率 Pout2=(V02+Vf)*I02=13*1=13W 变压器次级输岀总功率Pout=Pout1+Pout2=85W 1/2*(Ip1+Ip2)*Vin(min)*Ton(max)/T= Pout/ Ip1=2*Pout/[?(1+k)*Vin(min)*Dmax] =2*85/[0.90*(1+0.4)*100*0.45] =3.00A Ip2=0.4*Ip1=1.20A 5. 变压器初级电感量的计算. 由式子Vdc=Lp*dip/dt, 得: Lp= Vin(min)*Ton(max)/[Ip1-Ip2] =100*4.5/[3.00-1.20] =250uH 6. 变压器铁芯的选择. 根据式子Aw*Ae=P t*106/[2*ko*kc*fosc*Bm*j*?], 其中: Pt( 变压器的标称输岀功率)= Pout=85W Ko( 窗口的铜填充系数)=0.4 Kc( 磁芯填充系数)=1( 对于铁氧体), 变压器磁通密度Bm=1500 Gs j( 电流密度): j=5A/mm2; Aw*Ae=85*106/[2*0.4*1*100*103*1500Gs*5*0.90]

逆变器的两种电流型控制方式

逆变器的两种电流型控制方式 摘要:研究分析了逆变器的两种双环瞬时反馈控制方式——电流型准PWM控制方式和三态DPM电流滞环跟踪控制方式,介绍其工作原理,分析比较其动态和静态性能,并给出具体实现电路及系统仿真结果。 关键词:PWM逆变器功率变换器控制 On Two Types of Current Programmed Control Topologies for Inverters Abstract:This paper presents a comparative study on two types of current programmed instant control modes for inverters, PWM and hysteresis type.Principle, static and dynamic performance are discussed. Realization circuits and simulation results are presented. Keywords:PWM, Inverter, Power converter, Control 中图法分类号:TN86文献标识码:A文章编号:0219 2713(2000)12-642-03 电流型双环控制技术在DC/DC变换器中广泛应用,较单电压环控制可以获得更优良的动态和静态性能[3]。其基本思路是以外环电压调节器的输出作为内环电流给定,检测电感(或开关)电流与之比较,再由比较器的输出控制功率开关,使电感和功率开关的峰值电流直接跟随电压调节器的输出而变化。如此构成的电流、电压双闭环变换器系统瞬态性能好、稳态精度高,特别是具有内在的对功率开关电流的限流能力。逆变器(DC/AC变换器)由于交流输出,其控制较DC/DC变换器复杂得多,早期采用开关点预置的开环控制方式[1],近年来瞬时反馈控制方式被广泛研究,多种各具特色的实现方案被提出,其中三态DPM(离散脉冲调制)电流滞环跟踪控制方式性能优良,易于实现。本文将电流型PWM控制方式成功用于逆变器控制,介绍其工作原理,与电流滞环跟踪控制方式比较动态和静态性能,并给出仿真结果。 1三态DPM电流滞环跟踪控制方式 电流滞环跟踪控制方式有多种实现形式[1,2,4,5],其中三态DPM电流滞环跟踪控制性能较好且易于实现[1]。参照图1,它的基本工作原理是:检测滤波电感电流iL,产生电流反馈信号if。if与给定电流ig相比较,根据两个电流瞬时值之差来决定单相逆变桥的4个开关在下一个开关周期中的导通情况:ig-if>h时(h见图1,为电流滞环宽度,可按参考文献[1]P64式5 2选取)S1、S4导通,UAB=+E,+1状态;ig-if-h时S2、S3导通,UAB="-"E,-1状态;|ig-if|h时S1、S3或S2、S4导通,UAB="0,"0状态。两个D触发器使S1~S4的开关状态变化只能发生在周期性脉冲信号CLK(频率2f)的上升沿,也就是说开关点在时间轴上是离散的,且最高开关频率为f。 仿真和实验表明,iL正半周,逆变器基本上在+1和0状态间切换,而iL负半周,逆变器基本上在-1和0状态间切换,只有U0过零点附近才有少量的+1和-1之间的状态跳变,从而使输出脉动减小。 2电流型准PWM控制方式

反激设计最牛笔记

【最牛笔记】大牛开关电源设计全过程笔记! 反激变换器设计笔记 1、概述 开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍反激变换器的设计步骤,并以一个6.5W 隔离双路输出的反激变换器设计为例,主控芯片采用NCP1015。 基本的反激变换器原理图如图1 所示,在需要对输入输出进行电气隔离的低功率(1W~60W)开关电源应用场合,反激变换器(Flyback Converter)是最常用的一种拓扑结构(Topology)。简单、可靠、低成本、易于实现是反激变换器突出的优点。 2、设计步骤

接下来,参考图2 所示的设计步骤,一步一步设计反激变换器 1.Step1:初始化系统参数 ------输入电压范围:Vinmin_AC 及Vinmax_AC ------电网频率:fline(国内为50Hz) ------输出功率:(等于各路输出功率之和) ------初步估计变换器效率:η(低压输出时,η取0.7~0.75,高压输出时,η取0.8~0.85)根据预估效率,估算输入功率: 对多路输出,定义KL(n)为第n 路输出功率与输出总功率的比值:

单路输出时,KL(n)=1. 2. Step2:确定输入电容Cbulk Cbulk 的取值与输入功率有关,通常,对于宽输入电压(85~265VAC),取2~3μF/W;对窄范围输入电压(176~265VAC),取1μF/W 即可,电容充电占空比Dch 一般取0.2 即可。

一般在整流后的最小电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC: 3. Step3:确定最大占空比Dmax 反激变换器有两种运行模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。两种模式各有优缺点,相对而言,DCM 模式具有更好的开关特性,次级整流二极管零电流关断,因此不存在CCM 模式的二极管反向恢复的问题。此外,同功率等级下,由于DCM模式的变压器比CCM 模式存储的能量少,故DCM 模式的变压器尺寸更小。但是,相比较CCM 模式而言,DCM 模式使得初级电流的RMS 增大,这将会增大MOS 管的导通损耗,同时会增加次级输出电容的电流应力。因此,CCM 模式常被推荐使用在低压大电流输出的场合,DCM 模式常被推荐使用在高压小电流输出的场合。

TI 反激变压器设计

26.5W AC/DC Isolated Flyback Converter Design

TASK : 26.5W 9-Outputs AC/DC Isolated Flyback Converter Design SPECIFICATION: Technical Specification on Sept 10, 2008 DATE: 15 Sept. 2008

Customer Specification f L 100Hz :=Line frequency fs 100kHz :=Switching frequency Vo 1 5.0V :=Main output voltage Io 1_max 2A :=Main Nominal load current Vo 215.0V :=Io 2_max 30mA :=Vo 315.0V :=Io 3_max 30mA :=Vo 415.0V :=Io 4_max 0.3A :=Vo 524.0V :=Io 5_max 0.1A :=Vo 618.0V :=Io 6_max 0.12A :=Vo 718.0V :=Io 7_max 0.12A :=Vo 818.0V :=Io 8_max 0.12A :=Vo 918.0V :=Io 9_max 0.12A :=+5V Output ripple voltage Vr 100mV :=+5VStep load output ripple voltage ΔVo step 150mV :=ΔIo 5V Io 1_max 80?% :=+5V Step load current amplitude η0.70 :=

电压电流反馈控制模式

电压、电流的反馈控制模式 现在的高频开关稳压电源主要有五种PWM反馈控制模式。电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。针对不同的控制模式其处理方式也不同。下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,讲述五种PWM反馈控制模式的发展过程、基本工作原理、电路原理示意图、波形、特点及应用要`氪,以利于选择应用及仿真建模研究。 (1)电压反馈控制模式 电压反馈控制模式是20世纪60年代后期高频开关稳压电源刚刚开始发展而采用的一种控制方法。该方法与一些必要的过电流保护电路相结合,至今仍然在工业界被广泛应用。如图1(a)所示为Buck降压斩波器的电压模式控制原理图。电压反馈控制模式只有一个电压反馈闭环,且采用的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。逐个脉冲的限流保护电路必须另外附加。电压反馈控制模式的优点如下。 ①PWM三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量。 ②占空比调节不受限制。 ③对于多路输出电源而言,它们之间的交互调节特性较好。 ④单一反馈电压闭环的设计、调试比较容易。 ⑤对输出负载的变化有较好的响应调节。 电压反馈控制模式的缺点如下。 ①对输入电压的变化动态响应较慢。当输入电压突然变小或负载阻抗突然变小时,因为主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。这两个延时滞后作用是动态响应慢的主要原因。 ②补偿网络设计本来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。 ③输出端的LC滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿。 ④在控制磁芯饱和故障状态方面较为麻烦和复杂。 改善及加快电压模式控制动态响应速度的方法有两种:一种是增加电压误差放大器的带宽,以保证其具有一定的高频增益。但是这样容易受高频开关噪声干扰的影响,需要在主电路及反馈控制电路上采取措施进行抑制或同相位衰减平滑处理。另一种是采用电压前馈控制模式。电压前馈控制模式的原理图如图1(b)所示。用输入电压对电阻、电容(Rt、Ctt)充电,以产生具有可变化的上斜坡的三角波,并且用它取代传统电压反馈控制模式中振荡器产生的固定三角波。此时输入电压变化能立刻在脉冲宽度的变化上反映出来,因此该方法明显提高了由输入电压的变化引起的动态响应速度。在该方法中对输入电压的前馈控

反馈控制电路

反馈控制电路 一、自动增益控制(AGC) 1、AGC电路的作用与组成 (1) 作用 当输入信号变化时,保证输出信号幅度基本恒定。包括: ①能够产生一个随输入信号大小而变化的控制电压,即AGC电压(±UAGC); ②利用AGC电压去控制某些级的增益,实现AGC。 (2) 组成——具有AGC电路的接收机框图 2、AGC电压的产生 (1) 平均值式AGC电路 中频信号电压经检波后,除得到所需音频信号之外,还得到一个平

均直流分量。音频信号由RL2两端取出。平均直流分量(反映了输入信号的幅度)从C3两端取出,经低通后,作为AGC电压,加到中放管上去控制中放的增益。

(2) 延迟式AGC电路 V1、R7和C4组成AGC检波电路,运放A为直流放大器,UREF为延迟电平。当输入信号较小时,AGC不起作用。当输入信号较大时,AGC将起作用。可见,该AGC电路具有延迟功能

3、实现AGC的方法 (1) 改变发射极电流IE 正向AGC 反向AGC (2) 改变放大器负载 由于放大器的增益与负载密切相关,因此通过改变负载就可以控制放大器的增益 。 (3) 改变放大器的负反馈深度 通过控制负反馈的深度来控制放大器的增益。

6.2 自动频率控制(AFC) 1、AFC的工作原理 2、组成 3、工作原理 4、AFC的应用:调幅接收机中的AFC系统 具有AFC电路的调频发射机一、AFC——电路组成

作用:自动控制振荡器频率稳定 组成:鉴相器、低通滤波器和压控振荡器 标准频率fr;输出频率fo;误差电压uD(t) ;直流控制电压 uC(t)。 二、AFC——工作原理 压控振荡器的输出频率fo与标准频率fr在鉴频器中进行比较,当fo=fr时,鉴频器无输出,压控振荡器不受影响;当fo≠fr时,鉴频器即有误差电压输出,其大小正比于(fo-fr),经低通滤波器滤除交流成分后,输出的直流控制电压uc(t),加到压控振荡器上,迫使压控振荡器的振荡频率fo与fr接近,而后在新的振荡频率基础上,再经历上述同样的过程,使误差频率进一步减小,如此循环下去,最后fo和fr的误差减小到某一最小值△f时,自动微调过程停止,环路

基于反激变换器拓扑结构的电源设计

基于反激变换器拓扑结构的辅助电源设计 摘要:介绍了反激变换器的基本原理、拓扑结构、应用范围。重点阐述了反激变换器的三种工作模式及在不同模式下的电流、电压变化情况,随后提出了RCD 吸收电路,最后设计出了一种基于反激变换器原理输出 12V和9V直流电源拓扑,重点介绍了TOPSwitch开关控制芯片并详细介绍了辅助电源设计步骤,论证了设计的合理性。 关键词:反激变换器;RCD吸收电路;TOPSwitch;辅助电源 0 引言 反激变换器的拓扑在输出功率为5~150W电源中应用非常广泛。它最大的优点是不需要接输出滤波电感,使反激变换器成本降低,体积减小。这种拓扑广泛应用于高电压、小功率场合(电压不大于5000V,功率小于15W)。当直流输入电压较高(不小于160V)、初级电流适当时,该拓扑也可以用在输出功率达到150W的电源中。由于输出端可不接滤波电感,该拓扑在高压不是很高的场合下很有优势,相反,正激变换器由于输出滤波电感必须承受高压而带来了很多问题。此外,反激变换器不需要高压续流二极管,使它在高电压场合下应用更有利。 输出功率为50~150W且有多组输出的变换器也常常采用这种拓扑。由于不需要输出电感,输入电压和负载变化时反激变换器的各输出端都能很好地跟随调整。 只要变压器匝比取得合适,直流输入从低至5V到常用的有115V交流整流得到的160V的场合,都可采用反激拓扑。若选择合适的匝比,则这种拓扑也可用于由220V交流整流得到的320V的场合。 1反激变换器稳态分析 1.1 反激变换器稳态原理 反激变换器电路拓扑,如图1所示,变压 器兼起储能电感作用。根据电感电流是否连续 将反激变换器分成电感电流连续模式(CCM)、 电流临界连续模式、电流断续模式(DCM)。不 同模式时电感电流波形,如图2所示,图中 i 1,i 2 分别为反激变换器变压器原副边电感电 流,D为开关S的占空图1反激变换器电路拓扑比,Ts为变换器开关周期。

反馈控制电路

第九章 反馈控制电路 9.1 锁相环路由 鉴相器 、 环路滤波器 和 压控振荡器 组成,它的主要作用是 用于实现两个电信号相位同步,即可实现无频率误差的频率跟踪 。 9.2 实现AGC 的方法主要有改变发射级电流I E 和改变放大器的负载两种。 9.3 简述AGC 电路的作用。 解:AGC 的作用是当输入信号变化很大时,保持接收机的输出信号基本稳定。即当输入信号很弱时,接收机的增益高;当输入信号很强时,接收机的增益低。 9.4 图1所示的锁相环路,已知鉴相器具有线性鉴相特性,试述用它实现调相信号解调的工作原理。 图1 锁相环路 解:调相波信号加到鉴相器输入端,当环路滤波器(LF )带宽足够窄,调制信号不能通过LF ,则压控振荡器(VCO )只能跟踪输入调相波的中心频率c ω,所以()o c t t ?ω=,而 Ωm ()cos ()()()cos ()()cos cos i c p e i o p D d e d p t t m t t t t m t u t A t A m t U t ?ω????=+Ω=-=Ω==Ω=Ω 所以,从鉴相器输出端便可获得解调电压输出。 9.5 锁相直接调频电路组成如图2所示。由于锁相环路为无频差的自动控制系统,具有精确的频率跟踪特性,故它有很高的中心频率稳定度。试分析该电路的工作原理。 图2 锁相直接调频电路组成图

解:用调制信号控制压控振荡器的频率,便可获得调频信号输出。在实际应用中,要求调制信号的频谱要处于低通滤波器通带之外,并且调制指数不能太大。这样调制信号不能通过低通滤波器,故调制信号频率对锁相环路无影响,锁相环路只对VCO平均中心频率不稳定所引起的分量(处于低通滤波器之内)起作用,使它的中心频率锁定在晶体振荡频率上。 9.6 如图例3所示为某晶体管收音机检波电路,问: 1. 电阻R L1、R L2是什么电阻?为什么要采用这种连接方式? 2. 电路中的元件R、C是什么滤波器,其输出的U AGC电压有何作用? 3. 若检波二极管VD开路,对收音机将会产生什么样的结果,为什么? 图3 晶体管收音机检波电路 图3具有AGC的收音机检波电路 解:1. 电阻R L1、R L2是检波器得直流负载电阻,采用这种连接方式目的是减小检波器交、直流负载电阻值得差别,避免产生负峰切割失真。 2. R、C构成低通滤波器,其输出的U AGC电压送到收音机前级控制调谐放大器的增益,实现自动增益控制。 3. 若检波二极管VD开路,则收音机收不到任何电台。 9.7 锁相环路与自动频率控制电路实现稳频功能时,哪种性能优越?原因是什么? 解:锁相环路稳频效果优越。这是由于一般的AFC技术存在着固有频率误差问题(因为AFC是利用误差来减小误差),往往达不到所要求的频率精度,而采用锁相技术进行稳频时,可实现零偏差跟踪。 9.8 画出锁相环路的组成框图并简述各部分的作用。 解:锁相环路的系统框图如图4所示。 图4 锁相环路的组成框图

相关主题
文本预览
相关文档 最新文档