当前位置:文档之家› 二端网络的等效概念教学文稿

二端网络的等效概念教学文稿

二端网络的等效概念教学文稿
二端网络的等效概念教学文稿

二端网络的等效概念

二端网络的等效概念

具有两个端钮的部分电路,就称为二端网络,如图1.2所示。

如果电路的结构、元件参数完全不同的两个二端网络具有相同的电压、电流关系即相同的伏安关系时,则这两个二端网络称为等效网络。等效网络在电路中可以相互代换。

内部有独立电源(电压源的电压或电流源的电流不受外电路控制而独立存在的电源叫独立电源)的二端网络,称为有源二端网络;内部没有独立电源的二端网络,称为无源二端网络。无源二端网络可用一个电阻元件与之等效。这个电阻元件的电阻值称为该网络的等效电阻或输入电阻,也称为总电阻,用i R 表示。

二、电源的等效变换

任何一个实际电源本身都具有内阻,因而实际电源的电路模型由理想电源元件与其内阻组合而成。理想电源元件有电压源和电流源,因此,实际电源的电路模型也相应的有电压源模型和电流源模型,如图29.1所示。

在图)(29.1a 电路中,由式)16.1(可知:

i S IR U U -=

式中,S U 为电压源的电压。

在图)(29.1b 电路中,由式)17.1(可知:

U R I I i S '

1-

= 整理后得:''i i S IR R I U -=

由此可见,实际电压源和实际电流源若要等效互换,其伏安特性方程必相同,即电路参数必须满足条件:

'i i R R =;'i S S R I U =

)18.1(

当一个实际的电压源要等效变换成实际的电流源时,电流源的电流等 于电压源的电压与其内阻的比值)('i

S

S R U I =,电流源的内阻等于电压源的 内阻)('i i R R =;

当一个实际的电流源要等效变换成实际的电压源时,电压源的电压等于电流源的电流与其内阻的乘积)(

'i S S R I U =,电压源的内阻等于电流源的内阻

)('i i R R =。

在进行等效互换时,必须重视电压极性与电流方向之间的关系,即两者的参考方向要求一致,也就是说电压源的正极对应着电流源电流的流出端。

实际电源的两种模型的等效互换只能保证其外部电路的电压、电流和功率相同,对其内部电路,并无等效而言。通俗地讲,当电路中某一部分用其等效电路替代后,未被替代部分的电压、电流应保持不变。

应用电源等效转换分析电路时还应注意以下几点:

(1)电源等效转换是电路等效变换的一种方法。这种等效是对电源输出电流I 、端电压U 的等效。

(2)有内阻i R 的实际电源,它的电压源模型与电流源模型之间可以互换等效;理想的电压源与理想的电流源之间不便互换。

(3)电源等效互换的方法可以推广运用,如果理想电压源与外接电 阻串联,可把外接电阻看其作内阻,则可转换为电流源形式;如果理想电流源与外接电阻并联,可把外接电阻看作其内阻,则可转换为电压源形式。 例1.5 将下图电路进行等效变换。

a a a b

(b)图

a b

(a)图

解题思路:

解题前先要看清电路的连接形式,因为并联电路电压相等,对于并联电路则要看电压源;而串联电路的电流相等,对于串联电路则要看电流源。

在图)(a 电路中,因为R 和S u 相并联,b a ,两点间的端电压相等,所以对外电路而言则可等效成R S u u u ==;

在图)(b 电路中,因为S i 和S u 相并联,b a ,两点间的端电压相等,所以对外电路而言则可等效成iS S u u u ==;

在图)(c 电路中,因为S i 和S u 相串联,b a ,两点间流过同一电流,所以对外电路而言则可等效成S i ;

在图)(d 电路中,因为S i 和S u 相串联,b a ,两点间流过同一电流,所以对外电路而言则可等效成S i ;

例2.5 已知V U S 41=,A I S 22=,Ω=2.12R ,试化简图)(30.1a 电路。 解题思路:

在图)(30.1a 中,先把电流源2S I 与电阻2R 的并联变换为电压源2S U 与电阻

2R 的串联(注意:电压源的正极对应着电流源电流的流出端),如图)(30.1b ,

其中

(a)图

(c)图

(d)图 a b

a b

V

I

R

U

S

S

24

2

12

2

2

2

=

?

=

?

=

在图)(

30.1b中,再将电压源

2

S

U与电压源

1S

U的串联变换为电压源

S

U,如图)(

30.1c,其中:

V

U

U

U

S

S

S

28

4

24

1

2

=

+

=

+

=(若

1S

U和

2

S

U方向不同则相减)。

例3.5将下图电路等效化简为电压源和电阻的串联组合。

解题思路:

在第一条支路上Ω2电阻和V2电压源相串联,应用等效变换公式

'

i

S

S R

U

I=和

i

i

R

R='将其等效变换成A1电流源(电压源的正极对应着电流源电流的流出端)与Ω2电阻的并联组合;在第二条支路上Ω1电阻和A3电流源相串联,等效结果如图)(b所示。

在)(b中,三路电流源相并联,其中A3电流方向向下,则有

A

I

S

3

5

3

1=

+

-

=,进一步等效为图)

(c所示。

在图)(c中,Ω2电阻和A3电流源相并联,再应用等效变换公式'

i

S

S

R

I

U=

和'

i

i

R

R=,将其等效为图)

(d所示简化形式。

a

5A

3A

2V

6V

a

b

3A

1A

5A

a

b

2Ω3A

a

注意电流

源的极

电流源

进行合

例4.5 电路如图31.1所示,已知V U S 101=,A I S 151=,A I S 52=,

Ω=30R ,Ω=202R ,求电流I 。

解题思路:

在图)(31.1a 中,电压源1S U 与电流源1S I 并联,可等效为该电压源1S U ;电流源2S I 与电阻2R 的并联可等效变换为电压源2S U 与电阻2R 的串联,电路变换如图)(31.1b ,其中:

V R I U S S 1002025222=?=?=。

在图)(31.1b 中,电压源1S U 与电压源2S U 的串联可等效变换电压源U ,电路变换如图)(31.1c ,其中:

V U U U S S S 1101010012=+=+=

在图)(31.1c 中,根据欧姆定律求得:

A R R U I S 2.220

30110

2=+=+=

三、电阻的串联

两个或两个以上的电阻元件依次相连,且中间无分支的连接方式叫串联,如图)(3.2a 所示。

串联电路有以下特点:

①串联电路中流过每个电阻的电流都相等,即:

n I I I I ====Λ21;

②串联电路两端的总电压等于各个电阻两端的电压之和。即:

n U U U U +++=Λ21;

③串联电路两端的总电阻(等效电阻)等于各串联电阻之和。即:

n i R R R R +++=Λ21。

图)(3.2b 是图)(3.2a 的等效网络,根据等效的概念,在图)(3.2b 中有:

I R U i =。

④串联电阻有“分压”作用。在两个电阻的串联电路中,若已知电路的总电压U 和1R 、2R 的阻值时,则这两个电阻上的电压分配关系为:

U R R R U 2

11

1+=

U R R R U 2122+=

在电工测量仪表中,用串联电阻来扩大测量仪表的电压量程。

例5.5 一个额定值为5W 、100Ω的电阻,在使用时最高能加多少伏特电压?能允许通过多少安培的电流?

解题思路:本题中已知功率和电阻值,由功率公式R

U R U U UI P 2

===得

V PR U 5.221005=?==;

由功率公式R I I IR UI P 2=?==得

A R P I 225.0100

5

===

。 四、电阻的并联

两个或两个以上电阻元件接在电路中相同的两点之间的连接方式叫电阻的并联,如图)(5.2a 所示。

并联电路有以下特点:

①并联电路中各电阻两端的电压均相等,且等于电路两端的电压,即

n U U U U ====Λ21;

②并联电路中总电流等于各电阻中的电流之和,即

n I I I I +++=Λ21;

③并联电路总电阻的倒数等于各并联电阻的倒数之和,即

n

n R R R R 1

11121+

++=Λ ④并联电阻有“分流”作用。在两个电阻的并联电路中,若只有R 1、R 2两个电阻并联,如图2.6所示,可得等效电阻R i 为:

2

12

1R R R R R n +=

当已知电路的总电流I 和1R 、2R 的 阻值,则流过两个电阻上的电流分别为:

I R R R R I

R R U I n 212111+=== I R R R R I R R U

I n 2

11122+===

在电工测量仪表中,用并联电阻来扩大测量仪表的电流量程。

例3.3 在图6.2所示的电路中,已知mA I 500=,Ω=K R 1.51,Ω=3102R ,求

1I ,和2I 。

解题思路:

根据分流公式得:

mA I R R R I 65.2850031.01.531

.02121=?+=+=

mA I R R R I 35.47150031

.01.51

.52112=?+=+=

例4.3 求图1.2所示电路中Ω6电阻上的功率。

解题思路:该题是一个既有串联电阻又有并联电阻的混合电路。首先,利用电阻的串联、并联关系简化电路,求出相关电流。图1.2中Ω4和Ω6电阻是并联关系,其并联等效电阻又和Ω6.1电阻是串联关系,依据电阻串、并联公式将图

1.2所示电路简化为图

2.2所示的形式。

用分流公式求电流i :

A i 8104

1616

=?+=

i 是图1.2中Ω6.1电阻上的电流,这个电流又是Ω4和Ω6电阻的总电流。再根据分流公式,进一步求出Ω6和Ω4电阻上的分流,在Ω6电阻上的电流1i 是:

A i i 2.384

644641=?+=?+=

消耗在Ω6电阻上的功率是:

W i p 44.612.366221=?==

五、电阻的混联

由串联和并联电阻组合而成的二端电阻网络称为电阻的混联网络,分析混联电阻网络的一般步骤如下:

(1)计算各串联电阻、并联电阻的等效电阻,再计算总的等效电阻。 (2)由端口激励计算出端口响应。

(3)根据串联电阻的分压关系、并联电阻的分流关系逐步计算各部分电压和电流。

例6.3 图7.2所示的是一个利用滑线变阻器组成的简单分压器电路。电阻分压器的固定端a 、b 接到直流电压源上。固定端b 与活动端c 接到负载上。利用分压器上滑动触头c 的滑动,可在负载电阻上输出U ~0的可变电压。已知直流理想电压源电压V U S 9=,负载电阻Ω=800L R ,滑线变阻器的总电阻Ω=1000R ,滑动触头c 的位置使Ω=2001R ,Ω=8002R 。

①求输出电压2U 及滑线变阻器两段电阻中的电流1I 和2I ;

②若用内阻为Ω=12001V R 的电压表去测量此电压,求电压表的读数; ③若用内阻为Ω=36002V R 的电压表再测量此电压,求这时电压表的读数。 解题思路:

)1(在图)(7.2a 中,电阻2R 与L R 并联后再与1R 串联。得总电阻为

Ω=+?+=++

=600800

800800

800200221L L R R R R R R 总

由欧姆定律求得总电流为

A R U I S 015.0600

91===

总 再由分流公式求得电流2I 为

A I R R R I L L 0075.0015.0800

800800

122=?+=+=

V I R U 60075.0800222=?==

)2(在图)(7.2b 中,电阻2R 、L R 与电压表内阻1V R 并联后再与1R 串联,得总

电阻为

Ω=+++=+++

=5001200

1800180011

2001111121V L R R R R R 总

由分压公式求得电压1V U 为

V R R R R U U V L S V 79.53600

180018001150091111121=++?=++?=

总 )3(在图)(7.2b 中,电阻2R 、L R 与电压表内阻2V R 并联后再与1R 串联,得

总电阻为

Ω=+++=+++

=5603600

1800180011

2001111221V L R R R R R 总

由分压公式求得电压2V U 为

V R R R R U U V L i S V 79.53600

1800180011500911111222=++?=++?=

由此可见,由于实际电压表都有一定的内阻,将电压表并联在电路中测量电压时,对被测试电路都有一定的影响。电压表内阻越大,对测试电路的影响越小。理想电压表的内阻为无穷大,对测试电路才无影响,但实际中并不存在。

电阻电容网络的等效

电阻电容网络的等效 —杜运祥、江子琪 类型一:基尔霍夫方程组 1.如图所示,六根导线组成一个四面体骨架,每根导线电阻标在图中,试求A、B间等效电阻(用基尔霍夫方程组求解) 2.如图所示的电路中,均为等值有限的电阻,电流计G连同其串联电阻接在B和F之间。若α和β以及λ、μ定义为试证明:如果满足α[(β+λ)μ+1]=β,就不会有电流通过电流计。 类型二:Y-△变换法 3.一个由有金属线组组成的“田”字形电阻网络,如图所示。每一小段金属线的电阻为R,网络上A、B两点间接一电源,电源的电动势和内阻分别为ε和r,求流过电源的电流强度的表达式。指定采用Y-△代换求等效电阻RAB,再求I 4.电容桥式网络中各电容器的电容量为C1=1μF,C2=2μF,C3=3μF。求A、B两端点间的等效电阻CAB

类型三:对折、断点、合点、去线法 5.六个相同的电阻(阻值均为R)连成一个电阻环,六个接点依次为1、2、3、4、5、6,如图所示。现有五个完全相同的这样的电阻环,分别称为D1、D2、┅D5。现将D2的1、3、5三点分别与D1的2、4、6三点用导线连接,如图所示。然后将D3的1、3、5三点分别与D2的2、4、6三点用导线连接,┅依此类推。最后将D5的1、3、5三点分别连接到D4的2、4、6三点上。 1.证明全部接好后,在D1上的1、3两点间的等效电阻为(724/627)R。 2.求全部接好后,在D5上的1、3两点间的等效电阻。 6.由单位长度电阻为r的导线组成如图所示的正方形网络系列.n=1时,正方形网络边长为L,n= 2时,小正方形网络的边长为L/3;n=3 时,最小正方形网络的边长为L/9.当 n=1、2、3 时,各网络上A、B两点间的电阻分别为多少? 7.由四阶正方形电阻网组成的无限电阻网络三视图如图所示,求任意两相对节点间的等效电阻。

戴维宁定理有源二端网络等效参数的测定

戴维宁定理和有源二端网络等效参数的测定 电信132班33张世东 【实验目的】 1.验证戴维宁定理的正确性。 2.掌握测量有源二端网络等效参数的一般方法。 【实验设备和材料】 1.KHDL-1型电路实验箱。 2.MF-500型万用表。 3.数字万用表。 【实验原理】 1.任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,次电压源的电动势Es 等于这个有源二端网络的开路电压Uoc ,其等效内阻Ro 等于该网络中所有独立源都置零(理想电压源短路,理想电流源开路)时的等效电阻。Uoc 和Ro 称为有源二端网络的等效参数。 2.有源二端网络等效参数的测量方法 (1)开路电压法、短路电流法(二端网络内阻很低时,不宜采用此法) 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc ,然后再用电流表直接接到输出端测其短路电流Isc ,则内阻为: I U R SC OC 0 (2)伏安法

用电压表、电流表测出有源二端网络的外特性如图3-1所示。根据外特性曲线求出斜率tan Φ,则内阻为: I U R SC OC = = =ΔI ΔU Φtan 0 (3)半电压法 如图3-2所示,当负载电压为被测网络开路电压一半时,负载电阻R L 即为被测有 源二端网络的等效内阻值。 【实验内容】 1.用开路电压、短路电流法则测戴维宁等效电路的 U OC 和 R 0 : 实验电路KHDL-1型电路试验箱左侧”戴维宁定理“框内,如图1所示。

二端网络地等效概念

二端网络的等效概念 具有两个端钮的部分电路,就称为二端网络,如图1.2所示。 如果电路的结构、元件参数完全不同的两个二端网络具有相同的电压、电流关系即相同的伏安关系时,则这两个二端网络称为等效网络。等效网络在电路中可以相互代换。 内部有独立电源(电压源的电压或电流源的电流不受外电路控制而独立存在的电源叫独立电源)的二端网络,称为有源二端网络;内部没有独立电源的二端网络,称为无源二端网络。无源二端网络可用一个电阻元件与之等效。这个电阻元件的电阻值称为该网络的等效电阻或输入电阻,也称为总电阻,用i R 表示。 二、电源的等效变换 任何一个实际电源本身都具有内阻,因而实际电源的电路模型由理想电源元件与其内阻组合而成。理想电源元件有电压源和电流源,因此,实际电源的电路模型也相应的有电压源模型和电流源模型,如图29.1所示。 在图)(29.1a 电路中,由式)16.1(可知: i S IR U U -= 式中,S U 为电压源的电压。 在图)(29.1b 电路中,由式)17.1(可知: U R I I i S ' 1 - = 整理后得:''i i S IR R I U -=

由此可见,实际电压源和实际电流源若要等效互换,其伏安特性方程必相同,即电路参数必须满足条件: 'i i R R =; 'i S S R I U = )18.1( 当一个实际的电压源要等效变换成实际的电流源时,电流源的电流等 于电压源的电压与其内阻的比值)('i S S R U I =,电流源的内阻等于电压源的 内阻)('i i R R =; 当一个实际的电流源要等效变换成实际的电压源时,电压源的电压等于电流源的电流与其内阻的乘积)('i S S R I U =,电压源的内阻等于电流源的内阻 )('i i R R =。 在进行等效互换时,必须重视电压极性与电流方向之间的关系,即两者的参考方向要求一致,也就是说电压源的正极对应着电流源电流的流出端。 实际电源的两种模型的等效互换只能保证其外部电路的电压、电流和功率相同,对其内部电路,并无等效而言。通俗地讲,当电路中某一部分用其等效电路替代后,未被替代部分的电压、电流应保持不变。 应用电源等效转换分析电路时还应注意以下几点: (1)电源等效转换是电路等效变换的一种方法。这种等效是对电源输出电流I 、端电压U 的等效。 (2)有内阻i R 的实际电源,它的电压源模型与电流源模型之间可以互换等效;理想的电压源与理想的电流源之间不便互换。 (3)电源等效互换的方法可以推广运用,如果理想电压源与外接电 阻串联,可把外接电阻看其作内阻,则可转换为电流源形式;如果理想电流源与外接电阻并联,可把外接电阻看作其内阻,则可转换为电压源形式。 例1.5 将下图电路进行等效变换。 a a a b (b)图 a b (a)图

二端网络的等效概念教学文稿

二端网络的等效概念

二端网络的等效概念 具有两个端钮的部分电路,就称为二端网络,如图1.2所示。 如果电路的结构、元件参数完全不同的两个二端网络具有相同的电压、电流关系即相同的伏安关系时,则这两个二端网络称为等效网络。等效网络在电路中可以相互代换。 内部有独立电源(电压源的电压或电流源的电流不受外电路控制而独立存在的电源叫独立电源)的二端网络,称为有源二端网络;内部没有独立电源的二端网络,称为无源二端网络。无源二端网络可用一个电阻元件与之等效。这个电阻元件的电阻值称为该网络的等效电阻或输入电阻,也称为总电阻,用i R 表示。 二、电源的等效变换 任何一个实际电源本身都具有内阻,因而实际电源的电路模型由理想电源元件与其内阻组合而成。理想电源元件有电压源和电流源,因此,实际电源的电路模型也相应的有电压源模型和电流源模型,如图29.1所示。 在图)(29.1a 电路中,由式)16.1(可知: i S IR U U -= 式中,S U 为电压源的电压。 在图)(29.1b 电路中,由式)17.1(可知:

U R I I i S ' 1- = 整理后得:''i i S IR R I U -= 由此可见,实际电压源和实际电流源若要等效互换,其伏安特性方程必相同,即电路参数必须满足条件: 'i i R R =;'i S S R I U = )18.1( 当一个实际的电压源要等效变换成实际的电流源时,电流源的电流等 于电压源的电压与其内阻的比值)('i S S R U I =,电流源的内阻等于电压源的 内阻)('i i R R =; 当一个实际的电流源要等效变换成实际的电压源时,电压源的电压等于电流源的电流与其内阻的乘积)( 'i S S R I U =,电压源的内阻等于电流源的内阻 )('i i R R =。 在进行等效互换时,必须重视电压极性与电流方向之间的关系,即两者的参考方向要求一致,也就是说电压源的正极对应着电流源电流的流出端。 实际电源的两种模型的等效互换只能保证其外部电路的电压、电流和功率相同,对其内部电路,并无等效而言。通俗地讲,当电路中某一部分用其等效电路替代后,未被替代部分的电压、电流应保持不变。 应用电源等效转换分析电路时还应注意以下几点: (1)电源等效转换是电路等效变换的一种方法。这种等效是对电源输出电流I 、端电压U 的等效。 (2)有内阻i R 的实际电源,它的电压源模型与电流源模型之间可以互换等效;理想的电压源与理想的电流源之间不便互换。 (3)电源等效互换的方法可以推广运用,如果理想电压源与外接电 阻串联,可把外接电阻看其作内阻,则可转换为电流源形式;如果理想电流源与外接电阻并联,可把外接电阻看作其内阻,则可转换为电压源形式。 例1.5 将下图电路进行等效变换。 a a a b (b)图 a b (a)图

复杂电阻网络的处理方法

物理辅导 复杂电阻网络的处理方法. 复杂电路经过Y ……Δ变换,可以变成简单电路。如图13和14所示分别为Δ网络和Y 网络,两个网络中得6个电阻满足怎样的关系才能使这两个网络完全等效呢 ? 所谓完全等效,就是要求: U ab =U ab ,U bc =U bc ,U ca =U ca I a =I A,I b =I B,I c =I C 在Y 网络中有:I a R a -I b R b =U ab I c R c -I a R a =U ca I a +I b +I c =0 解得I a =R c U ab /(R a R b +R b R c +R c R a )+ R b U ca /(R a R b +R b R c +R c R a ) 在Δ网络中有: I AB =U AB /R AB I CA =U CA /R CA I A =I AB -I CA 解得I A = (U AB /R AB )-( U CA /R CA ) 因为要求I a =I A ,所以 R c U ab /(R a R b +R b R c +R c R a )+ R b U ca /(R a R b +R b R c +R c R a )= (U AB /R AB )-( U CA /R CA ) 又因为要求U ab = U AB ,U ca = U CA 所以要求上示中对应项系数相等,即 R AB =(R a R b +R b R c +R c R a )/ R c -----------------(1) R CA =(R a R b +R b R c +R c R a )/ R b ------------------(2) 用类似的方法可以解得 R BC =(R a R b +R b R c +R c R a )/ R a --------------------(3) (1)、(2)、(3)三式是将Y 网络变换到Δ网络的一组变换式。 在(1)、(2)、(3)三式中将R AB 、R BC 、R CA 作为已知量解出R a 、R b 、R c 即可得到 R a =R AB *R CA /(R AB +R BC +R CA )-----------------(4) R b =R AB *R BC /(R AB +R BC +R CA ) -----------------(5)

处理复杂电阻网络的方法

复杂电阻网络的处理方法 在物理竞赛过程中经常遇到,无法直接用串联和并联电路的规律求出整个电路电阻的情况,这样的电路也就是我们说的复杂电路,复杂电路一般分为有限网络和无限网络。那么,处理这种复杂电路用什么方法呢?下面,我就结合自己辅导竞赛的经验谈谈复杂电路的处理方法。 一:有限电阻网络 原则上讲解决复杂电路的一般方法,使用基尔霍夫方程组即可。它包含的两类方程出自于两个自然的结论:(1)对电路中任何一个节点,流出的电流之和等于流入的电流之和。电路中任何一个闭合回路,都符合闭合电欧姆定律。下面我介绍几种常用的其它的方法。 1:对称性简化 所谓的对称性简化,就是利用网络结构中可能存在的对称性简化等效电阻的计算。它的效果是使计算得以简化,计算最后结果必须根据电阻的串、并联公式;电流分布法;极限法等来完成。 在一个复杂的电路中,如果能找到一些完全对称的点,那么当在这个电路两端加上电压时,这些点的电势一定是相等的,即使用导线把这些点连接起来也不会有电流(或把连接这些点的导线去掉也不会对电路构成影响),充分的利用这一点我们就可以使电路大为简化。 例(1)如图1所示的四面体框架由电阻都为R的6根电阻丝连接而成,求两顶点A、B间的等效电阻。 图1 2 分析:假设在A、B两点之间加上电压,并且电流从A电流入、B点流处。因为对称性,图中CD两点等电势,或者说C、D 间的电压为零。因此,CD间的电阻实际上不起作用,可以拆去。原网络简化成简单的串、并联网络,使问题迎刃而解。 解:根据以上分析原网络简化成如图2所示的简单的串、并联网络,由串、并联规律得 R AB=R/2 例(2)三个相同的金属圈两两正交地连成如图所示的形状,若每一个金属圈的原长电阻为R,试求图中A、B两点之间的等效电阻。 图3 图4 图5 分析:从图3中可以看出,整个电阻网络相对于AB的电流流入、流出方式上具有上下对称性,因此可上下压缩成如图所时的等效减化网络。从如图4所示的网络中可以看出,从A点流到O电流与从O点到B 电流必相同;从A1点流到O电流与从O点到B1电流必相同。据此可以将O点断开,等效成如图5所示的简单网络,使问题得以求解。 解:根据以上分析求得R AB=5R/48 例(3)如图6所示的立方体型电路,每条边的电阻都是R。求A、G之间的电阻是多少? 分析: 假设在A 、G两点之间加上电压时,显然由于对称性D、B、E 的电势是相等的,C、F、H的电势也是相等的,把这些点各自连起来,原电路就变成了如图7所示的简单电路。 A D B C D C A B A A B ' B' B A B'

实验1.2 有源二端网络等效参数测定

实验1.2 有源二端网络等效参数的测定 4 图1.2.1 补偿法测量电路 实验1.2 有源二端网络等效参数的测定 一、实验目的 (1)验证戴维南定理和诺顿定理的正确性,加深对戴维南定理和诺顿定理的理解。 (2)掌握测量有源二端网络等效参数的一般方法。 (3)进一步掌握电工仪器仪表的使用方法。 二、实验设备及材料 通用电学实验台,直流稳压电源,直流电压表、直流电流表(或万用表),电阻和导线一批。 三、实验原理 1、戴维南定理 任何一个有源二端线性网络,都可以用一个理想电压源U S 和内阻R 0的串联电路来表示,其等效电压源的电动势U S 等于这个有源二端网络的负载开路电压U OC ,等效内阻R 0为该网络中所有独立电源均置零(理想电压源短路,理想电流源开路)得到的无源网络的等效电阻R eq 。U S 和R 0称为这个有源二端网络的等效电压源参数。 2、诺顿定理 任何一个有源二端线性网络,都可以用一个理想电流源I S 和内阻R 0的并联电路来表示,其等效电源的电流I S 等于这个有源二端网络的负载短路电流I SC ,等效内阻R 0为该网络中所有独立电源均置零后得到的无源网络的等效电阻R eq 。I S 和R 0称为这个有源二端网络的等效电流源参数。 3、有源二端网络等效参数的测量方法 (1)测量有源二端网络的开路电压U OC 的方法 ①直接测量 当电压表的内阻远大于网络内阻时,可直接用电压表或万用表的电压档测量。 ②补偿测量(零示法) 补偿测量法适宜测量具有高内阻有源二端网络。其测量原理如图1.2.1所示,用高精度可调稳压电源与被测网络输出进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测二端网络的开路电压。 (2)测量有源二端网络的戴维南等效内阻R 0的方法 ①直接测量 对于不含受控源的纯电阻性网络,其等效内阻可以将所有独立源置零后,直接用万用表欧姆档进行测量。由于此方法忽略了电源的内阻,故误差比较大。 ②开路电压-短路电流法 测量开路电压U OC 和短路电流I SC 。其等效内阻为: OC 0SC U R I 。 (1-2-1) 这种方法适用于U OC 较大而且I SC 不超过额定值的情况,对含有可控源的网络常用此法。

复杂电阻网络的处理方法

复杂电阻网络的处理方 法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

复杂电阻网络的处理方法 一:有限电阻网络 原则上讲解决复杂电路的一般方法,使用基尔霍夫方程组即可。它包含的两类方程出自于两个自然的结论:(1)对电路中任何一个节点,流出的电流之和等于流入的电流之和。电路中任何一个闭合回路,都符合闭合电欧姆定律。下面我介绍几种常用的其它的方法。 1:对称性简化 所谓的对称性简化,就是利用网络结构中可能存在的对称性简化等效电阻的计算。它的效果是使计算得以简化,计算最后结果必须根据电阻的串、并联公式;电流分布法;极限法等来完成。 在一个复杂的电路中,如果能找到一些完全对称的点,那么当在这个电路两端加上电压时,这些点的电势一定是相等的,即使用导线把这些点连接起来也不会有电流(或把连接这些点的导线去掉也不会对电路构成影响),充分的利用这一点我们就可以使电路大为简化。 例(1)如图1所示的四面体框架由电阻都为R 的6根电阻丝连接而成,求两顶点A 、B 间的等效电阻。 图1 图2 分析:假设在A 、B 两点之间加上电压,并且电流从A 电流入、B 点流处。因为对称性,图中CD 两点等电势,或者说C 、D 间的电压为零。因此,CD 间的电阻实际上不起作用,可以拆去。原网络简化成简单的串、并联网络,使问题迎刃而解。 解:根据以上分析原网络简化成如图2所示的简单的串、并联网络,由串、并联规律得 R AB =R/2 A D B C D C A B

例(2)三个相同的金属圈两两正交地连成如图所示的形状,若每一个金属圈的原长电阻为R ,试求图中A 、B 两点之间的等效电阻。 图3 图4 图5 分析:从图3中可以看出,整个电阻网络相对于AB 的电流流入、流出方式上具有上下对称性,因此可上下压缩成如图所时的等效减化网络。从如图4所示的网络中可以看出,从A 点流到O 电流与从O 点到B 电流必相同;从A 1点流到O 电流与从O 点到B 1电流必相同。据此可以将O 点断开,等效成如图5所示的简单网络,使问题得以求解。 解:根据以上分析求得R AB =5R/48 例(3)如图6所示的立方体型电路,每条边的电阻都是R 。求A 、G 之间的电阻是多少 分析: 假设在A 、G 两点之间加上电压时,显然由于对称性D 、B 、E 的电势是相等的,C 、F 、H 的电势也是相等的,把这些点各自连起来,原电路就变成了如图7所示的简单电路。 解:由简化电路,根据串、并联规律解得R AG =5R/6 (同学们想一想,若求A 、F 或A 、E 之间的电阻又应当如何简化) 例(4)在如图8所示的网格形网络中,每一小段电阻均为R ,试求A 、B 之间的等效电阻R AB 。 图8 图9 图10 图 分析:由于网络具有相对于过A 、B 对角线的对称性,可以折叠成如图9所示的等效网络。而后根据等电势点之间可以拆开也可以合并的思想简化电路即可。 解法(a):简化为如图9所示的网络以后,将3、O 两个等势点短接,在去掉斜角部位不起作用的两段电阻,使之等效变换为如图10所示的简单网络。最后不难算得 R AO =R OB =5R/14 A B C D C D 3

关于网络等效电阻的研究

关于网络等效电阻的研究 初中物理竞赛中常见一种关于网络电阻的计算问题,题型变化虽然很多,有些题的难度甚至很大,但它们几乎都利用了“等效”这种物理学常用的思想。当然,具体分析问题时还要用到“对称”、“割补”、“循环”等一些数学方法。 【引例】把一段均匀导线围成正方形,测得A 、B 两点间的电阻为15/16欧,如图所示,B 点为该边的中点,则正方形各边的电阻为多大? 【小结】此题把每边的电阻设为定值,然后再利用串、并联的知识和等效的思想。 【例一】由12根阻值均为1欧的电阻组成了如图所示的网络,求A 、B 间的电阻R AB 的大小。 【小结】此题属于“位置等效”! 【练习】如图所示,由许多阻值均为1欧的小电阻组成了一个网络,求A 、B 间的阻值多大? 【例二】如图所示是由12根电阻均为R 的导线组成的立方网络,求R AB =? 分析:这是一道典型的、具有竞赛特点的有限网络电阻问题,对于此类问题,要仔细观察,它们一定具有某些规律性的特点 ,本题通过观察会发现,各电阻之间有明显的对称性,这是解题的突破口。 【小结】对于有限网络电阻的求法解,方法很多。但仔细研究会发现,大多网络电阻都具有对称性。本题中的网络就关于A 、B 连线对称。因此,无论何种解法,无 B A B A B B

不利用了其对称性的特点。 【例三】如图所示是由12根电阻均为R 的导线组成的网络,求R AB =? 【小结】此题的特点是“明明是连接的,却等效于没有连接”,值得玩味! 【例四】图中是由50个电阻连接而成的电路,其中R 1=R 3=R 5=…R 49=50欧,R 2=R 4=R 6=……R 48=10欧, R 50=5欧,电源电压是10伏,求R 2消耗的电功率. 分析:这又是一种有限网络的电阻问题,同学们不妨从最右边开始研究!!!看看有什么收获? 【例五】如图表示由很多R=1欧的相同的电阻组成的无穷多个网络,求A 、B 间的总电阻。 提示:此题与上题的最大区别和关键在于“无穷多个”,也就是说多一个或少一个网格对整个网络的阻值没有影响。请大家再仔细想想!!!,你会有办法的。 A B A

复杂电阻网络的处理方法

复杂电阻网络的处理方法 一:有限电阻网络 原则上讲解决复杂电路的一般方法,使用基尔霍夫方程组即可。它包含的两类方程出自于两个自然的结论:(1)对电路中任何一个节点,流出的电流之和等于流入的电流之和。电路中任何一个闭合回路,都符合闭合电欧姆定律。下面我介绍几种常用的其它的方法。 1:对称性简化 所谓的对称性简化,就是利用网络结构中可能存在的对称性简化等效电阻的计算。它的效果是使计算得以简化,计算最后结果必须根据电阻的串、并联公式;电流分布法;极限法等来完成。 在一个复杂的电路中,如果能找到一些完全对称的点,那么当在这个电路两端加上电压时,这些点的电势一定是相等的,即使用导线把这些点连接起来也不会有电流(或把连接这些点的导线去掉也不会对电路构成影响),充分的利用这一点我们就可以使电路大为简化。 例(1)如图1所示的四面体框架由电阻都为R 的6根电阻丝连接而成,求两顶点A 、B 间的等效电阻。 图1 图 2 分析:假设在A 、B 两点之间加上电压,并且电流从A 电流入、B 点流处。因为对称性,图中CD 两点等电 势,或者说C 、D 间的电压为零。因此,CD 间的电阻实际上不起作用,可以拆去。原网络简化成简单的 串、并联网络,使问题迎刃而解。 解:根据以上分析原网络简化成如图2所示的简单的串、并联网络,由串、并联规律得 R AB =R/2 例(2)三个相同的金属圈两两正交地连成如图所示的形状,若每一个金属圈的原长电阻为R ,试求图中A 、B 两点之间的等效电阻。 图3 图4 图5 分析:从图3中可以看出,整个电阻网络相对于AB 的电流流入、流出方式上具有上下对称性,因此可上下压缩成如图所时的等效减化网络。从如图4所示的网络中可以看出,从A 点流到O 电流与从O 点到B 电流必相同;从A 1点流到O 电流与从O 点到B 1电流必相同。据此可以将O 点断开,等效成如图5所示的简单网络,使问题得以求解。 解:根据以上分析求得R AB =5R/48 例(3)如图6所示的立方体型电路,每条边的电阻都是R 。求A 、G 之间的电阻是多少? 分析: 假设在A 、G 两点之间加上电压时,显然由于对称性D 、B 、E 的电势是相等的,C 、F 、H 的电势也是相等的,把这些点各自连起来,原电路就变成了如图7所示的简单电路。 解:由简化电路,根据串、并联规律解得R AG =5R/6 (同学们想一想,若求A 、F 或A 、E 之间的电阻又应当如何简化?) 例(4)在如图8所示的网格形网络中,每一小段电阻均为R ,试求A 、B 之间的等效电阻R AB 。 图8 图10 分析:由于网络具有相对于过A 、B 点之间可以拆开也可以合并的思想简化电路即可。 解法(a):简化为如图9所示的网络以后,将3、O 使之等效变换为如图10所示的简单网络。最后不难算得R AO =R OB =5R/14 R AB = R AO +R OB =5R/7 解法(b):简化为如图所示的网络以后,将图中的O 点上下断开,如图11所示,最后不难算得 R AB =5R/7 2:电流分布法 A D B C D C A B A B C D C D 3

实验2 有源二端网络等效参数的测定

图1.2.1 补偿法测量电路 实验2 有源二端网络等效参数的测定 一、实验目的 (1)验证戴维南定理和诺顿定理的正确性,加深对戴维南定理和诺顿定理的理解。 (2)掌握测量有源二端网络等效参数的一般方法。 (3)进一步掌握电工仪器仪表的使用方法。 二、实验设备及材料 通用电学实验台,直流稳压电源,直流电压表、直流电流表(或万用表),电阻和导线一批。 三、实验原理 1、戴维南定理 任何一个有源二端线性网络,都可以用一个理想电压源U S 和内阻R 0的串联电路来表示,其等效电压源的电动势U S 等于这个有源二端网络的负载开路电压U OC ,等效内阻R 0为该网络中所有独立电源均置零(理想电压源短路,理想电流源开路)得到的无源网络的等效电阻R eq 。U S 和R 0称为这个有源二端网络的等效电压源参数。 2、诺顿定理 任何一个有源二端线性网络,都可以用一个理想电流源I S 和内阻R 0的并联电路来表示,其等效电源的电流I S 等于这个有源二端网络的负载短路电流I SC ,等效内阻R 0为该网络中所有独立电源均置零后得到的无源网络的等效电阻R eq 。I S 和R 0称为这个有源二端网络的等效电流源参数。 3、有源二端网络等效参数的测量方法 (1)测量有源二端网络的开路电压U OC 的方法 ①直接测量 当电压表的内阻远大于网络内阻时,可直接用电压表或万用表的电压档测量。 ②补偿测量(零示法) 补偿测量法适宜测量具有高内阻有源二端网络。其测量原理如图1.2.1所示,用高精度可调稳压电源与被测网络输出进行比较,当

图1.2.3 半电压法测量电路 稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测二端网络的开路电压。 (2)测量有源二端网络的戴维南等效内阻R 0的方法 ①直接测量 对于不含受控源的纯电阻性网络,其等效内阻可以将所有独立源置零后,直接用万用表欧姆档进行测量。由于此方法忽略了电源的内阻,故误差比较大。 ②开路电压-短路电流法 测量开路电压U OC 和短路电流I SC 。其等效内阻为: OC 0SC U R I = 。 (1-2-1) 这种方法适用于U OC 较大而且I SC 不超过额定值的情况,对含有可控源的网络常用此法。 ③伏安法 若二端网络的内阻很低时,不宜测量其短路电流,则可采用伏安法测量。根据有源二端网络的外特性曲线的斜率tan φ (图1.2.2),即为等效内阻值: SC OC O I U I U R =??= =?tan (1-2-2) 测量开路电压U OC 及电流为额定值I N 时的输出电压U N ,则内阻为: N N OC I U U R -= 0 (1-2-3) ④半电压法 测量电路如图1.2.3所示,当负载电压为被测网络开路电压的一半时,负载电阻即为被测二端网络的等效内阻值。 四、实验内容 1、戴维南定理的验证(验证性实验) (1)按如图1.2.4(a )所示连接实验电路,其中电路元件的参考值为:U S =12V ,R 1=200Ω,R 2=300Ω,R 3=300Ω,R 4=200Ω,负载电阻R L =240Ω。

复杂电阻网络的处理方法完整版

复杂电阻网络的处理方 法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

复杂电阻网络的处理方法 一:有限电阻网络 原则上讲解决复杂电路的一般方法,使用基尔霍夫方程组即可。它包含的两类方程出自于两个自然的结论:(1)对电路中任何一个节点,流出的电流之和等于流入的电流之和。电路中任何一个闭合回路,都符合闭合电欧姆定律。下面我介绍几种常用的其它的方法。 1:对称性简化 所谓的对称性简化,就是利用网络结构中可能存在的对称性简化等效电阻的计算。它的效果是使计算得以简化,计算最后结果必须根据电阻的串、并联公式;电流分布法;极限法等来完成。 在一个复杂的电路中,如果能找到一些完全对称的点,那么当在这个电路两端加上电压时,这些点的电势一定是相等的,即使用导线把这些点连接起来也不会有电流(或把连接这些点的导线去掉也不会对电路构成影响),充分的利用这一点我们就可以使电路大为简化。 例(1)如图1所示的四面体框架由电阻都为R 的6根电阻丝连接而成,求两顶点A 、B 间的等效电阻。 图1 图2 分析:假设在A 、B 两点之间加上电压,并且电流从A 电流入、B 点流处。因为对称性,图中CD 两点等电势,或者说C 、D 间的电压为零。因此,CD 间的电阻实际上不起作用,可以拆去。原网络简化成简单的串、并联网络,使问题迎刃而解。 A D B C D C A B

解:根据以上分析原网络简化成如图2所示的简单的串、并联网络,由串、并联规律得 =R/2 R AB 例(2)三个相同的金属圈两两正交地连成如图所示的形状,若每一个金属圈的原长电阻为R,试求图中A、B两点之间的等效电阻。 图3 图4 图5 分析:从图3中可以看出,整个电阻网络相对于AB的电流流入、流出方式上具有上下对称性,因此可上下压缩成如图所时的等效减化网络。从如图4所示的网络中可以看出,从A点流到O电流与从O点到B电流必相同;从A1点流到O电流与从O点到B1电流必相同。据此可以将O点断开,等效成如图5所示的简单网络,使问题得以求解。 解:根据以上分析求得R =5R/48 AB 例(3)如图6所示的立方体型电路,每条边的电阻都是R。求A、G之间的电阻是多少? 分析: 假设在A 、G两点之间加上电压时,显然由于对称性D、B、E 的电势是相等的,C、F、H的电势也是相等的,把这些点各自连起来,原电路就变成了如图7所示的简单电路。 解:由简化电路,根据串、并联规律解得R =5R/6 AG (同学们想一想,若求A、F或A、E之间的电阻又应当如何简化)

复杂电阻网络的处理方法

复杂电阻网络的处理方法 一:有限电阻网络 原则上讲解决复杂电路的一般方法,使用基尔霍夫方程组即可。它包含的两类方程出自于两个自然的结论:(1)对电路中任何一个节点,流出的电流之和等于流入的电流之和。电路中任何一个闭合回路,都符合闭合电欧姆定律。下面我介绍几种常用的其它的方法。 1:对称性简化 所谓的对称性简化,就是利用网络结构中可能存在的对称性简化等效电阻的计算。它的效果是使计算得以简化,计算最后结果必须根据电阻的串、并联公式;电流分布法;极限法等来完成。 在一个复杂的电路中,如果能找到一些完全对称的点,那么当在这个电路两端加上电压时,这些点的电势一定是相等的,即使用导线把这些点连接起来也不会有电流(或把连接这些点的导线去掉也不会对电路构成影响),充分的利用这一点我们就可以使电路大为简化。 例(1)如图1所示的四面体框架由电阻都为R 的6根电阻丝连接而成,求两顶点A 、B 间的等效电阻。 图1 图2 分析:假设在A 、B 两点之间加上电压,并且电流从A 电流入、B 点流处。因为对称性,图中CD 两点等电势,或者说C 、D 间的电压为零。因此,CD 间的电阻实际上不起作用,可以拆去。原网络简化成简单的串、并联网络,使问题迎刃而解。 解:根据以上分析原网络简化成如图2所示的简单的串、并联网络,由串、并联规律得 R AB =R/2 例(2)三个相同的金属圈两两正交地连成如图所示的形状,若每一个金属圈的原长电阻为R ,试求图中A 、B 两点之间的等效电阻。 图3 图4 图5 分析:从图3中可以看出,整个电阻网络相对于AB 的电流流入、流出方式上具有上下对称性,因此可上下压缩成如图所时的等效减化网络。从如图4所示的网络中可以看出,从A 点流到O 电流与从O 点到B 电流必相同;从A 1点流到O 电流与从O 点到B 1电流必相同。据此可以将O 点断开,等效成如图5所示的简单网络,使问题得以求解。 解:根据以上分析求得R AB =5R/48 例(3)如图6所示的立方体型电路,每条边的电阻都是R 。求A 、G 之间的电阻是多少? 分析: 假设在A 、G 两点之间加上电压时,显然由于对称性D 、B 、E 的电势是相等的,C 、F 、H 的电势也是相等的,把这些点各自连起来,原电路就变成了如图7所示的简单电路。 A D B C D C A B B A A r r r r 2 /r 2/r 2 /r 2 /r B ' B ' B A r 2 /r 2 /r 2 /r 2 /r r r r A ' B ' O A C

关于电阻网络等效电阻的求法

选修3-2电磁感应复习学案 知识结构: 课标要求: 1、收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2、通过实验,理解感应电流的产生条件。举例说明电磁感应在生活和生产中的应用。 3、通过探究,理解楞次定律。理解法拉第电磁感应定律。 4、通过实验了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活中和生产中的应用。 知识要点: 1.电磁感应现象: 2.感应电流的产生条件①② 3.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍 。这里的阻碍可以理解为“反抗增大、补偿减小”。 4.从磁通量变化的角度来看,感应电流“阻碍磁通量变化”。由磁通量的计算式 Φ=BS cosα(α是指B、S之间的夹角),可知,磁通量变化ΔΦ=Φ2-Φ1有多种形式,主要有: ①S、α不变,B改变,这时ΔΦ= ②B、α不变,S改变,这时ΔΦ= ③B、S不变,α改变,这时ΔΦ=BS(cosα2-cosα1) ④另外还有B、S、α中有两个或三个一起变化的情况。此时只能使用公式ΔΦ=Φ2-Φ1。 从阻碍相对机械运动的角度来看,感应电流总是阻碍。 从阻碍自身电流变化的角度来看,感应电流“阻碍自身电流变化”。这就是。5.楞次定律的应用,可以分为五步:①确定研究对象②确定原磁场方向; ③;④(增反减同); ⑤根据判定感应电流的方向。 6.对一部分导线在磁场中切割磁感线产生感应电流的情况,右手定则和楞次定律的结论是完全一致的。 右手定则的内容:让磁感线垂直穿过手心,大拇指指向方向,四指的指向就是导体内部所产生的的方向.四指的指向还可以代表等效电源的极。7.法拉第电磁感应定律:感应电动势的大小与,其数学表达式E = 。一般情况下该关系式表示的是电动势的值。

电工实验三 戴维南定理和有源二端网络的研究

实验三 戴维南定理验证和有源二端网络的研究 一. 实验目的 1. 用实验方法验证戴维南定理 2. 掌握有源二端网络的开路电压和入端等效电阻的测定方法,了解各种测量方法的 特点 3. 证实有源二端网络输出最大功率的条件 二. 实验原理 1. 戴维南定理 一个含独立电源,受控源和线性电阻的二端网络,其对外作用可以用一个电压源串联电阻的等效电源代替,其等效源电压等于此二端网络的开路电压,其等效内阻是二端网络内部各独立电源置零后所对应的不含独立源的二端网络的输入电阻(或称等效电阻)如图3-1所示。 图6-1 戴维南等效电路 OC 图3-2 有源二端网络的开路电压OC U 和入端等效电阻i R U OC b 图3-3 直接测量OC U

2. 开路电压的测定方法 (1) 直接测量法 当有源二端网络的入端等效电阻i R 与万用表电压档的内阻V R 相比可以忽略不计时,可以用电压表直接测量该网络的开路电压OC U 。如图3-3所示。 (2) 补偿法 当有源二端网络的入端电阻i R 较大时,用电压表直接测量开路电压的误差较大,这时采用补偿法测量开路电压则较为准确。 图3-4中虚线框内为补偿电路,' S U 为另一个直流电压源,可变电阻器P R 接成分压 器使用,G 为检流计。当需要测量网络A 、B 两端的开路电压时,将补偿电路'A 、'B 端分别与A 、B 两端短接,调节分压器的输出电压,使检流计的指示为零,被测网络即相当于开路,此时电压表所测得的电压就是该网络的开路电压OC U 。由于这时被测网络不输出电流,网络内部无电压降测得的开路电压数值较前一种方法准确。 图3-4 补偿法测量开路电压 3. 入端等效电阻i R 的测定方法 (1) 外加电源法 将有源二端网络内部的独立电压源Us 处短接,独立电流源Is 处开路,被测网络成 为无独立源的二端网络,然后在端口上加一给定的电源电压" S U ,测量流入网络的电流I , 如图3-5所示。入端等效电阻: I U R S i " 若被测网络内部去掉独立源后,仅由电阻元件组成,可直接用万用表的电阻档去测出入端效等电阻i R 。 实际上网络内部的独立电源都具有一定的内阻,它并能与电源本身分开。在去掉独立电源的同时,其内阻也被去掉,这将影响测量的准确性,因此这种测量方法仅适用于独立电压源内阻很小和独立电流源内阻很大的情况。

[电路分析]含受控源二端网络的等效

含受控源二端网络的等效 一、含受控源和电阻的二端网络的等效 思路 当电路中含有受控源时,可以将受控源当作独立源看待,列写二端网络的伏安关系表达式,再补充一个受控源的受控关系表达式,联立求解这两个方程式,得到最简的端钮伏安关系表达式,最后,依据这个伏安表达式画出该二端网络的最简等效电路。 结论 含有受控源和电阻的二端网络可以等效为一个电阻,其等效电阻为 二、含受控源、电阻和独立源的二端网络的等效 结论 电路中含有受控源、电阻和独立源的二端网络,可以等效成有伴电压源或有伴电流源。 例 2.5-1 求图 2.5-1 ( a )所示二端网络的最简等效电路。 解:由图 2.5-2 ( a )可知, 则 ( 1 ) ( 2 )

( 3 ) 由( 3 )又可得到 ( 4 ) 由( 3 )、( 4 )式得到最简等效电路,如图 2.5-1 ( b )、( c )所示。 例 2.5-2 电路如图 2.5-2 ( a )所示,求 4A 电流源发出的功率。 解:欲求 4A 电流源发出的功率,只要求得 4A 电流源两端的电压即可。对电路作分解,如图 2.5-2 ( b )。 在图 2.5-2 ( b )中,回路①的 KVL 方程为 6I + 4I1=10 ( 1 ) 又 I1=I + I0 ( 2 ) 把( 2 )式代入( 1 )式,得 10I + 4I0=10 所以, I=1 - 0.4I0 ( 3 ) 又 U= - 10I - 6I + 10= - 16I + 10 ( 4 )

U= - 16 + 6.4I0 + 10=6.4I0 - 6 (5) 由 (5) 式画出等效电路,如图 2.5-2 ( c )所示。所以,6 - 6.4 × 4 + U=0 4A 电流源两端的电压为 U=19.6V 4A 电流源发出的功率为 P=4U=4 × 19.6=78.4W

含源二端网络的输出特性及等效参数的测定

含源二端网络的输出特性及等效参数的测定

中国石油大学(华东)现代远程教育 实验报告 课程名称:电工电子学 实验名称:含源二端网络的输出特性及等效参数的测定 实验形式:在线模拟+现场实践 提交形式:在线提交实验报告 学生姓名:石占明学号: 11953253008 年级专业层次:网络11春钻井技术高起专 学习中心:东白城石油学习中心 提交时间: 2012 年 6 月 15 日

一、实验目的 1.通过实验加深对戴维宁定理和等效变换概念的理解。 2.学会线性有源二端网络的输出特性及等效参数的测量方法。 二、实验原理 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源二端口网络)。 戴维宁定理指出:任何一个有源二端网络,总可以用一个电压源US和一个电阻RS串联组成的实际电压源来代替,其中:电压源US等于这个有源二端网络的开路电压UOC,内阻RS等于该网络中所有独立电源均置零(电压源短路,电流源开路)后的等效电阻R0。 Uoc(Us)和R0称为有源二端网络的等效参数。 1.外特性及其测量方法 含源二端网络的两个输出端上的电压和电流关系称为输出特性或外特性。它可通过在网络

输出端接一个可变电阻RL作负载,给电阻RL取不同数值时测出电压和电流而得到。对线性二端网络,此特性为一直线,如图2所示。 对应于A点,I = 0,U = Uoc(此电压称为开路电压),相当于RL时。 对应于B点,U = 0,I = Isc(此电流称为短路电流),相当于RL= 0时。 2.对于线性含源二端网络,可以用实验方法测出网络的开路电压,而网络除源后的等效电阻Ro,可以用以下方法测定。 (1)开路电压、短路电流法测R0 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc,则等效内

戴维宁定理——有源二端网络等效参数的测定

电路理论基础实验报告 实验五戴维宁定理——有源二端网络等效参数的测定 刘健阁指导教师杨智 中山大学信息科学与技术学院广东省广州市510006 实验时间地点: 2014年4月14日中山大学东校区实验中心C103 实验目的: 1. 验证戴维宁定理的正确性; 2. 掌握测量有源二端网络等效参数的一般方法。 实验原理: 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,次电压源的电动势E S等于这个有源二端网络的开路电压U OC,其等效内阻R0等于该网络中所有独立源都置零(理想电压源短路,理想电流源开路)时的等效电阻。 U OC和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1)开路电压法、短路电流法 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压U OC,然后再用电流表直接接到输出端测其短路电流I SC,则内阻R0=U OC/I SC。 (2)伏安法 用电压表、电流表测出有源二端网络的外特性如图所示。根据外特性曲线求出斜率tanФ,则内阻R0=tanФ=ΔU/ΔI=U OC/I SC。 伏安法主要测量开路电压及电流为额定值I N时的输出端电压U N,则内阻R0=(U OC-U N)/I N。 若二端网络的内阻值很低时,则不宜测其短路电流。

(3)半电压法 如图所示,当负载电压为被测网络开路电压一半时,负载电阻RL即为被测有源二端网络的等效内阻值。 (4)零示法 在测量具有高内阻有源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,采用零示测量法,如图所示。 示零法原理是用一低内阻稳压电源于被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为0,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。 实验设备: 1. 可调直流稳压电源0~30V 2 电工实验台 2. 可调直流0-200mA 1 电工实验台 3. 直流数字毫安表 1 电工实验台 4. 直流数字电压表 1 电工实验台 5. 数字万用表(欧姆表) 1 6. 可调电阻箱0-99999.9Ω 1 DGJ-05 7. 电位器1kΩ/1W 1 DGJ-05 8. 戴维宁定理实验线路板 1 DGJ-03

相关主题
文本预览
相关文档 最新文档