当前位置:文档之家› 空分装置

空分装置

空分装置
空分装置

第六章空分装置(010#)

1.概述

空分装置的功能是将空气通过深冷分离的方法制取氧气、氮气供各工艺装置使用,并向全厂提供仪表空气和工厂空气,同时副产液氧、液氮、液氩。

空分装置制氧能力:~32000Nm3/h,采用“离心式空气压缩+分子筛空气净化+两级空气精馏+液氧泵+液氮泵内压缩”的工艺技术,由空气压缩(018#)、空气预冷(011#)、空气净化(012#)、空气分离(013#)、液体贮存及汽化(016#)、公用系统(019#)6个工序构成。

2.工艺说明

2.1空气过滤和压缩

空气首先进入自洁式空气吸入过滤器,在空气吸入过滤器中除去灰尘和其它颗粒杂质,然后进入主空压机,经过多级压缩、级间冷却器冷却后进入空冷塔。

3.2 流程

空气经自洁式过滤器,除去机械杂质、灰尘后由入口导叶进入空气压缩机,经三段四级压缩后,输出0.55 MPa、185000 Nm3/h(干)的空气到后序系统,空压机出口管线设有防喘振流量控制阀FV01122A和压力控制阀HV01122B,从而控制机组出口压力和流量。

由纯化系统来的洁净空气(105000 Nm3/h)进入增压机,经三段七级压缩,使空气的压力增高,增压空气分成三股:一股从增压机一段水冷器后抽出【1.1 MPa 7000 Nm3/h】一股从增压机二段水冷器后抽出【2.7 MPa 40900 Nm3/h】去增压膨胀机系统;另一股【6.5 MPa 57100 Nm3/h】从增压压缩机末级引出,经

冷却后进入空分装置,流程中设有两个防喘振阀,分别为FV01123和FV01128,目的是防止进入增压机一段和三段的气量过小引起喘振。

蒸汽经速关阀(2301),高压调节汽阀(0801)进入汽轮机通流部分。蒸汽在第一膨胀段(0001)做功后,一部分从外缸下部的抽汽口引出,输至装置中压蒸汽管网,未抽出的蒸汽经中压调节汽阀(0802)进入第二膨胀段(0002)继续做功,做功后,在压力降至排汽压力后进入凝汽器(6000)。

为保持凝汽器中蒸汽凝结时建立的真空和良好的换热效果,由射汽抽气器(6400)将漏入凝汽器的空气(包括未凝蒸汽)不断抽出。

汽轮机、压缩机、增压机共用一台油站,由两台互为备用的油泵一开一备供油,油箱中N46#汽轮机油经泵加压至1.0 MPa,由自动调节阀PV01104将油压调至0.85 MPa,经油冷却器、油过滤器后,分为两路:一路去调速系统,另一路经润滑油压力控制阀PV01105将压力控制在0.25 MPa,送往各轴承润滑,各路回油汇合至回油总管后返回油箱。

为防止低压电力系统停电,油系统还设有高位油箱和事故油泵(备用UPS 电源)为事故状态下主、辅油泵不能启动时紧急供油,满足机组安全停车的需要。

分离岗位操作规程

空气的精馏就是利用空气的各种组份具有不同的挥发性,即在同一温度下各组份的饱和蒸汽压不同,将液态空气进行多次的部分蒸发与部分冷凝,从而达到分离各组份的目的。当处于冷凝温度的氧、氮混合气穿过比它温度低的氧、氮混合液体时,气相与液相之间就发生热质交换,气体中的一部分冷凝成液体并放出冷凝潜热,液体则因吸收热量而部分蒸发。因沸点的差异,氧、氩、氮的蒸发顺序为:氮>氩>氧,冷凝顺序为:氧>氩>氮,在本系统中该过程是在塔板上进行的,当气体自下而上地在塔板上逐块通过时,低沸点组份的浓度不断增加,只要塔板足够多,在塔的顶部即可获得高纯度的低沸点组份。同理,当液体自上而下地在塔板上逐块通过时,高沸点组份的浓度不断增加,通过了一定数量的塔板后,在塔的底部就可获得高纯度的高沸点组份。

由于氧、氩、氮沸点的差别,在上塔的中部一定存在着氩的富集区,制取粗氩所需的氩馏份就是从氩富集区抽取的。

3.2工艺流程简述

原料空气自吸入口吸入,经自洁式空气过滤器出去灰尘及其他机械杂质,空气经过滤后在离心式压缩机中压缩至0.52MPa左右,经空气冷却塔预冷。进入空冷塔的水分为两段,下段为来自循环水装置的循环冷却水,经循环水泵加压进入空冷塔中部。上段低温水是由脱盐水装置来的脱盐水经水冷塔冷却(利用分馏塔来的多余的干燥污氮与出高压,低压主换热器的氮气与水进行热质交换)冷却至8℃后,由低温水泵加压,经过冷冻机送入空冷塔顶部。从顶部流下来的低温水自上而下冷却空气后出空冷塔回水冷塔底部。空气自下而上穿过空气冷却塔,在冷却的同时又得到清洗。空气经空气冷却塔后,温度降至14℃,然后进入切换使用的分子筛纯化器。(分子筛吸附器为卧式双层床结构,下层为活性氧化铝,上层为分子筛,两只吸附器切换工作。切换周期为480分钟,定时自动切换。)由于分子筛的吸附热,温度升至20℃。然后分三路:少量作为工艺空气之外,其余又分为两路:一路去冷箱经(低压板翅)主换热器和反流气体换热后冷却至-169℃后去下塔进行精馏。另一路去增压机增压,压缩后的这部分空气又分为三部分:一路经增压机一段增压至1.2MPa(A)抽出做仪表空气供全厂使用。一路经过膨胀机的增压段后进入高压主换热器,在被反流液氧和其它冷源冷却至-110℃后抽出,进入膨胀端制冷,膨胀后的空气进入下塔进行精馏。另一部分继续增压,抽出后进入高压主换热器与反流的液氧和其它冷源换热后冷却进入下塔中部。

在下塔中,空气被初步分离成氮气和富氧液态空气,顶部氮气在主冷凝蒸发器中液化,同时主冷的低压氧侧液氧被气化。液氮一部分作为下塔回流回流到下塔,另一部分液氮经过冷器被污氮过冷并节流后送入上塔顶部。污液氮经过冷器过冷后,再经节流送入上塔上部。贫液空经过冷器过冷后,再经节流送入上塔。从下塔底部抽出的富氧液空在过冷器中过冷后经节流送入上塔中部作回流液。

液氧从上塔底部抽出,经液氧泵加压,而后在高压主换热器中复热后以

5.2MPa(G)的压力作为气体产品出冷箱。

高压氮气的来源:液氮从下塔顶部引出,经液氮泵加压,而后在高压主换热器复热后以8.2MPa(G)的压力作为气体产品出冷箱。

污氮气从上塔中上部引出,并在过冷器和高压主换热器以及低压主换热器复

热后送往分馏塔外,一部分作为分子筛纯化器的再生气体,一部分作为冷箱的密封气。其余进入水冷塔用来冷却外界水。

氮气从上塔顶部引出,在高压主换热器复热后出冷箱。产品液氧,液氮分别经阀送入各自的贮槽。

3.3氩精馏

氩的提取采用全精馏制氩技术,从分馏塔上塔的适当位置引出一股氩馏份体约37000 m2/h,含氩量为8%—12%(体积),含氮量小于10×10‐6(体积)。氩馏分直接从粗氩塔Ⅱ的底部导入,粗氩塔Ⅱ上部采用粗氩塔Ⅰ底部排出的粗液氩作回流液,作为回流液的粗液氩经液氩泵加压到0.65—0.75MPa后直接进入粗氩塔Ⅱ上部。粗氩自粗氩塔Ⅱ底部导入,粗氩塔Ⅱ顶部排出,粗氩冷凝器采用过冷后的液空做冷源,上升气体在粗氩冷凝器中液化,得到粗液氩和工艺氩气(其组

),前者作为回流液反流粗氩塔Ⅰ,而后者经阀导成为―99.97%Ar,≤1×10‐6O

2

入精氩塔中,继续精馏。在冷凝蒸发后的液空蒸汽和底部少量液空同时返回上塔。

工艺氩气从精氩塔中部进入,与此同时在精氩塔蒸发器利用部分下塔底部来的富氧液空作为热源,促使精氩塔底部的液氩蒸发成上升蒸汽,而液空被过冷后送入粗氩塔Ⅰ冷凝器。来自下塔并经过冷凝器过冷的贫液空节流进入精氩冷凝器作为冷源,使精氩塔顶部产生回流液,以保证塔内的精馏,使氩氮分离,精氩塔顶部含氮量的废气流量约为10—50 m2/h排大气,从而在精氩塔底部得到纯液氩,纯液氩经调节阀排入液氩贮槽贮存。

2.2空气的冷却和纯化

空气在进入分子筛吸附器前在空冷塔中冷却,以尽可能降低空气温度减少空气中水含量从而降低分子筛吸附器的工作负荷,并对空气进行洗涤。进入空冷塔的冷却水来自循环水;进入空冷塔的冷冻水,首先在水冷塔中利用干燥的出分馏塔污氮气进行冷却,然后进一步由冷水机组冷却后进入空冷塔上部,在空冷塔上部把空气冷却后从中部抽出送入水冷塔中。

分子筛纯化系统设置两台分子筛吸附器,分子筛吸附器吸附空气中的水份、二氧化碳和一些碳氢化合物,两台分子筛吸附器一台工作,另一台再生。分子筛的再生由蒸汽加热器加热。

2.3空气的精馏

出吸附器的空气分为两部分:一部分直接进入低压主换热器冷却后进入下塔;另一部分通过空气增压机进一步压缩,从增压机一段抽出一股仪表空气;从增压机二段抽出一股空气进膨胀机的增压端,经膨胀机增压端的压缩及后冷却器的冷却,再进入主换热器被冷却,经膨胀机膨胀后进入下塔,从增压机末级出来的高压空气,送入冷箱经高压主换热器冷却后节流进入下塔进下塔。

下塔中的上升气体通过与回流液体在塔板或填料上接触,进行热质交换,含氮量增加。所需的回流液氮来自下塔顶部的冷凝蒸发器,在这里氧得到蒸发,而氮得到冷凝。

(1)下塔从上到下产生以下产品:

纯氮气、液氮

污液氮

贫液空

富氧液空

下塔各产品去向如下:

①富氧液空:

一部分经过冷器过冷后节流进入上塔,作为其回流液。

一部分进入精氩塔蒸发器过冷后送入粗氩塔冷凝器做冷源,被汽化后送入上塔。

②贫液空:

大部分过冷节流后进入上塔,作为其回流液。

一部分进入精氩塔冷凝器被汽化后送入上塔。

③纯液氮:

一部分纯液氮在过冷器中过冷后送入上塔顶部作回流液。

一部分纯液氮经高压液氮泵加压到用户所需压力后,在高压主换热器内被复热到常温,送往用户。

一部分纯液氮作为产品送出。

④纯氮气:

从下塔顶部抽出经主换热器复热后作为产品送出。

⑤污液氮:

在过冷器中过冷后送入上塔作回流液。

(2)在上塔从上到下产生以下产品:

顶部产生低压氮气

上部产生污氮气

中部抽取氩馏份

底部产生液氧

上塔各产品去向如下:

①低压氮气

低压氮气从上塔顶部抽出后经过冷器和主换热器复热至设计温度出冷箱:一股低压氮气作为产品气送往用户;多余的低压氮气送到水冷塔对水进行冷却。

②污氮气

从上塔上部抽出后经过冷器和主换热器复热至设计温度出冷箱:一股污氮用于分子筛吸附器的再生, 另一股送到水冷塔对水进行冷却,还有一小部分进入冷箱,对冷箱充气。

③氩馏份

氩馏份从上塔中部抽出,经粗氩塔精馏在顶部产生工艺氩。

④液氧

从上塔底部抽出,在液氧泵中被压缩至所需压力,然后送到高压换热器中通过与高压空气进行热交换而得到高压氧气。

一部分液氧抽出后作为液体产品送出。

(3)全精馏制氩部分:

低温全精馏制氩(无氢制氩)的所有设备均置于空分设备的保冷箱内,粗氩塔Ⅰ、粗氩塔Ⅱ、精氩塔均为填料塔。在粗氩塔Ⅰ、Ⅱ内,气态氩馏份沿填料盘上升,由于氧的沸点比氩高,故高沸点组分氧被大量地洗涤下来,形成回流液返回上塔。粗氩塔Ⅰ底部的液氩经液氩泵加压后打入粗氩塔Ⅱ上部作回流液。因此上升气体中的低沸点组份(氩)含量不断提高,最后在粗氩塔Ⅰ顶部得到含氧≤1ppm,含氩>99%的粗氩气,粗氩气在粗氩冷凝器中被液空冷凝成粗液氩作为维持粗氩塔正常精馏的回流液。

由于氮的沸点(-195.78℃)与氩的沸点(-185.7℃)相差较大,因此含氮量<1.0%的粗氩在精氩塔中得到进一步分离,最后在精氩塔蒸发器底部得到99.999%Ar以上的纯液氩产品。

3. 空压站

空分装置开车前,需先行启动空压站向热电站、除盐水站、循环水站及空分装置提供自身所需的仪表空气和工厂空气。

空气经空气压缩机压缩至1.0 MPaA,排气温度低于40℃,压缩气体依次经前置过滤器、干燥机、后置过滤器除去油份、水份及粉尘微粒后,接入仪表空气缓冲罐。出仪表空气缓冲罐的仪表空气压力约0.9 MPaA,进入全厂仪表空气管网供用户使用。

空压机入口自带空气滤清器,用于过滤空气中的灰尘等杂质,以

满足压缩机要求。空压机出口带有水冷器,将压缩后的空气冷却至40℃以下,以满足后续过滤器、干燥机要求。

干燥机由二个装有活性氧化铝和分子筛的吸附塔组成,一个塔吸附的同时另一个塔再生。吸附、再生交替进行,再生周期2~8小时。可保证仪表空气连续地输出。

从一个塔切换到另一个塔由PLC控制的程控阀自动完成。

来自循环给水管网的循环水将空压机出口的压缩空气冷却到40℃以下后,返回循环回水管网。

空分设备危险因素(一)

空分设备危险因素(一) 1问题的提出 随着我国经济的高速发展,危险化学品生产的单位随之增多,相应事故发生的危害日益增多。我国党和国家领导对此很重视,2002年1月9日国务院第52次常务会审查通过了新修订的《危险化学品安全管理条例》,即第344号令。随之国家经贸委等十个国家部局发出《关于开展危险化学品安全管理专项整治工作的联合通知》,全国工业产品生产许可证办公室危险化学品产品生产许可证审查部在北京召开了《压缩、液化气体产品生产许可证发(换)证实施细则》论证会,明确规定:“凡是在中华人民共和国境内生产(包括分装),并销售压缩、液化气体产品的所有企业,无论其性质和隶属关系如何,都必须取得生产许可证,才具有生产该产品的资格,任何企业不得并销售无生产许可证的压缩、液化气体产品。” 要取得压缩、液化产品生产许可证必须达到八个基本条件,其中第二条规定:“取得安全生产监督管理部门发放的安全审查合格证明”。要取得安全审查合格证明,必须经有资质的单位进行安全性评价,通过主要危险、危害因素的分析,找出重大危险源,通过科学的方法对岗位的危险等级进行评定,并对存在的问题进行改正,采取有效措施。 那么我国现在运行的设备存在哪些危险、危害的因素呢?有哪些对策措施呢?对此本文作粗浅的分析和建议,供同行们参考。 2我国现代空分设备实际运行状况

深冷法空气分离自1903水由德国卡尔?林德教授发明投运10m3/h制氧机至今,已有一百年的历程,回顾空分流程,从简单节流的高压流程到中压带膨胀机循环流程、高低压流程、低压带透平膨胀的流程;压力从高压(20MPa)到低压(≤1MPa),容量从小(10m3/h)到大(10万m3/h)。总之,空分设备的发展史是围绕降低单位能耗和提高安全性而不断改进的,越是现代的设备容量越大、压力越低、能耗越少、安全程度越高:这是世界空分设备发展的总趋势。 我国从1953年开始制造第一套50m3/h空分设备至今也有50年历史了,在我国党和政府的正确引导下,通过从事空分设备工程技术人员的努力,用50年时间走完了国外发达的资本主义国家需100年走过的路程,我国空分设备制造设计水平已达到世界90年代末期水平,局部技术达到国外先进水平。现代研制的空分设备安全性不断提高。 但是我国经济发展总的还是较落后,设备更新缓慢,应该淘汰的设备还在运行,应该报废的设备还在凑合使用。据空分行业2001年底的统计表明,从1953年至2001年底我国共生产空分、液化设备8492套,其中1000m3/h以上的有604套;从年份来讲,1983年以前生产的有3763套,这些设备绝大部分尚在运行中,如杭氧1958年生产的碱洗一干燥流程的150m3/h空分设备尚在运行中。据2001年对浙江省用户的不完全调查统计,20年之前生产的设备占目前在运行设备总数的40%以上,这些设备危险、危害因素较多。本文针对运行设备作单机分析,并提出改进建议。

空分装置安全运行规定

编号:SY-AQ-08528 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 空分装置安全运行规定 Regulations on safe operation of air separation plant

空分装置安全运行规定 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 第一条空分装置是指炼化企业所用各种类型的空分装置。 第二条对主冷凝蒸发器液氧中乙炔及其它碳氢化合物的有关指标均执行《空分设备液氧中乙炔及其它碳氢化合物控制指标的规定》[中石化(1989)生字56号](见附件)。 第三条空分装置操作人员应进行安全技术和操作技能的教育经考试合格后持证上岗。操作人员应熟悉并严格遵守本岗位操作法。 第四条空分装置空气吸入口安全要求 1、空分装置应在空气吸入口附近设风向标,监视风向变化带来空气质量的变化。 2、每周至少应对吸入口空气分析1次;周围空气质量发生变化时,随时进行分析。当吸气条件超标时,应及时查清原因,消除污染源或采取其他安全运行措施。 3、加强与周围装置的联系,当有大量碳氢化合物排放或紧急放

空时,应及时通报并立即采取防范应急措施。 第五条防止碳氢化合物进入液氧系统和积聚。 1、分子筛吸附应严格做到:装入的分子筛质量应保证;空气温度应控制准确,分子筛再生应彻底;再生切换周期应按操作规程准时进行,特殊情况应缩短再生切换周期。 2、硅胶吸附器应按规定定期切换,保证硅胶的再生温度和时间。 3、分离装置液面和工况禁止大幅度波动。分子筛流程的主冷凝蒸发器应采取全浸式操作,即让主冷换热器浸没在液氧中,减少乙炔等碳氢化合物在换热翅片等部位浓聚。 4、保持主冷凝蒸发器液氧连续排放,不能连续排放时要求每班排液氧1次,排放量等于或大于1%气氧产量。当液氧中碳氢化合物超标时应增加排放量,严重超标时,应及时采取措施直至停车。 5、循环液氧泵应保持连续运转,停运检修时主冷凝蒸发器应每班排液3次,每次1%左右,同时尽快恢复运转。 6、1000m3/h以上大中型空分设备应安装在线气相色谱分析仪,连续监测液氧中的总烃化合物单项组分的含量,液氧系统的在

空分设备结构及工作原理1知识讲解

空分装置系统划分 所谓空分,就是将空气深度冷却至液态,由于液空其组分沸点各不相同,逐步分离出氧、氮、氩等等。空分装置大体可分以下几个系统: 1、空气过滤系统 过滤空气中的机械杂质,主要设备有自洁式空气过滤器。 2、空气压缩系统 将空气进行预压缩,主要设备有汽轮机、增压机、空压机等。 3、空气预冷及纯化系统 将压缩空气进行初步冷却,并去除压缩空气中的水分和二氧化碳等杂质,主要设备有空冷塔、水冷塔、分子筛纯化器、冷却水泵、冷冻水泵等。 4、分馏塔系统 将净化的压缩空气深度冷却,再逐级分馏出氧气、氮气、氩气等,主要设备有透平膨胀机、冷箱(内含主塔、主冷、主还、过冷器、粗氩塔、液氧泵、液体泵等) 5、贮存汽化系统 将分馏出的液氧、液氮、液氩进行贮存、汽化、灌充,主要设备有低温液体贮槽、汽化器、充瓶泵、灌充台等。 空气冷却塔结构工作原理 空冷塔(Φ4300×26895×16),主要外部有塔体材质碳钢,内部有2层填料聚丙烯鲍尔环,并对应2层布水器。 其作用是对从空压机出来的空气进行预冷。空气由塔底进入,塔顶出去,冷冻水从塔顶进入,塔顶出去,在这样一个工程中,冷冻水和空气在塔内,经布水器填料的作用充分的接触进行换热,把空气的温度降低。 水冷却塔的结构及工作原理 水冷却塔(规格Φ4200×16600×12),主要外部有塔体材质碳钢,内部有一层聚丙烯鲍尔环填料,对应一根布水管;一层不锈钢规整填料。 其作用式把从冷却水进行降温,生成冷冻水供给空冷塔。基本原理和空冷塔一样,从冷箱出来的温度较低的污氮气,进入水冷塔下部,在水冷塔内部经填料与从上部来的冷却水充分接触换热后排出,在此过程中冷却水生成冷冻水。 分子筛结构以及原理,其再生过程原理 吸附空气中的水份、CO2、乙炔等碳氢化合物,使进入空气纯净结构:卧式圆筒体、内设支承栅架、以承托分子筛吸附剂使用:空气经过分子筛床层时,将水份、CO2、乙炔等碳氢化合物吸附,净化后的空气CO2含量<1ppm;在再生周期中,先被高温干燥气体反向再生后,再被常温干燥气体冷却到常温,两分子筛成队交替使用。 预冷系统中的冷却水泵和冷冻水泵 预冷系统中的冷却水泵、冷冻水泵为多级离心水泵。分别为空冷塔、水冷塔供水。其基本结构和工作原理如下: 1、离心泵的基本结构 离心泵的基本部件是高速旋转的叶轮和固定的蜗牛形泵壳。具有若干个(通常为4~12

空分工艺流程说明学习资料

2.2.2 工艺流程简述 2.2.2.1 压缩、预冷 原料空气通过空气过滤系统,去除灰尘和机械杂质。过滤后的空气由多级压缩机压缩到工艺所需压力,然后进入空冷塔进行冷却。压缩过程中产生的冷凝疏水在厂房内凝液罐中汇集后,由凝液泵加压送入循环回水管线。 空气自下而上穿过空冷塔,以对流形式被循环冷却水和低温冷冻水分段冷却,同时也得到了清洗。 在空冷塔底部,空气被由冷却水泵送入的循环冷却水预冷。 在顶部,空气由冷冻水泵送入的冷冻水进一步冷却。 低温冷冻水是在水冷塔中产生,其产生的原理是利用从冷箱来的干燥的污氮气汽化小部分循环冷却水,水在汽化过程中吸收热量,同时使冷却水的温度降低。 空气离开空冷塔的温度越低,对于下游空气纯化单元的负荷就越小。 空气中的少量化学杂质也被冷却水吸收。 空冷塔和水冷塔为填料塔,在空冷塔顶部设置有除沫器以去除空气中的水雾。 2.2.2.2 吸附净化 空气纯化单元包括两台交替运行的分子筛吸附器,压缩空气通过吸附器时,水、CO、氮氧化合物和绝大多数碳氢化合物都被吸附。 吸附器交替循环,即一只吸附器吸附杂质而另一只吸附器被再生。吸附和再生过程顺序自动控制以保证装置连续运行。采用来自冷箱的污氮对吸附器进行再生。再生时吸附器与吸附流程隔离,再生气放空。与吸附流程隔离的吸附器先卸压,然后先用经蒸汽加热器加热的低压污氮进行再生,然后用从蒸汽加热器旁路来的冷低温氮气对吸附器进行冷却,之后再用吸附后的空气对吸附器升压并返

回吸附流程。再生循环主要有下面几个组成部分: 泄压-加热-冷却-增压单台吸附器的设计切换周期不少于4 小时。法液空流程的纯化单元设置特殊再生加热器,必要时可用特殊再生加热器进行特殊再生。 针对厂区空气中CO含量波动大的特点,在分子筛吸附器空气出口设有CO在线分析仪,可以随时监测吸附器的运行工况,从而保证出口的CO组分满足工艺要求。 净化后的空气分为两股:其中一股进入低压换热器;另一股去空气增压机增压。 2.2.2.3 空气精馏 净化后的空气分为两部分:一部分净化空气主气流直接进入冷箱,并在低压主换热器中与返流产品进行热交换而冷却至接近于露点。这股气流然后进入中压塔底部作首次分离。上升气体和下降液体接触后氮的含量升高。中压塔顶部的氮气在主冷凝蒸发器中被沸腾液氧冷凝成液氮作为中压塔的回流液。 另一部分净化空气经增压机压缩后部分送入透平膨胀机的增压端中增压后送入冷箱,在冷箱的高压主换热器中与高压氧换热被液化,然后经过高压节流阀节流后作为回流液进入中压塔和低压塔。 剩余部分增压空气在高压主换热器中冷却至适当温度抽出,然后经透平膨胀机膨胀端膨胀后送入中压塔。 从上到下,中压塔产出如下产品:液氮产品、低压氮气产品(下游MTO装置启动时的氮气)、中压氮气产品、污氮回流液、富氧 液空。 液氮产品经过过冷器后作为液体产品输出,部分送入贮槽。 中压氮气在低压主换热器中被汽化并复热作为氮气产品输出。在进低压主换热器前,中压塔抽出来的液氮已经过液氮泵压缩至中压氮气产品压力。

空分装置原理

低温空分原理:[1] 标准大气压下,空气的主要组分为:氮气、氧气和氩气,其沸点分别为77.36K、90.19K和87.26K。可见氧气和氮气的沸点相差近13K,而氧气和氩气的沸点相差仅近3K,故氧气和氩气相对于氮气都是难挥发组分。一般而言,对于两种沸点不同的物质(如氮和氧)组成的混合液体在吸热部分蒸发时,易挥发组分(沸点较低)将较多的蒸发为气相,而两种沸点不同的混合蒸汽在放热而部分冷凝时,难挥发的组分(沸点较高)将较多的冷凝为液相。如果将温度较高的饱和蒸汽和温度较低的饱和液体相接触时,则蒸汽放出热量而部分冷凝,而液体则吸收热量而部分蒸发,蒸汽部分冷凝时,蒸汽中氧组分较多的冷凝到液相,同样液相中的氮组分较多的蒸发到气相,使得气相中的氮组分浓度提高,液相中的氧组分浓度提高,如果进行多次这样的部分蒸发和部分冷凝过程,则气相中的氮组分浓度不断增加,同时液相中的氧组分浓度不断增加,最终达到氮氧分离的目的。 以上为空气精馏的原理,实现精馏的主要设备为精馏塔,塔内每块塔板都提供一次气液接触而发生部分蒸发和部分冷凝的场所,最终在塔顶得到高纯度的氮产品,而在塔底得到高纯度的氧产品。 为了同时得到高纯度的氮、氧产品以及氩等稀有气体产品,应用到空气得力的精馏塔一般是双级精馏塔。其典型流程如下: 下塔为高压塔,压缩后冷却到接近饱和状态的空气进入下塔顶部,经过下塔的初步分离,在下塔顶得到高纯度的馏分液氮,下塔底得到富氧液空,将馏分液氮和富氧液空采出后经液空和液氮过冷器,节流后回流入上塔(低压塔)继续参与精馏分离,最终在上塔塔顶得到高纯度的氮气,塔底得到高纯度的气氧和液氧。上塔由于回流液体较多,导致回流比较大,一般都大于实际所需回流比,为了挖掘精馏塔的精馏潜力,提高产品提取率,可以将部分空气直接引入上塔参与精馏,由于这个想法是拉赫曼提出,所以进上塔的膨胀空气量一般称为拉赫曼气。上下塔之间通过一个冷凝蒸发器(也叫主冷器)耦合在一起,它既是下塔的冷凝器,也是上塔的再沸器,下塔顶部的高温气氮用来加热上塔底部的低温液氧,同时本身被液氧冷却为液氮,部分作为下塔回流液,部分采出作为上塔顶部的回流液。富氧液空从上塔中部引入,液空进料口以上为精

空分装置空气分馏原理及流程

空分装置空气分镏原理及流程 一、空气成份 空气成份及其比例 二、原理 空气中氧气、氮气、氩气含量基本不变。而水蒸汽和二氧化碳气在0℃和—79℃分别变成冰和干冰,会阻塞换热器,因而在进冷箱前必须除去。而碳氢化合物特别是乙炔,在精馏过程中如乙炔在液空和液氧中浓缩到一定程度就有发生爆炸的可能,故其在液氧中含量不得超过0.1PPm。稀有气体如氖氦气,由于其冷凝温度很低,总以气态集聚在冷凝蒸发器中影响换热效果,要经常排放。 氧和氮的沸点不同,氮比氧易蒸发、氧比氮易冷凝,气

体自下而上流动时,在塔顶可获得高纯的氮气,在下塔底部可获得富氧液空,在上塔底部可获得高纯氧气。在下塔中空气被初次分离成富氧液空和氮气,液空由下塔底部送入上塔,一部分液氮由下塔顶部送入上塔顶部。 三、主要流程 空气经分子筛吸附器后吸附,分三路:第一路直接进入冷箱内主换热器,经换热温度降到—172.8℃,再进入下塔底部;第二路直接增压机I段膨胀机增压段冷箱内主换热器,温度降到—127℃膨胀机膨胀段汽液分离气下塔底部;第三路直接增压机II段冷箱内主换热器,温度降到—173.5℃下塔中部。 在下塔中,空气被初步分离成氮和富氧液体空气,顶部气氮在主冷凝蒸发器中液化,同时主冷凝蒸发器的低压侧液氧被气化。液氮作为下塔回流液全部回流到下塔,再从下塔顶部引出一部分液氮,经过液空液氮过冷器被纯气氮和污气氮过冷后送入上塔顶部。污液氮经过液空液氮过冷器过冷后送入上塔顶部。液空在液空液氮过冷器中过冷后送入上塔中部作为回流液。液氧从上塔底部经低温液氧泵加压,经主换热器复热以2.5MPa送出。污气氮从上塔上部经液空液氮过冷器及主换热器复热,一路作为分子筛的再生气体,一路进入水冷塔中。纯气氮从上塔顶部经主换热器复热进入氮压机。

空分设备危险因素(正式版)

文件编号:TP-AR-L1530 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 空分设备危险因素(正式 版)

空分设备危险因素(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 问题的提出 随着我国经济的高速发展,危险化学品生产的单 位随之增多,相应事故发生的危害日益增多。我国党 和国家领导对此很重视,20xx年1月9日国务院第 52次常务会审查通过了新修订的《危险化学品安全 管理条例》,即第344号令。随之国家经贸委等十个 国家部局发出《关于开展危险化学品安全管理专项整 治工作的联合通知》,全国工业产品生产许可证办公 室危险化学品产品生产许可证审查部在北京召开了 《压缩、液化气体产品生产许可证发(换)证实施细 则》论证会,明确规定:“凡是在中华人民共和国境

内生产(包括分装),并销售压缩、液化气体产品的所有企业,无论其性质和隶属关系如何,都必须取得生产许可证,才具有生产该产品的资格,任何企业不得并销售无生产许可证的压缩、液化气体产品。” 要取得压缩、液化产品生产许可证必须达到八个基本条件,其中第二条规定:“取得安全生产监督管理部门发放的安全审查合格证明”。要取得安全审查合格证明,必须经有资质的单位进行安全性评价,通过主要危险、危害因素的分析,找出重大危险源,通过科学的方法对岗位的危险等级进行评定,并对存在的问题进行改正,采取有效措施。 那么我国现在运行的设备存在哪些危险、危害的因素呢?有哪些对策措施呢?对此本文作粗浅的分析和建议,供同行们参考。

空分装置安全运行管理规定

编号:SM-ZD-34127 空分装置安全运行管理规 定 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

空分装置安全运行管理规定 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不 同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作 有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 第一条空分装置在生产过程中有碳氢化合物在液氧中积聚的条件,发生爆炸的危险性较大,特别是石油化工企业的空分装置周围空气碳氢化合物含量较高,更增加了危险性,为确何空分装置的安全运行,特制定本规定。 第二条本规定适用于石化系统各种类型的所有空分装置。本规定中对主冷凝蒸发器液氧中乙炔及其它碳氢化合物的有关指标均执行QB-89标准《空分设备液氧中乙炔及其它碳氢化合物控制指标的规定》(中石化[1989]生字56号)。 第三条空分装置操作人员必须进行安全生产技术和劳动纪律教育,经考试合格后持证上岗。操作人员必须熟悉并严格遵守本岗位操作法。 第四条空分装置吸入口安全要求。 1.空分装置宜在空气吸入口附近设风向标,监视风向变化带来空气质量的变化。 2.吸入口气体每周至少应分析一次,周围空气质量发生

空分流程及设备结构原理

检修车间学习材料 (一) 2008年4月 目录 第一章空分工艺流程简介 一、基本原理 二、工艺流程简介 第二章单元设备简介 一、汽轮机部分 1. 凝汽器 2.抽气器 3.排汽安全阀 4.汽轮机主体 4.1 汽缸 4.2 蒸气室4.3 导叶持环 4.4 转子 4.5 前支座 4.6推力轴承 4.7 径向轴承 4.8 调节气阀 二、离心氮气压缩机1.性能数据 2.压缩机型号的意义 3. 定子及其组成 4. 转子及其组成 5. 支撑轴承 6. 止推轴承 7. 联轴器 8. 润滑油系统 三、换热器 1. 固定管板式换热器

2. U型管换热器 3. 填料函式换热器 4. 浮头式换热器 附录图 第一章空分工艺流程概述 一、基本原理 干燥空气的主要成份如下: 空气中其它组成成份,如氢、二氧化碳、碳氢化合物的含量在一定范围内变化,而水蒸汽含量则随着温度和湿度而变化。 空气中的主要成份的物理特性如下: 空气的精馏就是利用空气的各种组份具有不同的挥发性,即在同一温度下各组份的蒸汽压不同,将液态空气进行多次的部份蒸发与部份冷凝,从而达到分离各组份的目的。当处于冷凝温度的氧、氮混合气穿过比它温度低的氧、氮混合液体时,气相与液相之间就发生热、质交换,气体中的部份冷凝成液体并放出冷凝潜热,液体则因吸收热量而部份蒸发。因沸点的差异,氧、氩的蒸发顺序为:氮>氩>氧,冷凝顺序为:氧>氩>氮。在本系统中,该过程是在塔板上进行的,当气体自下而上地在逐块塔板上通过时,低沸点组份的浓度不断增加,只要塔板足够多,在塔的顶部即可获得高纯度的低沸点组份。同理,当液体自上而下地在逐块塔板上通过时,高沸点组份的浓度不断增加,通过了一定数量的塔板后,在塔的底部就可获得高纯度的高沸点组份。 由于氧、氩、氮沸点的差别,在上塔的中部一定存在着氩的富集区,制取粗氩所需的氩馏份就是从氩富集区抽取的。 二、工艺流程简介(本厂空分工艺流程详见附图) 本空分装置采用分子筛吸附净化、空气增压、空气增压透平膨胀机制冷、膨胀空气进上塔、上塔采用规整填料塔、带粗氩塔、产品氧采用液氧泵内压缩的工艺流程。整套装置包括:空气过滤系统、空气压缩系统、空气预冷系统、分子筛纯化系统、分馏塔系统、液氮贮存汽化系统、氮气压缩系统等。 单套技术参数如下: 氧气产量: 28000Nm3/h 氧气纯度: 99.8%O2 氧气压力: 3.7MPa(G) 中压氮气产量: 20000 Nm3/h 中压氮气纯度: 99.999%N2 中压氮气压力: 2.0MPa(G) 低压氮气产量: 5000 Nm3/h

空分流程简述

空分流程简述 KDNOAr-10000/8000/390型空分装置 第一章精馏 一、进塔流程: 进塔流程(如图:1-1所示) (图:1-1) 二、精馏过程: 1、什么叫精馏: 简单的说:精馏就是利用两种不同物质(气体)的沸点不同,多次地进行混合蒸气的部分冷凝和混合液体的部分蒸发的过程就叫做精馏。 2、进塔空气的作用: 空气从纯化系统来经冷箱换热与膨胀后的空气混合后进入下塔底部,这部分气体做为下塔的上升蒸气;经高压节流的液空被送往下塔中部作为下塔的部分冷凝液; 3、精馏---下塔液氮的分离: 精馏塔下部的上升蒸气温度要比上部下流的液体温度高,所以膨胀空气进入下塔后空气温度会比上塔下流的温度高,当下塔的气体每穿过一块塔板就会遇到比它温度低的液体,这时,气体的温度会下降,并不断的被冷凝成液体,液体被部分气化;由于氧的液化温度最高,所以氧被较多的冷凝下来,剩下的蒸气含氮浓度就会有所提高。就这样,一次,又一次的循环下去,到塔顶后,蒸气中的氧大部分被冷凝到液体中去了;从而得到了蒸气中含氮纯度达到99.9%的高纯氮;这部分气体被引入主冷,被上塔的液氧冷凝成液氮后部分做为回流液回流下塔再次精馏(如图:1-2所示),部分被送往上塔作为上塔的回流液。同时下塔液空纯度也得到了含氧36%的液空。 (图:1-2)

4、上塔精馏: 将下塔液空经节流降压后送到上塔中部,作为上塔精馏原料;而从主冷部分抽出的液氮则成为上塔的回流液;与下塔精馏原理相同,液体下流时,经多次部分蒸发和冷凝,氮气较多 的蒸发出来,于是下流液体中含氧浓度不断提高,到达上塔底部时,可以获得含氧99.9%的 液氧;部分液氧作为产品抽出;由于下塔上升蒸气(纯氮气),被引入主冷冷凝,所以它将热 量较多的传给了液氧,致使液氧复热蒸发作为上塔的上升气;在上升过程中,一部分蒸气冷 凝成液体流下,另一部分蒸气随着不断上升,氮含量不断增加;到塔顶时,可得到99%以上 的氮气。 第二章开车步骤 一、启动步骤: 1、空气压缩机; 2、空气预冷系统; 3、空气纯化系统; 4、空气增压机; 5、空气膨胀机; 6、分馏塔系统操作。 二、准备工作: 1、启动冷却水系统; 2、启动仪表空气系统,检查所有设备、仪表和阀门(正常复位参照第三章正常停车阀 门动作)性能完好,并具备作用条件; 3、检察所有冷却水阀有无打开,并注意流量、压力是否满足; 4、启动空压机、增压机油泵,油温低时开加热器,检察油压。 三、启动 (一)、启动空气压缩机: 按“DCS集散控制系统启动要求”满足条件后启动; 按下电源,电机开始转动,注意事项: 1、启动时应注意电流变化; 2、密切注意各振动点和轴移位有无超高现象; 3、润滑油总管压力大于0.22Mpa延时30秒,辅油泵应停止; 4、预热结束后加载空气压缩机; 5、加载时注意各级压力、振动、轴移位变化。 (二)、预冷启动: 1、预冷和分子筛所有阀门复位; 2、空压机加载完必后就将空气缓慢导入预冷和分子筛进行充气; 3、当预冷出口压力等于空压机出口压力时(≥0.45MPa),充气结束; 4、启动常、低温水泵,并调至正常流量; 5、缓慢打开空气进水冷塔旁通阀(V1135)(根据出口水温调整阀门开度大小)。 (三)、启动分子筛: 1、缓慢开空气旁通至分子筛阀(V1250),并调整至正常流量; 2、将分子筛透入自动运行程序;

空分原理概述

一、空气分离的几种方法 1、低温法(经典,传统的空气分离方法) 压缩膨胀液化(深冷)精馏 低温法的核心 2、吸附法:利用固体吸附剂(分子筛、活性炭、硅胶、铝胶)对气体混合物中某些特定的组分吸附能力的差异进行的一种分离方法。 特点:投资省、上马快、生产能力低、纯度低(93%左右)、切换周期短、对阀的要求或寿命影响大。 3、膜分离法:利用有机聚合膜对气体混合物的渗透选择性。 穿透膜的速度比快约4-5倍,但这种分离方法生产能力更低,纯度低(氧气纯度约25%~35%) 二、学习的基本内容 1、低温技术的热力学基础——工程热力学:主要有热力学第一、第二定律; 传热学:以蒸发、沸腾、冷凝机理为主; 流体力学:伯努利方程、连续性方程; 2、获得低温的方法 绝热节流 相变制冷 等熵膨胀 3、溶液的热力学基础 拉乌尔定律、康诺瓦罗夫定律(1、2 ,空分的核心、精馏的核心) 4、低温工质的一些性质:(空气、O、N、Ar) 5、液化循环(一次节流、克劳特、法兰德、卡皮查循环等) 6、气体分离(结合设备) 三、空分的应用领域 1、钢铁:还原法炼铁或熔融法炼铁(喷煤富氧鼓风技术); 2、煤气化:城市能源供应的趋势、煤气化能源联合发电; 3、化工:大化肥、大化工企业,电工、玻璃行业作保护气; 4、造纸:漂白剂; 5、国防工业:氢氧发动机、火箭燃料; 6、机械工业; 四、空分的发展趋势 ○ 现代工业——大型、超大型规模; ○ 大化工——煤带油:以煤为原料生产甲醇; ○ 污水处理:富氧曝气; ○ 二次采油; 第一章空分工艺流程的组成 一、工艺流程的组织 我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革:第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质;

空分装置

第六章空分装置(010#) 1.概述 空分装置的功能是将空气通过深冷分离的方法制取氧气、氮气供各工艺装置使用,并向全厂提供仪表空气和工厂空气,同时副产液氧、液氮、液氩。 空分装置制氧能力:~32000Nm3/h,采用“离心式空气压缩+分子筛空气净化+两级空气精馏+液氧泵+液氮泵内压缩”的工艺技术,由空气压缩(018#)、空气预冷(011#)、空气净化(012#)、空气分离(013#)、液体贮存及汽化(016#)、公用系统(019#)6个工序构成。 2.工艺说明 2.1空气过滤和压缩 空气首先进入自洁式空气吸入过滤器,在空气吸入过滤器中除去灰尘和其它颗粒杂质,然后进入主空压机,经过多级压缩、级间冷却器冷却后进入空冷塔。 3.2 流程 空气经自洁式过滤器,除去机械杂质、灰尘后由入口导叶进入空气压缩机,经三段四级压缩后,输出0.55 MPa、185000 Nm3/h(干)的空气到后序系统,空压机出口管线设有防喘振流量控制阀FV01122A和压力控制阀HV01122B,从而控制机组出口压力和流量。 由纯化系统来的洁净空气(105000 Nm3/h)进入增压机,经三段七级压缩,使空气的压力增高,增压空气分成三股:一股从增压机一段水冷器后抽出【1.1 MPa 7000 Nm3/h】一股从增压机二段水冷器后抽出【2.7 MPa 40900 Nm3/h】去增压膨胀机系统;另一股【6.5 MPa 57100 Nm3/h】从增压压缩机末级引出,经

冷却后进入空分装置,流程中设有两个防喘振阀,分别为FV01123和FV01128,目的是防止进入增压机一段和三段的气量过小引起喘振。 蒸汽经速关阀(2301),高压调节汽阀(0801)进入汽轮机通流部分。蒸汽在第一膨胀段(0001)做功后,一部分从外缸下部的抽汽口引出,输至装置中压蒸汽管网,未抽出的蒸汽经中压调节汽阀(0802)进入第二膨胀段(0002)继续做功,做功后,在压力降至排汽压力后进入凝汽器(6000)。 为保持凝汽器中蒸汽凝结时建立的真空和良好的换热效果,由射汽抽气器(6400)将漏入凝汽器的空气(包括未凝蒸汽)不断抽出。 汽轮机、压缩机、增压机共用一台油站,由两台互为备用的油泵一开一备供油,油箱中N46#汽轮机油经泵加压至1.0 MPa,由自动调节阀PV01104将油压调至0.85 MPa,经油冷却器、油过滤器后,分为两路:一路去调速系统,另一路经润滑油压力控制阀PV01105将压力控制在0.25 MPa,送往各轴承润滑,各路回油汇合至回油总管后返回油箱。 为防止低压电力系统停电,油系统还设有高位油箱和事故油泵(备用UPS 电源)为事故状态下主、辅油泵不能启动时紧急供油,满足机组安全停车的需要。 分离岗位操作规程 空气的精馏就是利用空气的各种组份具有不同的挥发性,即在同一温度下各组份的饱和蒸汽压不同,将液态空气进行多次的部分蒸发与部分冷凝,从而达到分离各组份的目的。当处于冷凝温度的氧、氮混合气穿过比它温度低的氧、氮混合液体时,气相与液相之间就发生热质交换,气体中的一部分冷凝成液体并放出冷凝潜热,液体则因吸收热量而部分蒸发。因沸点的差异,氧、氩、氮的蒸发顺序为:氮>氩>氧,冷凝顺序为:氧>氩>氮,在本系统中该过程是在塔板上进行的,当气体自下而上地在塔板上逐块通过时,低沸点组份的浓度不断增加,只要塔板足够多,在塔的顶部即可获得高纯度的低沸点组份。同理,当液体自上而下地在塔板上逐块通过时,高沸点组份的浓度不断增加,通过了一定数量的塔板后,在塔的底部就可获得高纯度的高沸点组份。 由于氧、氩、氮沸点的差别,在上塔的中部一定存在着氩的富集区,制取粗氩所需的氩馏份就是从氩富集区抽取的。

空分设备危险因素(通用版)

空分设备危险因素(通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0152

空分设备危险因素(通用版) 1问题的提出 随着我国经济的高速发展,危险化学品生产的单位随之增多,相应事故发生的危害日益增多。我国党和国家领导对此很重视,2002年1月9日国务院第52次常务会审查通过了新修订的《危险化学品安全管理条例》,即第344号令。随之国家经贸委等十个国家部局发出《关于开展危险化学品安全管理专项整治工作的联合通知》,全国工业产品生产许可证办公室危险化学品产品生产许可证审查部在北京召开了《压缩、液化气体产品生产许可证发(换)证实施细则》论证会,明确规定:“凡是在中华人民共和国境内生产(包括分装),并销售压缩、液化气体产品的所有企业,无论其性质和隶属关系如何,都必须取得生产许可证,才具有生产该产品的资格,任何企业不得

并销售无生产许可证的压缩、液化气体产品。” 要取得压缩、液化产品生产许可证必须达到八个基本条件,其中第二条规定:“取得安全生产监督管理部门发放的安全审查合格证明”。要取得安全审查合格证明,必须经有资质的单位进行安全性评价,通过主要危险、危害因素的分析,找出重大危险源,通过科学的方法对岗位的危险等级进行评定,并对存在的问题进行改正,采取有效措施。 那么我国现在运行的设备存在哪些危险、危害的因素呢?有哪些对策措施呢?对此本文作粗浅的分析和建议,供同行们参考。 2我国现代空分设备实际运行状况 深冷法空气分离自1903水由德国卡尔?林德教授发明投运 10m3/h制氧机至今,已有一百年的历程,回顾空分流程,从简单节流的高压流程到中压带膨胀机循环流程、高低压流程、低压带透平膨胀的流程;压力从高压(20MPa)到低压(≤1MPa),容量从小(10m3/h)到大(10万m3/h)。总之,空分设备的发展史是围绕降低单位能耗和提高安全性而不断改进的,越是现代的设备容量越大、压力越低、

空分装置的主要危险因素分析(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 空分装置的主要危险因素分析 (通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

空分装置的主要危险因素分析(通用版) 空气分馏装置的生产过程中存在着火灾爆炸和冷冻伤害等危险因素,充分分析该装置生产过程中存在的危险因素,对制定安全生产防范措施有着重要意义。 1物料的火灾危险性 1.1油料 ①透平油料 装置中的增压透平膨胀机(2套、一用一备)系统附有2台供油装置。若使用46号透平油,该油品系丙类火灾危险性的可燃液体,性质如下: 运动粘度50℃44~48mm2/s 灰分(未加添加剂时)≤0.02% 透明度透明

凝点≤10℃ 闪点(开口)≥195℃ 低位发热量43334J/Kg 增压透平膨胀机透平油管道,大部分布置在该装置附近,一旦输油管道发生泄漏,遇高热戴明火,会引起火灾、爆炸。 ②润滑油 该装置中的氧气压缩机使用100号机械油该油品系丙类火灾危险性的可燃液体。性质如下: 凝点≤0℃ 闪点(开口)≥230℃ 布置在该装置附近100号机械油的输油管道一旦发生泄漏,遇高热绒明火,也会引起火灾、爆炸。 当压力高于2.94Mpa的氧气直接与油脂接触时,就会发生激烈的氧化反应.并放出大量的热。由于化学反应速度极快,因而,很快就能达到油脂的燃点,从而使油脂迅速燃烧。如果燃烧发生在管道、容器中,可以使其温度急剧升高,达到3000℃左右,压力可以高出

小型空分设备液氮节流阀的作用原理

小型空分设备液氮节流阀的作用原理 液氮节流阀(节-4阀)在不同场合下的使用:空分塔启动初期应全开(约转1 2~15转)。当冷凝蒸发器液氧液面接近或达到430mm时,与节-2阀同时缓慢地关小。关阀的速度在初期以液氧液面和中压压力的情况而定;当节-4阀关至2转左右,在液空液面正常的情况下,应分析液空、液氮的纯度,视纯度的情况而定。最后将节-4阀的开度控制在液空、液氮纯度最佳的位置上。在正常生产的工况下,液氮节流阀不需要经常变动。当碰到液氮纯度自动升高,液空纯度自动下降,液空液面自动上涨时,可能是阀头被干冰所堵,应急剧转动阀门刮霜后复位。当间断制氧或临时停车时,应用节-4阀保持中压,以缩短重新启动时间。再次复车启动时,视液空、液氧液面的高低来决定。当设备准备停车加温时,停车前应开大节-4阀,将液体送往上塔。空分塔全面加温时,节-4阀应全开。 节-4阀的作用是将下塔液氮槽内的液氮经液氮过冷器送往上塔顶部的节流阀。正常生产期间,在开度合适的前提下起到控制液空、液氮纯度的作用,同时还会影响液空的液面和上塔液气比的改变,从而影响上塔的氮气纯度和氧气产量。在节-4阀关小后,液氮纯度提高,液空纯度下降,节-2阀开度不变时液空液面会升高。开大节-4阀则相反。 为什么节-4阀能控制液氮和液空纯度呢?因为进入下塔的空气是呈饱和的气、液混合状态,大多数是蒸气。蒸气沿下塔塔板的小孔上升,蒸气中的氧分子受到塔板上液体的冷凝,成为液氧进入液相;塔板上液体中的氮分子受到氧分子冷凝时放出的冷凝热而进入气相。每经一块塔板的传热、传质,使液体中氧分子含量增加,而上升蒸气中氮分子含量增加。蒸气经下塔的反复的冷凝蒸发,这样到下塔顶部,蒸气中的氮分子含量达到设计要求,然后在冷凝蒸发器内,被液氧冷凝成液氮,绝大部分液体积聚在液氮槽内。如果节-4阀开度过大,送入上塔的液体就多,回流入下塔的液氮量就减少。下塔塔板上回流液过少,就意味着下塔冷量不可能把蒸气

空分装置液氧罐发生燃爆

空分装置液氧罐发生燃爆 事故应急救援预案 1 事故危险性评估 1.1一般危险性评估 1.1.1一台液氧罐局部发生燃烧,未发生爆炸,能及时控制。 1.2严重危险性评估 1.2.1任一台液氧罐发生爆炸,液氧罐体被摧毁,爆炸产生冲击波摧毁四周工业设备及建筑,击伤现场人员;爆炸碎片向四处飞溅,再次损坏其它设备建筑物和击伤行人;大量低温液体涌出,现场氧气汽雾弥漫。 1.2.2爆炸会引起联锁反应,如:另一液氧罐、氧气、氮气、氩气、氢气管道破裂,遇激发能源诱发新的燃烧爆炸。 1.2.3危及周围人员的生命安全。 2 控制及消除事故源 2.1按氧气公司应急救授预案总则报警程序报警。 2.2一般危险性事故。 2.2.1控制事故源 2.2.1.2通知电工房切断罐区的所有电源。 2.2.1.3采取隔离等措施,防止事故液氧罐周围设备发生燃

烧。 2.2.2消防事故源 2.2.2.1按氧气公司一般灭火程序进行灭火。 2.2.2.2视情况转移事故区域内易燃易爆物品。 2.3严重危险性事故。 2.3.1控制事故源。 2.3.1.1通知电工班岗位人员切断罐区所有电源。 2.3.1.2关闭空分装置的液氧输送阀。 2.3.1.3根据液氧罐燃爆后的损失程度和部位,切断事故源,必要时停止制氧机生产,控制故事发展。 2.3.1.4尽可能禁止人员进入液氧罐区。 2.3.2消除事故源 2.3.2.1在专业消防人员未到达之前,按氧气公司一般灭火程序灭火;在专业消防人员到之后,配合专业消防队进行灭火扑救。 2.3.2.2视情况转移事故区域内易燃易爆物品。 3 救治伤员、疏散非相关人员、减少财产损失 3.1以事故液氧罐为中心100米为半径拉起警戒线,迅速疏散警戒区内槽罐班、销售部人员,尽量减少进入警戒区内的抢险救援人员。 3.2对警戒区周围马路实行通行管制,禁止非抢险救援人员

空分装置讲解

空分装置简介洗涤剂化工厂空分车间由氮氧站和空压站布置成一个区域组成的气体车间,为生产装置和辅助系统提供需要的氮气、氧气、仪表风和工业风。 1.1.1装置简介 氮氧站包括空分装置、液氧液氮储存、压氧、压氮系统,空分装置有两套KDON-800/1400空分设备(其中一套生产、另一套备用),该装置于1991年8月建成投产,装置设计生产能力为氮气1400Nm3/h,氧气800Nm3/h,该装置占地面积为20072 m2。空分装置为开封空分设备厂开发研制的新型产品。它采用常温分子筛吸附法净化空气,工艺流程简单,操作方便,运行安全平稳。为了满足生产装置氧、氮的连续供气,装置内设置了液氧、液氮的储罐及气化系统。为了保证全厂各用户需求,由压氧、压氮系统供应压缩氧气和压缩氮气, ≤8PPm,供给压力0.8MPa,产量1400 Nm3/h,提按设计值,提供给用户的氮气质量为含0 2 供的氧气质量为≥99.6%,供给压力为2.8 MPa,产量为800 Nm3/h。 空压站于1991年8月建成投产,设计可为全厂提供仪表风4000 Nm3/h,供给压力0.6 MPa,仪表风露点为≤-40℃,工业风1080 Nm3/h,供给压力0.8 MPa。 1.1.2工艺原理 1.1. 2.1 空分装置原理 空气主要是由78.03%的氮气和20.93%的氧气及其它气体混合而成。空气分离就是先使空气冷却到一定的低温,而使其液化成为液态空气。再利用氧和氮两种液体的沸点不同(在大气压力下,氧的沸点为﹣183.98℃,而氮的沸点为﹣195.8℃),在装有筛板的空分塔内进行分离。空分塔又称之为精馏塔。空气精馏塔一般可分为单级精馏塔和双级精馏塔,单级精馏塔只能制取一种纯产品。洗涤剂化工厂空分装置采用双级精馏塔制取高纯度的氮气

空分装置讲解

空分装置简介 洗涤剂化工厂空分车间由氮氧站和空压站布置成一个区域组成的气体车间,为生产装置和辅助系统提供需要的氮气、氧气、仪表风和工业风。 1.1.1装置简介 氮氧站包括空分装置、液氧液氮储存、压氧、压氮系统,空分装置有两套KDON-800/1400空分设备(其中一套生产、另一套备用),该装置于1991年8月建成投产,装置设计生产能力为氮气1400Nm3/h,氧气800Nm3/h,该装置占地面积为20072 m2。空分装置为开封空分设备厂开发研制的新型产品。它采用常温分子筛吸附法净化空气,工艺流程简单,操作方便,运行安全平稳。为了满足生产装置氧、氮的连续供气,装置内设置了液氧、液氮的储罐及气化系统。为了保证全厂各用户需求,由压氧、压氮系统供应压缩氧气和压缩氮气,按设计值,提供给用户的氮气质量为含02≤8PPm,供给压力0.8MPa,产量1400 Nm3/h,提供的氧气质量为≥99.6%,供给压力为2.8 MPa,产量为800 Nm3/h。 空压站于1991年8月建成投产,设计可为全厂提供仪表风4000 Nm3/h,供给压力0.6 MPa,仪表风露点为≤-40℃,工业风1080 Nm3/h,供给压力0.8 MPa。 1.1.2工艺原理 1.1. 2.1 空分装置原理 空气主要是由78.03%的氮气和20.93%的氧气及其它气体混合而成。空气分离就是先使空气冷却到一定的低温,而使其液化成为液态空气。再利用氧和氮两种液体的沸点不同(在大气压力下,氧的沸点为﹣183.98℃,而氮的沸点为﹣195.8℃),在装有筛板的空分塔内进行分离。空分塔又称之为精馏塔。空气精馏塔一般可分为单级精馏塔和双级精馏塔,单级精馏塔只能制取一种纯产品。洗涤剂化工厂空分装置采用双级精馏塔制取高纯度的氮气和氧气。氮气供全厂各用户,氧气供脂肪醇。 所谓精馏,就是同时并多次地运用部分蒸发与部分冷凝的过程。压缩并经冷却到冷凝温度的液态空气进入精馏塔后,在塔内气化空气自下而上地穿过每块塔板与塔板上的液体接触,这样气体中的氧逐步冷凝到液体中去,而液体中的氮便蒸发到气体中去,每经过一块塔板,气体中的氮浓度便提高一次,这样经过多层塔板(只要塔板数足够多),在塔的上部便得到纯度为99.99%以上的高纯度氮气,在塔底便可得到氧纯度(30~38%)较高的液体,称之为富氧空气。富氧空气再经过精馏塔,在上塔的底部可得到纯度为99.2~99.8%的氧气。 1.1. 2.2空压装置原理 大气经仪表风空压机压缩后,压力达到0.6MPa,经干燥器净化后做为仪表风送给全厂。大气经工业风空压机压缩后,压力达到0.8MPa送给全厂做为工业风。 1.1.3工艺流程说明 1.1.3.1 空分装置工艺流程说明

相关主题
文本预览
相关文档 最新文档