当前位置:文档之家› 蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析
蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析

王印培陈进

(华东理工大学化机所上海200237)

摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。

主题词:碱脆;不锈钢;失效分析

1 概述

某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。

图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75%

液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。

2 化学成分分析与铁素体含量测定

对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。

采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。

3 蒸汽过热器管内壁渗透液检验

为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。

4 力学性能测试

力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。

4.1 拉伸性能

按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

由表可见,直管材料使用态和重新固溶态的拉伸性能符合GB13296-1991《锅炉、热交换器用无缝钢管》标准对1Cr19Ni9钢的要求,但直管经重新固溶热处理后,屈服强度和抗拉强度均有所下降,延伸率有所提高。

4.2 弯曲性能

分别在使用态和经重新固溶热处理的过热器直管和弯头处各取两根试样。弯头的弯曲试样为半圆环,宽度为10mm。弯曲试样见图3。

(a)直管的弯曲试样 (b)弯头的弯曲试样

图3 蒸汽过热器管弯曲试样

弯曲试验按GB232-1988标准进行。两种状态的直管和弯头的弯曲试验均按一正一反方向进行,弯心直径为零。弯曲试验结果表明,除使用态的弯头弯曲试样在反弯(弯曲角度为270°)时开裂外,其余试样在弯曲试验过程中均未开裂,结果见图4。

(a)直管的弯曲结果 (b)弯头的弯曲结果

图4 过热器管试样的弯曲试验结果

4.3 硬度

对重新固溶热处理前后的蒸汽过热器直管(含焊缝)、弯头的截面进行硬度测定,结果见表3。表3数据显示,蒸汽过热器管的硬度值符合GB13296-1991《锅炉、热交换器用无缝钢管》标准对1Cr19Ni9钢的硬度要求。

5 裂纹形态及显微组织检验

分别在转化炉含裂纹的直管和弯头处截取试样,观察面为纵截面。宏观观察,裂纹均起裂于管内壁,有的已穿透管壁。试样经机械抛光,并经电解侵蚀后,用光学显微镜观察,典型裂纹形貌见图5~7。

图5 焊缝附近母材裂纹形貌图6 焊缝热影响区裂纹形貌

图7 弯头处裂纹形貌

所有观察到的裂纹均从管内壁向外壁呈树枝状扩展。裂纹附近无明显塑性变形,为典型的应力腐蚀裂纹。裂纹扩展形态以穿晶为主,部分呈沿晶。另从弯头上截取两块试样,对其中一块进行固溶热处理。两块试样经机械抛光,化学侵蚀后,在光学显微镜下观察弯头材料重新固溶热处理前后的显微组织,观察面为纵截面,观察结果见图8。由图可见,弯头材料的组织为奥氏体组织,晶粒为等轴晶,未发现晶界碳化物析出等组织缺陷。

(a)使用态弯头的显微组织 (b)重新固溶热处理后弯头的显微组织

图8 过热器管弯头之显微组织

6 断口扫描电镜检验

分别在含有裂纹的直管和弯管处取样,选择细小裂纹,并将裂纹面打开,对断口进行扫描电镜观察,结果见图9~10。

图9显示裂纹的裂源位于管子内壁,即裂纹由管内壁向外壁扩展。图10为裂尖附近的断口形貌,由图可见,断口呈典型的脆性穿晶的解理形貌,并有大量的混晶二次裂纹。

图9 裂纹的断口形貌图10 裂尖附近断口形貌

图11 断面腐蚀产物能谱分析

7 断口腐蚀产物能谱分析

对断口表面的腐蚀产物进行X光能谱分析,结果见图11,断面腐蚀产物为氧化物,并有一定量的钠元素,未发现断面上的Cl-。

8 试验结果分析

(1)蒸汽过热器管的化学成分分析及显微组织检验结果表明,钢管的化学成分符合GB13296-1991标准的要求。其显微组织正常,为奥氏体+少量铁素体。

(2)蒸汽过热器裂纹均发生在焊缝附近或弯头上,由管内壁向外壁扩展。裂纹分叉并以穿晶为主。

(3)裂纹断面的断口形貌为脆性穿晶解理形貌,并有大量混晶的二次裂纹,具有明显的应力腐蚀裂纹特征。能谱分析结果表明,裂纹面上的腐蚀产物为氧化物,并有钠元素,未发现Cl-。

(4)蒸汽过热器管的拉伸性能及硬度值均符合GB13296-1991《锅炉、热交换器用无缝钢管》标准的规定。经重新固溶热处理后,直管、弯头及焊缝的硬度以及直管的屈服强度和抗拉强度均有所降低,塑性有所提高。

9 失效原因分析

(1)蒸汽过热器管的裂纹形态和断口形貌具有应力腐蚀裂纹的特征,可以确定,蒸汽过热器的开裂属应力腐蚀开裂。

(2)在NaOH环境中,奥氏体不锈钢的耐蚀性仅稍高于铸铁和碳钢。一般1828型不锈钢仅可用于90℃以下的极稀碱液中,当碱液浓度超过0.1%时,奥氏体不锈钢即会产生应力腐蚀,并随着应力和温度的提高更容易开裂。文献[2]给出了1828与18212Mo2不锈钢在NaOH溶液中发生应力腐蚀的温度与浓度范围,当温度高于300℃时,1828型不锈钢在浓度很低的碱液中,一天内即会发生应力腐蚀开裂。可见,一般的奥氏体不锈钢在NaOH环境中具有应力腐蚀敏感性,而在高温时更为严重。

(3)现场观察以及能谱分析结果表明,在煮炉过程中,碱液由汽包进入蒸汽过热器,且有相当的浓度。现场操作记录显示,煮炉过程中,过热蒸汽温度在200℃以上达78h,其中超过300℃的时间达60h。由于转化炉炉气温度高,煮炉过程的蒸汽量小,进入蒸汽过热器中的碱液会进一步浓缩,从而构成奥氏体不锈钢产生严重应力腐蚀的特定环境。

(4)蒸汽过热器管的裂纹主要分布在焊缝附近或弯头上,这些部位有残余应力等附加的应力。另外,由于集汽管的下端固定,在升温过程中,集汽管向上膨胀,也使得与其相连的直管产生较大的附加应力,这些应力是促成蒸汽过热器管腐蚀开裂的力学因素。

综上分析,在煮炉过程中碱液进入蒸汽过热器,同时蒸汽过热器在煮炉过程中蒸汽温度超过300℃的时间达60h,在此条件下,在蒸汽过热器残余应力和附加应力较大的部位,不可避免地发生应力腐蚀开裂,直至断管。

10 结论

制氢装置转化炉蒸汽过热器管开裂,是由于中压汽包煮炉过程中碱液进入蒸汽过热器所导致的应力腐蚀开裂。

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

化工换热器的常见腐蚀现象及防腐措施

化工换热器的常见腐蚀现象及防腐措施 摘要:如何采取合理的措施来减缓甚至消除金属设备的腐蚀是一个永恒的科研课题。换热器的腐蚀问题一直是石化企业面临的棘手问题,探究腐蚀机理以及提出切实可行的防腐蚀办法一直是值得研究的课题。本文介绍了化工换热器的常见腐蚀现象,并提出了针对性强的防腐措施,同时,也为国内外石化行业参考借鉴。 关键词:换热器;腐蚀;防腐 1 概述 换热器是将热流体的部分热量传递给冷流体或将冷流 体的热量传递给热流体的的设备,又称热交换器。管式换热器由于技术成熟、维修方便,因而在石油化工、钢铁、纺织、化纤、制药等各行各业中应用十分广泛。换热器由于在各行各业应用的普及性,因而出现维修的概率也越来越广泛,特别是由于换热介质的物理、化学不同,导致换热器的损坏形式也不同,而据全世界的报导所知,换热器的损坏90%是由于腐蚀而引起的,因此换热器的腐蚀问题一直是石化企业面临的棘手问题。 随着工业的迅速发展,腐蚀问题越来越严重,在各个领域,包括炼油厂化工厂等企业均见报道。从日常生活到工农

业生产,凡是使用材料的地方都存在腐蚀问题,对国计民生的危害十分严重,据不完全统计,全世界每年因腐蚀报废和损耗的钢铁约为2亿多吨,约占当年钢产量的10%-20%,目前我国的钢铁产量己高达数亿吨,但其中却有30%由于腐蚀而白白损失掉了。据此测算,我国每年因钢铁腐蚀损失约有2700多亿元人民币,远远大于自然灾害和各类事故损失的总和。国家科技部门、各工厂对这个问题也越来越重视。对于化工企业,腐蚀造成的危害更大,不仅在于金属资源受到损失,还在于正常的生产受到影响,因腐蚀造成的设备事故对于职工人身安全也会带来严重的威胁。由于腐蚀问题越来越受到重视,因此对于腐蚀的研究也越来越多。 2 化工换热器的常见腐蚀现象 引起换热器腐蚀的原因是多方面的,主要有换热器表面的腐蚀磨损、沉积物引起的电化学腐蚀、换热管水侧的腐蚀等,下面就几个主要方面加以说明。 2.1 换热器表面的腐蚀磨损 磨损腐蚀是高速流体对金属表面已经生成的腐蚀产物的机械冲刷作用和新裸露金属表面的腐蚀作用的综合。 2.2 沉积物引起的电化学腐蚀 当介质流动不均或滞留时很容易在换热管表面形成沉积物,由于沉积物是不连续不牢固且不均匀的,在某些部位形成了裂缝和间隙,由于缝内外氧的差异而形成了电化学腐

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析 王印培陈进 (华东理工大学化机所上海200237) 摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。 主题词:碱脆;不锈钢;失效分析 1 概述 某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。 图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75% 液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。 2 化学成分分析与铁素体含量测定 对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。 采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。 3 蒸汽过热器管内壁渗透液检验 为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。 4 力学性能测试 力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。 4.1 拉伸性能 按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版)

浅析垃圾焚烧炉过热器腐蚀原因及解决措施(最新版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0148

浅析垃圾焚烧炉过热器腐蚀原因及解决措 施(最新版) 摘要:垃圾焚烧发电是实现城市垃圾无害化、减量化和资源化处理的一种有效方法,目前正得到大力的推广。焚烧发电具有工艺简单,运行可靠,垃圾处理速度快,处理量大。但是由于垃圾成份相当复杂,用于焚烧垃圾的焚烧炉存在非常严重的磨损、腐蚀现象,在腐蚀现象中以高温过热器管的腐蚀问题最为严重。本文主要就这个问题展开讨论并提出预防措施。 关键词:垃圾焚烧炉;高温过热器管腐蚀;措施 一、垃圾焚烧发电工艺原理垃圾焚烧发电是将垃圾放在焚烧炉中进行燃烧,释放出热能,余热回收加热给水变成蒸汽,蒸汽在汽轮机中推动汽轮发电机旋转做功,将蒸汽的热能转化为电能,释放热能后的烟气经净化系统处理后排放,从而将垃圾由“废物”变为

可利用的“资源”。随着各种炉型技术的实践应用广泛开展,炉排式垃圾焚烧炉以适应性强,处理比较彻底的优势正成为目前国内垃圾焚烧的主流工艺。随着技术的不断的提高和发展,我国焚烧炉的垃圾处理容量也不断的提高,从初期的150t/d提高到现在的750t/d,规模日趋增大。 二、垃圾焚烧发电的特点一般来说,垃圾经焚烧处理后残余的固体废物约占20%(炉渣约占15%,飞灰约占5%),考虑炉渣的综合利用因素,减量化效果更为显著。这相比于垃圾填埋处理要永久性占用土地来说节约了大量的土地资源。垃圾中的可燃物在焚烧中基本上变为了可利用的热能。根据城市发展程度及地理位置、生活习惯不同,垃圾的热值有所不同,一般用于焚烧的垃圾要求低位热值大于4180KJ/Kg,垃圾发电量一般在250kwh/t以上(随热值的提高而增加)。另外,由于垃圾焚烧后的尾气经过了严格的净化处理,因此对环境的污染被控制到了最低。因此,垃圾焚烧处理的特点是处理量大、减量效果好、无害化彻底,且有热能回收作用,是真正实现垃圾处理的“无害化、资源化、减量化”的技术手段。因此,对

换热器局部腐蚀原因分析

换热器局部腐蚀泄漏原因分析及预防措施 陶志远 (山东华鲁恒升化工股份有限公司山东德州253000) 【摘要】对一台换热器换热管泄漏原因进行分析,并研究预防换热管泄漏措施,提高换热器运行周期,保证装置稳定运行。 【关键词】换热器泄漏局部腐蚀蒸汽加热 在化工生产中,由于工艺的需要,在流程中往往存在着各种不同的换热过程,换热器就是用来进行此项热传递过程的设备,它可以使热量从温度较高的流体传递给温度较低的流体,以满足工艺的需要。换热器的稳定运行在工艺生产中起着相当重要的作用,一旦泄漏会严重影响工艺,造成两种流体混合,导致不安全因素的产生。 某公司甲醇装置中有一换热器为该装置关键设备,该换热器在投用一年后发生泄漏。 1设备技术参数 设备技术参数及操作数据见表1 筒体材质为16MnR(热轧状态),规格为∮1500mm*14mm,总高8152mm。管板材质为16Mn。厚度88mm,锻件。换热管材质为10#钢,规格∮25mm*2.5mm,退火状态。折流板5件,厚度16mm,材质Q235-A.换热面积:669m2。 表1 2泄漏情况 该换热器于2004年投入运行,2006年7月系统停车时发现泄露。打压试漏时发现有34根换热管泄露。其中有10根比较严重。由于当时生产任务较紧,该换热器堵漏完毕后,投入运行,没有做深入的分析。 堵漏完毕后的换热器投入运行3个月后又发现泄露,再次拆开检查维修。在这次检查时,发现有的换热管在距上管板90毫米处有断开,随即技术人员仔细检查。用焊条在换热器上管板上探测换热管内壁,发现大部分换热管在距管板90毫米处用焊条滑动时内壁不光滑。于是技术人员决定将换热管抽出一根检查。换热管抽出后,将怀疑有缺陷的部位刨开,发现该处有一不规则的环状凹坑(见图1),换热管内表面其他部位良好,这说明其他换热管也存在环状凹坑。通过查看设备制造图纸,换热器管板厚度为80毫米,凹坑距管板大约10毫米。

蒸汽过热器爆管剖析-调节蒸汽温度(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 蒸汽过热器爆管剖析-调节蒸汽 温度(新版)

蒸汽过热器爆管剖析-调节蒸汽温度(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2面式减温器与省煤器进水示意图 注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将

锅炉过热器爆管原因分析及对策

锅炉过热器爆管原因分 析及对策 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

锅炉过热器爆管原因分析及对策摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用38×4.5的20号碳钢管组成。第一级过热器和屏过热器用42×5的12Cr1MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集

针对12Cr1MoV钢分析,试验表明当12Cr1MoV钢严重球化到5级时,钢的室温强度极限下降约11kg/mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,可以阻碍珠光体的球化过程,只要能形成稳定的碳化物,则球化过程减速。 通过对12Cr1MoV管试验发现,温度在540℃时,随着运行时间的增加,钢的工作温度下蠕变极限和持久强度也相应降低。随着运行温度的提高、时间的延长、应力的变化都会加速合金元素的固溶体和碳化物间的重新分配现象。 2.3 焊接质量 钢材焊接质量也是影响安全的重要因素之一。焊接的缺陷一般指焊接接头裂纹未熔合、根部未焊透、气孔、夹渣、咬边,焊缝外形尺寸不合格以及焊接接头的金属组织异常等现象。 2.4 金属在高温下的氧化和腐蚀

过热器爆管的根本原因及对策

过热器爆管的根本原因及对策 二十世纪八十年代初,美国电力研究院经过长期大量研究,把锅炉爆管机理分成六大类,共22种。在22种锅炉爆管机理中,有7种受到循环化学剂的影响,12种受到动力装置维护行为的影响。我国学者结合我国电站锅炉过热器爆管事故做了大量研究,把电站锅炉过热器爆管归纳为以下九种不同的机理。 1、长期过热 1.1失效机理 长期过热是指管壁温度长期处于设计温度以上而低于材料的下临界温度,超温幅度不大但时间较长,锅炉管子发生碳化物球化,管壁氧化减薄,持久强度下降,蠕变速度加快,使管径均匀胀粗,最后在管子的最薄弱部位导致脆裂的爆管现象。这样,管子的使用寿命便短于设计使用寿命。超温程度越高,寿命越短。在正常状态下,长期超温爆管主要发生在高温过热器的外圈和高温再热器的向火面。在不正常运行状态下,低温过热器、低温再热器的向火面均可能发生长期超温爆管。长时超温爆管根据工作应力水平可分为三种:高温蠕变型、应力氧化裂纹型、氧化减薄型。 1.2产生失效的原因 (1)管内汽水流量分配不均; (2)炉内局部热负荷偏高; (3)管子内部结垢; (4)异物堵塞管子; (5)错用材料; (6)最初设计不合理。 1.3故障位置 (1)高温蠕变型和应力氧化裂纹型主要发生在高温过热器的外圈的向火面;在不正常的情况下,低温过热器也可能发生; (2)氧化减薄型主要发生在再热器中。 1.4爆口特征 长期过热爆管的破口形貌,具有蠕变断裂的一般特性。管子破口呈脆性断口特征。爆口粗糙,边缘为不平整的钝边,爆口处管壁厚度减薄不多。管壁发生蠕胀,管

径胀粗情况与管子材料有关,碳钢管径胀粗较大。20号钢高压锅炉低温过热器管破裂,最大胀粗值达管径的15%,而12CrMoV钢高温过热器管破裂只有管径5%左右的胀粗。 (1)高温蠕变型 a.管子的蠕胀量明显超过金属监督的规定值,爆口边缘较钝; b.爆口周围氧化皮有密集的纵向裂纹,内外壁氧化皮比短时超温爆管厚,超温程度越低,时间越长,则氧化皮越厚和氧化皮的纵向裂纹分布的范围也越广; c.在爆口周围的较大范围内存在着蠕变空洞和微裂纹; d.向火侧管子表面已完全球化; e.弯头处的组织可能发生再结晶; f.向火侧和背火侧的碳化物球化程度差别较大,一般向火侧的碳化物己完全球化。 (2)应力氧化裂纹型 a.管子的蠕胀量接近或低于金属监督的规定值,爆口边缘较钝,呈典型的厚唇状; b.靠近爆口的向火侧外壁氧化层上存在着多条纵向裂纹,分布范围可达整个向火侧。内外壁氧化皮比短时超温爆管时的氧化皮厚; c.纵向应力氧化裂纹从外壁向内壁扩展,裂纹尖端可能有少量空洞; d.向火侧和背火侧均发生严重球化现象,并且管材的强度和硬度下降; e.管子内壁和外壁的氧化皮发生分层; f.燃烧产物中的S、Cl、Mn、Ca等元素在外壁氧化层沉积和富集。 (3)氧化减薄型 a.管子向火侧、背火侧的内外壁均产生厚度可达1.0~1.5mm的氧化皮; b.管壁严重减薄,仅为原壁厚的1/3~l/8 ; c.内、外壁氧化皮均分层,为均匀氧化。内壁氧化皮的内层呈环状条纹; d.向火侧组织己经完全球化,背火侧组织球化严重,并且强度和硬度下降; e.燃烧产物中的S、Cl、Mn、Ca等元素在外壁氧化层沉积和富集,促进外壁氧化。

换热器的腐蚀分析正式样本

文件编号:TP-AR-L2856 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 换热器的腐蚀分析正式 样本

换热器的腐蚀分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)管子本身材料缺陷在腐蚀介质和高温条件 下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点 腐蚀。 (2)管子与管板的接口采用强度焊、强度胀因苛 刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介 质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段 和未胀管间过渡区,管子内外壁存在较大拉应力,易 产生应力腐蚀破裂;管子与折流板处产生局部应力集 中,加之间隙存在,腐蚀介质浓聚,其结合部位易产 生应力腐蚀。

(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。 (4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。 (5)大多数换热器失效都发生在管子与管板的连接处。连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力

火力发电厂高温过热器失效原因分析及寿命评估

火力发电厂高温过热器失效原因分析及寿命评估 刘东辉 神华神东电力有限责任公司,陕西神木719300 摘要:随着社会科技的不断发展,人们对于能源的获取方式还有利用已经发生了天翻地覆的变化,时至今日可以说电力资源的使用已经成为了人们不能或缺的能源。为了能够给人们提供稳定的电力能源,各种发电厂起着重要的作用,其中火力发电厂已经是重要的发电地点之一。而火力发电厂当中的高温过热器则是核心之一,人们对它的关注从来没有减少。 关键词:火力发电厂高温过热器失效寿命评估 火力发电厂是人们最主要的电力能源提供地点之一,其中最重要的操作机器可以说是电站锅炉,而电站锅炉当中过热器又是最主要的运行设备,但是由于高温或者是工作条件相对恶劣等种种原因,过热器在运行的过程当中经常会发生爆管一类的事故,当过热器发生故障的时候,机组的安全运行也就失去了保障,而且还会消耗大量无谓的能量。 过热器的运作原理其实并不复杂,就是利用烟气所产生的热量来加热饱和蒸汽,而高温加热器却是一般都会布置在炉膛的高温烟区进行运作,这些高温加热器一般指的是屏式过热器或者是高温对流过热器。 正如左图所表示的一样,加热器的内部有高温蒸汽作为构件,而外部则是高温烟气,这样的工作环境可以说已经是非常简单的。特别是对于大容量机组来说,因为它不仅机组本身的内外两个部分都要承受很高的蒸汽压力,而且两者还要同时的承受烟气腐蚀和高温蒸汽腐蚀的危害。在锅炉运作的时候会对内部很多因素产生影响,这些影响对于过热器

的运行参数会有复杂而巨大的影响,这些因素包括了燃料品质、负荷还有机组太过于频繁的启动和停止,这些因素共同作用之下,让过热器失效的速度加快。 一、高温过热器失效的影响因素 导致供温过热器失效的影响因素有很多,但是有几种最是经常也是最明显的影响因素,包括蠕变、疲劳、劳损还有腐蚀这四种方式。 1、蠕变对高温过热器的影响 所谓蠕变的影响指的是过热器的当中由金属材料组成的部件因为过热器本身不断的高温工作,在这样的条件之下发生了永久变形的行为。我们知道,过热器的工作温度一般来说都是在540摄氏度以上,有的时候甚至会高达600摄氏度。而钢材在温度大概是350摄氏度的时候就会产生蠕变的现象,在这样的工作环境之下,发生蠕变其实是很正常的事情,所以高温蠕变损伤其实对管道影响很普遍,也是它失效的一个重要因素。 2、疲劳对高温过热器的影响 一般来说,金属材料在经过反复交变的载荷作用之后会逐渐的失去本身的一些特性,这样之后金属的作用就会慢慢的失去。高温过热器的机组启动或者是变荷运行的时候,过热器的内部会产生剧烈的变动,这些变动的源头来自于蒸汽压力还有内部温度的变化还有波动,在这种时候过热器的内部需要承受着反复的交变应力,这样的变化直接的导致管道金属的疲劳寿命有剧烈的损耗。因为过热器的管道构造一般都是比较薄的,所以它管道壁的内外温度相差并不大,所以产生的热应力也比较小,所以说热应力造成的疲劳失效对高温过热器的影响基本小到可以忽略不计。 3、磨损对高温过热器的影响 磨损指的是由于高温过热器的烟气当中通常会携带固体颗粒,然后在流过受热面的时候因为速度过快对壁管撞击造成了磨损。过热器的外表面因为长期的暴露在高温烟道当中,而这样每天有大量的烟气经过,并且携带颗粒对管道外表面造成很大程度的磨损伤害。除此之外,还有存在一定量的飞灰沉积在管道的表面,这样子就直接的导致了传热热阻数值的增大,炉内传热功能弱化,过热器在这些部分就会有高温的现象,局部的超温也对过热器使用有很大影响。这些烟尘会对管壁产生腐蚀的作用让管壁不断的变得薄,这样使用的寿命也会急剧缩短,引起

锅炉爆管典型事故案例及分析

锅炉典型事故案例及分析 第一节锅炉承压部件泄露或爆破事故大型火力发电机组的非停事故大部分是由锅炉引起的。随着锅炉机组容量增大,“四管”爆泄事故呈现增多趋势,严重影响锅炉的安全性,对机组运行的经济性影响也很大。有的电厂因过热器、再热器管壁长期超温爆管,不得不降低汽温5~10℃运行;而主汽温度和再热汽温度每降低10℃,机组的供电煤耗将增加0.7~1.1g/kWh;主蒸汽压力每降低1MPa,将影响供电煤耗2g/kWh。为了防止锅炉承压部件爆泄事故,必须严格执行《实施细则》中关于防止承压部件爆泄的措施及相关规程制度。 一.锅炉承压部件泄露或爆破的现象及原因 (一)“四管”爆泄的现象 水冷壁、过热器、再热器、省煤器在承受压力条件下破损,称为爆管。 受热面泄露时,炉膛或烟道内有爆破或泄露声,烟气温度降低、两侧烟温偏差增大,排烟温度降低,引风机出力增大,炉膛负压指示偏正。 省煤器泄露时,在省煤器灰斗中可以看到湿灰甚至灰水渗出,给水流量不正常地大于蒸汽流量,泄露侧空预器热风温度降低;过热器

和再热器泄露时蒸汽压力下降,蒸汽温度不稳定,泄露处由明显泄露声;水冷壁爆破时,炉膛内发出强烈响声,炉膛向外冒烟、冒火和冒汽,燃烧不稳定甚至发生锅炉灭火,锅炉炉膛出口温度降低,主汽压、主汽温下降较快,给水量大量增加。 受热面炉管泄露后,发现或停炉不及时往往会冲刷其他管段,造成事故扩大。 (二)锅炉爆管原因 (1)锅炉运行中操作不当,炉管受热或冷却不均匀,产生较大的应力。 1)冷炉进水时,水温或上水速度不符合规定;启动时,升温升压 或升负荷速度过快;停炉时冷却过快。 2)机组在启停或变工况运行时,工作压力周期性变化导致机械应 力周期性变化;同时,高温蒸汽管道和部件由于温度交变产生热应力,两者共同作用造成承压部件发生疲劳破坏。 (2)运行中汽温超限,使管子过热,蠕变速度加快 1)超温与过热。超温是指金属超过额定温度运行。超温分为长期 超温和短期超温,长期超温和短期超温是一个相对概念,没有严格时间限定。超温是指运行而言,过热是针对爆管而言。过热可分为长期过热和短期过热两大类,长期过热爆管是指金属在应力和超温温度的长期作用下导致爆破,其温度水平要比短期过热的水平低很多,通常不超过钢的临界点温度。短期过热爆管是指,在短期内由于管子温度升高在应力作用下爆破,其

(仅供参考)换热器泄漏原因分析及对策

换热器泄漏原因分析及对策 在装置运行和检修过程中,换热器泄漏是经常遇到的现象。就泄漏产生的形态而言,主要有腐蚀泄漏、磨损泄漏、静密封失效泄漏。原因有工艺方面的问题,也有设备的先天不足,还有施工习惯、质量控制等方面的缺陷。本文讨论的重点是通过加强对制造、安装、检修质量的控制来防止泄漏。 1·换热器芯子的泄漏 1.1管束与管板连接焊缝的泄漏 管束与管板间的连接有强度胀、强度焊、胀焊结合3种方式。强度胀如无过大的振动、温度变化和应力腐蚀,是比较理想的连接方式,但由于其工序复杂,对管束端部表面质量、硬度、管板的机加工精度、胀管经验要求很高,因此绝大部分芯子都是焊接方式。但该方式存在着不足:管束与管板的强度焊缝都是焊一遍,很容易出现焊接缺陷,因此,新制作的芯子在进行水压实验时从强度焊缝处泄漏是常有的事。同时,只进行强度焊接的芯子,管束与管孔之间存在着深且窄的间隙,焊缝在间隙内有很大的焊接残余应力,而且间隙中会积聚大量的Cl-,又处于贫氧状态,很容易产生缝隙腐蚀和应力腐蚀而出现腐蚀泄漏。1.2管束的腐蚀泄漏 1.2.1腐蚀泄漏的主要原因 (1)管束质量缺陷。管束表面往往存在着一些缺陷,如细小的砂眼、重皮、凹坑、局部擦伤等,这些缺陷可导致腐蚀的加强,容易产生泄漏。在制造管束的过程中,对管束的表面质量重视不够,认为只要试压不漏就行,实际上管束表面的这些缺陷往往是管束腐蚀泄漏的根源。

(2)折流板或支持板的负作用。主要表现在其管孔不合适或与管板间相互对中不好时会局部挤压管束。使受挤压处的防腐层难以涂上,如果由于外因而折流板或支持板相对于管束稍有错动,未防腐的部分就会裸露出来,从而加速管束的腐蚀。而且该处容易藏污纳垢,形成小的滞流区,导致缝隙腐蚀的产生。管孔外的锐角未去掉,穿管时会刮伤管束。另外,管孔不合适会造成管束的振动破坏。(3)吊装时钢丝绳对管束防腐层的破坏作用。在运输、安装过程中,采用的吊装工具几乎都是钢丝绳,由于其硬度高,很容易将管束的防腐层破坏,这也会造成腐蚀的产生。 (4)检修时吹扫、清洗、试压的负作用。检修时都是用蒸汽吹扫,用新鲜水清洗芯子和试压,而且试压从上水到放水经历的时间很长,结束后又不按要求吹干,这就会导致水分的增加,为腐蚀性介质的充分电离创造了条件;Cl-含量的增加,它们与管束中吸附的Cl-及H2S共同作用,会加剧腐蚀反应的进行;氧含量的增加,氧对碳钢芯子腐蚀起着很大的促进作用。水、腐蚀性介质、氧气的共同作用,使其腐蚀速度远高于水、氧含量低时的腐蚀速度。这就是“检修负效应”产生的主要原因。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式

弯头错用钢材长期过热爆管

弯头错用钢材长期过热爆 管 Revised by Hanlin on 10 January 2021

弯头错用钢材,长期过热爆管【简述】2009年12月11日,某电厂1号机因主蒸汽变侧至启动疏水扩容器的疏水管弯头错用钢材,管道长期过热,材质老化,运行中弯头背弧面发生爆破,机组停运。 【事故经过】事故前工况:1号机组带功率333MW运行,主汽压力 17.70MPa,给水流量941t/h,蒸汽流量969t/h,其他参数无异常。 2009年12月11日05时53分,运行人员听到汽轮机房突然传来一声巨响和持续的蒸汽泄漏声,经派人现场检查发现1号机附近有大量蒸汽喷出,人员无法进入现场详细检查,立即对1号机组进行降压、降负荷。06时17分,经中调同意,1号发电机解列。07时01分,检查发现1号机主蒸汽变侧至启动疏水扩容器的疏水管上往下第3个弯头背弧面发生爆破。机组停运后,立即组织安排抢修工作。14日12时10分,抢修工作结束。14日21时58分,机组恢复运行。 【事故原因】 爆口位置为弯头背弧面,形状为梭形,长约240mm,最宽约70mm;边缘最薄处厚8.4mm,无明显减薄,脱落的破片窄而长(长约225mm×宽约 30mm),从爆口宏观分析看,为过热爆管。经材质光谱半定量分析,爆口

弯头无Cr、Mo、V合金元素,为碳钢材料。根据《火力发电厂金属材料选用导则》(DL/T715-2000),碳钢材料的钢号应用范围在壁温≤425℃的蒸汽管道、集箱,而该段主蒸汽管道疏水的介质温度在540℃。从以上分析可知,由于爆管弯头错用钢材,存在长期过热现象,导致材质老化,直至出现蠕变裂纹后爆破,是造成此次事故的直接原因。 【防范措施】 1.在新机组基建安装阶段,要加强监督管理和过程控制,坚决杜绝建设安装工作的随意性,杜绝错用钢材事件的重复发生。要严格高压焊接工艺管理,严格按照规程使用焊工代号钢印,建立完善责任追究机制。同时要同步建立机、炉外管道的台帐,确保资料台帐与机组同步移交生产。 2.严格按照金属技术监督规程和集团公司机炉外管管理有关要求,成立工作小组,从完善基础资料、台帐入手,认真开展普查工作,认真排查每一段管材、管件,确保材质、规格符合设计要求,并确保台帐帐实相符。 3.在对机、炉外管道清查过程中,对底数不清而又没有检修机会的机组,要按照《防止电力生产重大事故二十五项重点要求实施导则》防止人身伤亡事故的有关要求,在高温疏放水管道周围设置警戒围栏,悬挂

锅炉过热器爆管原因及对策

锅炉过热器爆管原因及对策 前言 随着我国电力工业建设的迅猛发展,各种类型的大容量火力发电机组不断涌现,锅炉结构及运行更加趋于复杂,不可避免地导致并联各管内的流量与吸热量发生差异。当工作在恶劣条件下的承压受热部件的工作条件与设计工况偏离时,就容易造成锅炉爆管。 事实上,当爆管发生时常采用所谓快速维修的方法,如喷涂或衬垫焊接来修复,一段时间后又再爆管。爆管在同一根管子、同一种材料或锅炉的同一区域的相同断面上反复发生,这一现象说明锅炉爆管的根本问题还未被解决。因此,了解过热器爆管事故的直接原因和根本原因,搞清管子失效的机理,并提出预防措施,减少过热器爆管的发生是当前的首要问题。 1过热器爆管的直接原因 造成过热器、再热器爆管的直接原因有很多,主要可以从以下几个方面来进行分析。 1.1设计因素 1.热力计算结果与实际不符 热力计算不准的焦点在于炉膛的传热计算,即如何从理论计算上较合理的确定炉膛出口烟温和屏式过热器的传热系数缺乏经验,致使过热器受热面的面积布置不够恰当,造成一、二次汽温偏离设计值或受热面超温。 2.设计时选用系数不合理 如华能上安电厂由B&W公司设计、制造的“W”型锅炉,选用了不合理的受热面系数,使炉膛出口烟温实测值比设计值高80~100℃;又如富拉尔基发电总厂2号炉(HG-670/140-6型)选用的锅炉高宽比不合理,使炉膛出口实测烟温高于设计值160℃。 3.炉膛选型不当 我国大容量锅炉的早期产品,除计算方法上存在问题外,缺乏根据燃料特性选择炉膛尺寸的可靠依据,使设计出的炉膛不能适应煤种多变的运行条件。 炉膛结构不合理,导致过热器超温爆管。炉膛高度偏高,引起汽温偏低。相反,炉膛高度偏低则引起超温。 4.过热器系统结构设计及受热面布置不合理 调研结果表明,对于大容量电站锅炉,过热器结构设计及受热面布置不合理,是导致一、二次汽温偏离设计值或受热面超温爆管的主要原因之一。 过热器系统结构设计及受热面布置的不合理性体现在以下几个方面: (1)过热器管组的进出口集箱的引入、引出方式布置不当,使蒸汽在集箱中流动时静压变化过大而造成较大的流量偏差。 (2)对于蒸汽由径向引入进口集箱的并联管组,因进口集箱与引入管的三通处形成局部涡流,使得该涡流区附近管组的流量较小,从而引起较大的流量偏差。引进美国CE公司技术设计的配300MW和600MW机组的控制循环锅炉屏再与末再之间不设中间混合集箱,屏再的各种偏差被带到末级去,导致末级再热器产生过大的热偏差。如宝钢自备电厂、华能福州和大连电厂配350MW机组锅炉,石横电厂配300MW机组锅炉以及平坪电厂配600MW机组锅炉再热器超温均与此有关。 (3)因同屏(片)并联各管的结构(如管长、内径、弯头数)差异,引起各管的阻力系数相差较大,造成较大的同屏(片)流量偏差、结构偏差和热偏差,如陡河电厂日立850t/h锅炉高温过热器超温就是如此。 (4)过热器或再热器的前后级之间没有布置中间混合联箱而直接连接,或者未进行左右交叉,这样使得前后级的热偏差相互叠加。 在实际运行过程中,上述结构设计和布置的不合理性往往是几种方式同时存在,这样加剧了

锅炉受热面高温腐蚀原因分析及防范措施

锅炉受热面高温腐蚀原因分析及防范措施 Cause Analysis and Protective Measues to High-temperature Corrosion On Heating Surface of Boiler 张翠青 (内蒙古达拉特发电厂,内蒙古达拉特 014000) [摘要]达拉特发电厂B&WB-1025/18.44-M型锅炉在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,根据腐蚀部位、形态和产物进行分析,锅炉受热面的腐蚀属于高温腐蚀,其原因主要与炉膛结构、煤、灰、烟气特性及运行调整有关,并提出了防范调整措施。 [关键词] 锅炉受热面;高温腐蚀;机理原因分析;防范措施

达拉特发电厂#1~#4炉是北京B&WB公司设计制造的B&WB-1025/18.4-M型亚临界自然循环固态排渣煤粉炉。锅炉采用前后墙对冲燃烧方式。设计煤种为东胜、神木地区长焰煤。在九八及九九年#1、#2炉大修期间,检查发现两台炉A、B两侧水冷壁烟气侧、屏式过热器迎火侧、高温过热器迎火侧存在大面积腐蚀,两台炉腐蚀的产物、形状及部位相似。腐蚀区域水冷壁在标高16~38米之间及屏式过热器、高温过热器沿管排高度,腐蚀深度在0.4~1.0mm之间,最深处达1.7mm,腐蚀面积达500平方米左右。腐蚀给机组安全运行带来严重隐患。 1.腐蚀机理原因 1.1锅炉炉膛结构 锅炉炉膛结构设计参数见下表: 高40%多,同时上排燃烧器至屏过下边缘高度值比推荐范围的下限还低1.8米,这就导致燃烧器布置过于集中、燃烧器区域局部热负荷偏大、该区域内燃烧温度过高,实测炉膛温度达1370~1430℃。燃烧温度偏高直接导致水冷壁管壁温度过高,理论计算该区域水冷壁表面温度为452℃。大量的试验研究表明当水冷壁管壁温度大于400℃以后,就会产生明显的高温腐蚀。 1.2 煤、灰、烟气因素 蒙达公司实际燃煤是东胜、神木煤田的长焰煤和不粘结煤的混煤。:燃煤中碱性氧化物含量较高,灰中钠、钾盐类含量高,平均值达3.85%,含硫量偏高。 1.3 运行调整不当 为了分析运行调整因素对腐蚀的影响,在A、B侧水冷壁标高20、25、28米处安装了三排烟气取样点,每排三个,共18个。分析烟气成分后发现,燃用含硫量高的煤种时,由于燃烧配风调整不合理,省煤器后氧量偏大(实侧值 气体,加剧了高温腐蚀的产生与发展。 4.35%),导致燃烧过程中生成大量的SO 2 2.腐蚀类型 所取垢样中,硫酸酐及三氧化二铁的含量最高,具有融盐型腐蚀的特征,属于融盐型高温腐蚀。从近表层腐蚀产物的分析结果看,S和Fe元素含量最高,具有硫化物型腐蚀特征,说明存在较严重的硫化物型腐蚀。因此,达拉特发电厂的锅炉高温腐蚀是以融盐型腐蚀为主并有硫化物腐蚀的复合型腐蚀。 3.防止受热面高温腐蚀的措施 2.1.采用低氧燃烧技术组 由于供给锅炉燃烧室空气量的减少,因此燃烧后烟气体积减小,排烟温度下 的百分数和过量空气百分数之间降,锅炉效率提高。燃油和煤中的硫转化为SO 3 的转化明显下降。的关系是,随着过量空气百分数的降低,燃料中的硫转化为SO 3

分隔屏过热器爆管分析及处理

分隔屏过热器爆管分析及处理 翟德双 (田集发电厂232098) 摘要:分析田集发电厂1号锅炉分隔屏过热器超温爆管的原因,介绍所采取的针对性运行调整措施及实施结果。关键词:超临界;直流锅炉;分隔屏过热器;爆管;原因分析 1 概述 田集发电厂一期工程装有2台600MW超临界燃煤机组,2台机组分别于2007年7月26日和10月15日投产。该机组锅炉为超临界压力螺旋管圈直流炉,炉膛四角布置直流式喷燃器,配置6台中速磨煤机直吹式制粉系统,锅炉采用等离子方式点火(四角A层布置),启动系统采用容量为30%BMCR的不带循环泵的内置式启动系统,汽轮机设高低压两级串联旁路系统,旁路容量为35%BMCR。 2 锅炉爆管经过 2007年5月30日,机组首次整套启动,顺利进行锅炉点火、汽机冲转、发电机并网,机组带10%初始负荷4小时进行暖机,机组与系统解列后,做汽轮机超速试验,做汽机主汽门及调速汽门严密性试验。 2007年5月31日,机组再次启动,6月1日1时53分发电机并网,逐渐加负荷,14时22分向调度申请机组加负荷,进行锅炉安全门校验, 17时30分左右,锅炉转干态运行,发现机组补给水量异常,各系统进行全面检查,未发现明显异常情况,在对给水和疏放水系统进行全面检查和隔离后,机组补给水量有所下降,于是按计划带负荷进行锅炉安全门校验,23时20分发现捞渣机卡涩现象,发现内部有疑似受热面钢管。即向调度申请停炉,当时机组负荷330MW,分离器压力22MPa,过热器出口温度正常,给水量860~920t,燃煤量178t。确定锅炉爆管,经调度同意,于6月2日1时42分锅炉停炉。 3 爆管检查及分析 3.1 爆管情况检查和试验 (1)停炉后进入炉膛检查发现分隔屏过热器爆管断裂,部分管屏及定位管变形严重。 (2)光谱分析检查:分隔屏管进口段材质为T12,出口段材质为T23,下部外三圈为T91,T91与T12间用T23短管过渡,通过对现场管光谱分析检查,材质与设计图纸相符。 (3)硬度检查:对爆管管子和现场管子进行硬度检查,T91管子HB基本在170左右,T23管子HB基本在140~150左右,T12管子HB基本在120~130左右,参考ASTM SA213标准,T12 114

电厂锅炉过热器管失效分析及残余寿命预测

2003年3月第21卷第1期 长沙铁道学院学报 JOURNAL OF CHANGSHA RAILWAY UNIVERSITY No1 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Mar.2003文章编号:1000-2499(2003)01-0108-05 电厂锅炉过热器管失效分析及残余寿命预测 贺株莉" (长沙电力学院,湖南长沙410077) 摘要:对运行后的管材进行金相分析、蠕变孔洞观察及评级、高温持久实验等.采用综合分析法对其寿命进行预测. 关键词:锅炉管;后屏过热器;蠕变损伤;珠光体球化 中图分类号:TK223.13;TG146.2文献标识码:A Anaiysis on Invaiidation of Overheater Pipes in Power Piants and Prediction of Their Life Expectancy HE Zhu-ii (Changsha University of Eiectric Power,Changsha410075,China) Abstract:Based on the metaiiographicai anaiysis,observation,grading creeping hoies as weii as the exper-iment with the high-temperature creeprupture,this paper predicts the iife expectancy of the overheater pipes after https://www.doczj.com/doc/1117857621.html,prehensive anaiysis is adopted here. Keywords:boiier pipe;rear screen overheater;creeping damage;spheroidization of pear iife 电厂锅炉过热器是火力发电厂中的高温承压部件,它能否安全工作对整个机组的安全运行有着十分重要的意义,因此,对其进行寿命预测,使其超期安全运行,经济效益十分可观.作者从材料学方面对平圩发电厂2号炉后屏过热器进行寿命分析,采用综合分析法对其寿命进行预测.对运行后管材进行金相分析、蠕变孔洞观察及评级、高温持久实验等.根据实验数据及分析结果,结合壁温的结果,判断在影响材料寿命的诸因素(蠕变、球化、碳化物形成、材料的氧化腐蚀等)中,哪一个是主要因素,从而对其寿命作出比较科学全面的评判. 1试验条件 为了对后屏过热器的管壁进行实时监控,现场布置了几十个壁温测点,测量结果表明,左侧后屏过热器壁温高于右侧.本次从左侧后屏中共取6根管子,材料为12CriMoV,规格为!60 mm X11mm.已运行43510.74h,试验设备为4x1金相显微镜和HITACHIx-650型扫描电镜. "收稿日期:2002-12-30 作者简介:贺株莉(1963-),女,湖南株洲人,长沙电力学院工程师.

相关主题
文本预览
相关文档 最新文档