当前位置:文档之家› 硅基近红外光电转换研究的进展情况

硅基近红外光电转换研究的进展情况

硅基近红外光电转换研究的进展情况

硅基近红外光电转换研究的进展情况

?红外光电检测对光谱、夜间监控、红外导引、光通信等应用领域具有重要意义。近年来,CMOS技术的发展使Si基光电子器件得到广泛应用,由于硅(Si)自身带隙较大,普通的硅基光电探测器通常无法在超过1200nm 的近红外光谱区域有效工作。

?

?

?为了解决这个问题,科学家们在硅材料表面沉积一层金属薄膜,形成金属-半导体之间的肖特基结,金属中自由电子吸收光子能量后可穿过肖特基势垒,并进入硅材料中形成光电流。这种响应的截止波长由势垒高度决定,从而打破了半导体带隙的限制。在这个依赖热电子发射的光电响应机制下,金属结构对器件的近红外探测性能有较大影响。目前,基于如传输表面等离激元共振(PSPR)、局部表面等离激元共振(LSPR)和谐振腔共振等,纳米棒、纳米线、光栅等各种金属纳米结构已被证明可增强热电子光电响应。然而,这类结构的量子效率仍较低,这些精细规则的纳米结构增加了生产工艺的复杂性和生产成本,使其无法实现大规模、低成本制造。

?

?

?近日,中国科学院苏州纳米技术与纳米仿生研究所陈沁课题组联合东南大学教授王琦龙,在低成本高效硅基热电子红外光电探测器方面取得系列进展。科研人员提出了金(Au)纳米颗粒修饰硅金字塔结构的方案,实验证明,他们制备的这些器件的性可与精心设计、成本高昂的硅基近红外光电探

常见发光材料

一.常见发光种类 光致发光 灯用材料 日光灯,节能灯,黑光灯,高压汞灯,低压汞灯,LED转换组合白光 长余辉材料 放射性永久发光,超长余辉,长余辉 紫外发光材料 长波3650发光,短波2537发光,真空紫外发光,量子点发光…… 红外线发光材料 上转换发光,红外释光,热释发光, 多光子材料 荧光染料\颜料 稀土荧光,有机荧光 电致发光 高场发光 直流粉末DCEL,交流粉末ACEL,薄膜发光,厚膜发光,有机发光 低场发光 发光二极管(LED),有机发光(OEL-OLED),硅基发光,半导体激光 阴极射线发光 彩色电视发光材料 黑白电视发光材料 像素管材料 低压荧光材料 超短余辉材料 放射线发光 α射线发光材料,β射线发光材料,γ射线发光材料,氚放射发光材料,闪烁晶体材料 X射线发光 X存储发光材料 X增感发光材料 CT扫描发光材料 摩擦发光 单晶发光,微晶发光 化学发光 有机化合物发光(荧光染料) 液体发光 有机稀土发光 生物发光 酶发光,有机发光, 反射发光(几何光学) 光学镀膜反射材料,玻璃微珠反射材料 二.常见发光材料成份 物质发光过程有激励、能量传输和发光三个过程。激励方式主要有电子束激发,光激发和电场激发。电子束激发有阴极射线(CRT)发光材料,真空荧光(VFD)材料,场发射(FED)显示材料;光激发有荧光灯用发光材料,等离子显示(PDP)发光材料,X射线激发光材料等;电场激发有电致发光(EL)材料,发光二极管(LED)材料。 1 .阴极射线(CRT)稀土发光材料

表1 阴极射线稀土发光材料 组份发光色余辉用途 Y2O2S:Eu3+ 红 M 彩电,终端显示 Y2O2S:Eu3+ 红 M 投影电视 Y3(Al,Ga)5O12:Tb3+ 绿 M 投影电视 Y2SiO5:Tb3+ 绿 M 投影电视 InBO3:Tb3+ 绿 M 终端显示 InBO3:Eu3+ 红 M 终端显示 Y2SiO5:Ce3+ 415nm S 束电子引示管 (Beam index tube) Y3Al3Ga2O12:Ce3+ 520nm S 束电子引示管 (Beam index tube) YAlO3:Ce3+ 370nm S 束电子引示管 (Beam index tube) Y3Al5O12:Ce3+ 535nm S 飞点扫描管 2 .真空荧光显示(VFD)稀土发光材料 VFD用稀土发光材料较少,效率也不高,如SnO2:Eu3+, Y2O2S:Eu3+,很少使用。 3. 场发射显示(FED)稀土发光材料 FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度(寻址时间)非常快,而功耗仅是LCD的1/3,其应用前景令人关注。FED稀土发光材料如表2所示。 表2 FED稀土发光材料 组成颜色发光效率 SrTiO3:Pr 红 0.4 Y2O3:Eu 红 0.7 Y2O2S:Eu 红 0.57 Y3(Al,Ga)5O12:Tb 绿 0.7 Y2SiO5:Tb 绿 1.1 SrGa2S4:Eu[1] 绿 4.0 ZnS:Cu,Al 绿 2.6 Y2SiO5:Ce 兰 0.4 SrGa2S4:Ce[1] 兰 1.5 ZnS:Ag,Cl 兰 0.75 4 .灯用稀土发光材料 使用稀土三基色荧光粉的节能灯流明效率高,显色性好,是欧美、日和我国大力推广的绿色照明。灯用稀土发光材料如表3所示。 表3 灯用稀土发光材料 组成颜色用途 Y2O3:Eu 红节能灯 Y(V,P)O4:Eu 红高压汞灯 MgAl11O19:Ce,Tb 绿节能灯 LaPO4:Ce,Tb 绿节能灯 GdMgB5O10:Ce,Tb 绿节能灯 BaMgAl10O17:Eu,Mn 兰绿节能灯

光电转换原理

光纤系统光接收部分光电转换原理 光接收机是光纤通信系统的重要组成部分,其作用是将来自光纤的光信号转换成电信号,恢复光载波所携带的原信号。图4.3.1-8给出了数字光接收机的组成框图。 1.光检测器 光电检测器是光接收机的第一个关键部件,其作用是将由光纤传送来的光信号转换成电信号。光电检测器主要有PIN光电二极管和雪崩光电二极管APD两种。PIN管使用简单,只需10~20V 的反向偏压,但PIN管没有增益。APD管具有10~200倍的增益,可以提高光接收机的灵敏度,但需要几十伏以上的偏压,增益特性受温度的影响较严重 2、前臵放大器 经光电检测器检测到的微弱的信号电流,流经负载电阻建立起信号电压后,由前臵放大器进行预放大。除光电检测器性能优劣影响光接收机的灵敏度之外,前臵放大器对光接收机的灵敏度有十分重要的影响。为此,前臵放大器必须是低噪声、宽频带的放大器。 3.主放大器 主放大器用来提供高的增益,将前臵放大器的输出信号放大到适合判决电路所需的电平。前臵放大器的输出信号电平一般为mV量级,而主放大器的输出信号电平一般为1~3V。 4、均衡器 光在光纤中传输时,由于将受到色散的影响,信号将发生畸变与展宽,使码元间相互影响,出现误码。均衡器的作用是对主放大器输出的失真的数字脉冲信号进行整形,使之成为最有利于判决、码间干扰最小的波形,通常为升余弦波 5、判决再生与定时提取 判决即是用一判决电平与均衡器输出信号进行比较,当在判决时刻输出的电压信号比判决电平高,则判断为“1”码,否则判断为“0”码。这样,可在判决再生电路的输出端得到一个和发送端发出的数字脉冲信号基本是一致由矩形脉冲组成的数字脉冲序列。为了精确地确定“判决时刻”,就需要从信号码流中提取准确的定时信息用来标定,以保证和发送端一致。这个工作由“定时提取”电路来完成。 6、峰值检波器与AGC放大器

光电转换原理及电光转换原理

二、光电转换原理及电光转换原理 1.光电转换原理 光电转换是靠摄像管来完成的,其结构如图1-4所示: 图1-4 光电导摄像管 ⑴组成 ①电子枪灯丝用来加热阴极 阴极发射电子 栅极控制电子流的大小 (第一阳极)加速极(A1),加有300V电压 (第二阳极)聚焦极(A2)加有0-300V 的电压 网电极与A2 连在一起,在靶前形成均匀减速电场, 从而使电子束在靶面能均匀垂直上靶。 ②光敏靶 光敏靶是由几层不同的半导体材料构成的,其厚度只有10-20μm。 朝向景物的一侧是信号板也叫信号电极,它是喷涂在玻璃上的一层透明 金属导电层,在信号板的另一侧,则蒸镀了一层具有内光电效应的光敏半 导体材料。该材料在光的照射下电导率增加(即电阻减少),被摄景物各部 分亮度不同,靶面上各部分的电导率相应变化,与较亮像素对应的靶单元 电阻较小,而且各靶单元相互绝缘。于是图像上的不同亮度就变成了靶面 上各单元的不同电导率(即电阻)。 ⑵工作过程 当摄像管加上正常的工作电压时,阴极便向外发射电子,并在加速极和 聚焦电场的作用下,形成很细的一束电子流射向靶面,如图1-5 所示。 当电子束射向靶面某点时,便把该点对应的等效电阻R接入信号检,并 与负载电阻RL、电源 E 构成一个回路。如下图,于是回路便有电流产生,即I=E/(RL +R1)) 当对应的像素发生变化时,R 便发生变化,于是I 也发生变化。I 流过 负载RL 时,在RL 两端形成变化的电压VRL,由于这个电压反应了对应像素亮度随时间的变化,因而便为图像信号。 当在偏转磁场的作用下,电子束按照从左到右,从上到下的规律扫描靶 面上各像素点时,便把按平面分布的各个像素的亮度依次转换成按时间顺 序传送的电信号,实现了图像的分解与光电转换。 图1-5 光电转换原理示意图 ⑶图像信号的极性 ①正极性。被摄景物上的像素越亮,对应的信号电平越高,称正极性。 ②负极性。被摄景物上的像素越亮,对应的信号电平越低,称负极性。2.电光转换原理 电光转换是靠显像管来完成的。其结构如下图1-6所示。 图1-6显像管结构示意图 ⑴结构 ①电子枪 灯丝阴极栅极加速极(第一阳极)二、四阳极(高 压阳极)聚焦极(第三阳极) ②玻璃外壳

光电器件研究进展和发展趋势

光电器件研究进展和发展趋势 原荣信息产业部电子第三十四研究所研究员 摘要:建设光纤接入网和DWDM系统离不开各种光学材料和器件,诸如光纤和光缆、连接器和耦合器、光发射/接收器、光波分复用/解复用器、光滤波器、光放大器、光开关以及光分插复用器等。本文就光纤通信系统用到的光电器件的研究进展和发展趋势作一个简要介绍。 一、光有源器件 1.1 可调谐激光器 可调谐激光器是实现宽带测试、WDM和光纤放大器泵浦的最重要的器件,近年制成的单频激光器都用多量子阱(MQW)结构、分布反馈(DFB)式或分布布喇格反射(DBR)式结构,有些能在80nm范围内调谐。在半导体激光器后面加上一个光纤布喇格光栅,可使波长稳定,如美国E-TEK研制的980nm泵浦激光器,输出光功率达220mW,又如法国alcatel Optronics公司研制的1480nm泵浦激光器,不但在半导体激光器后面加了一个光纤布喇格光栅,而且尾纤采用保偏光纤,既使波长稳定,又使功率也稳定。美国MPB公司推出的EBS-4022宽带光源,其输出功率达22dBm,在C波段40nm的带宽上,其平坦度≤1dB。美国Santec公司推出的TSL-220可调谐激光器,为保证pm数量级的波长精度,内置一个波长监测器;为去除ASE啐噪声,还内置一个可调谐滤波器,可调谐范围竟达80nm。 1.2光放大器 目前广泛使用的是光纤放大器,它有掺铒和掺氟2种,其单泵浦的增益典型值为17dB,双泵浦的增益典型值为35dB,噪声系数一般为5~7dB,带宽为30nm,在带宽内的增益偏差为1dB。在氟基光纤上掺镨就可制作出掺镨光纤放大器(PDFFA),可应用于工作在1.3mm波段上的G.652光纤。 半导体激光放大器(SLA)芯片具有高达30~35dB的增益,除输入和输出端存在总共8~10dB 的耦合损耗外,还有22~25dB的增益,另外行波半导体激光器具有很宽的带宽,可以对窄至几个ps的超窄光脉冲进行放大。SLA的另一个重要优点是它可与光发射机和接收机一起被单片集成在一起。欧洲ACTS KEOPS计划资助的全光分组交换系统采用的全光分组交换节点,在输入输出接口、光交换矩阵中都使用了半导体光放大器,在ns量级范围内实现了光门电路波长选择和波长转换器件的功能。 1.2.3 光纤喇曼放大器 当强激光通过光纤时,将产生受激喇曼散射(SRS)。光纤喇曼放大器(FRA)就是利用强泵浦光束通过光纤传输产生的受激喇曼散射。光纤喇曼放大器可覆盖的光谱范围宽,比泵浦光波长大约长100nm的波长区均可获得最大的增益,目前增益带宽已达132nm。这样通过选择泵浦光波长,就可实现任意波长的光放大,所以喇曼放大器是目前唯一能实现1290~1660nm光谱放大的器件。另外,它适用于任何种类的光纤。 光纤喇曼放大器由于其自身固有的全波段可放大的特性和可利用传输光纤做在线放大的优点,1999年已成功地应用于DWDM系统中。使用分布光纤喇曼放大器,可以增大传输距离,提高传输比特率,另外还允许通过加密信道间隔,提高光纤传输的复用程度和传输容量。传输跨距的延伸,有时可免除在两地之间安装昂贵的3R中继器,特别是在大陆和海岛、海岛和海岛间的海缆通信中,具有特别的意义。富士通在211×10Gb/s的DWDM系统中,使无中继传输距离从50km增加到80km,使系统传输距离达到7200km。朗讯和阿尔卡特也有类似的实验。阿尔卡特报道已将32×40Gb/s的无中继DWDM系统的传输距离延伸到250km。 1.3 光纤激光器

(完整版)光电材料

目录 目录 ------------------------------------------------------------------------------------------- 1 1前言----------------------------------------------------------------------------------------- 2 2 有机光电材料 ------------------------------------------------------------------------------ 2 2.1光电材料的分类 --------------------------------------------------------------------- 2 2.2有机光电材料的应用 ---------------------------------------------------------------- 3 2.2.1有机太阳能电池材料--------------------------------------------------------- 3 2.2.2有机电致发光二极管和发光电化学池 --------------------------------------- 4 2.2.3有机生物化学传感器--------------------------------------------------------- 4 2.2.4有机光泵浦激光器 ----------------------------------------------------------- 4 2.2.5有机非线性光学材料--------------------------------------------------------- 5 2.2.6光折变聚合物材料与聚合物信息存储材料 ---------------------------------- 5 2.2.7聚合物光纤------------------------------------------------------------------- 6 2.2.8光敏高分子材料与有机激光敏化体系 --------------------------------------- 6 2.2.9 有机光电导材料 ------------------------------------------------------------- 6 2.2.10 能量转换材料 -------------------------------------------------------------- 7 2.2.11 染料激光器----------------------------------------------------------------- 7 2.2.12 纳米光电材料 -------------------------------------------------------------- 7 3 光电转化性能原理 ------------------------------------------------------------------------- 7 4 光电材料制备方法 ------------------------------------------------------------------------- 8 4.1 激光加热蒸发法 ------------------------------------------------------------------- 8 4.2 溶胶-凝胶法 ---------------------------------------------------------------------- 8 4.3 等离子体化学气相沉积技术(PVCD)------------------------------------------ 9 4.4 激光气相合成法 ------------------------------------------------------------------ 9 5 光电材料的发展前景---------------------------------------------------------------------- 10

硅基光电器件研究进展

半导体技术 Semiconductor Technology 1999年 第1期 No.1 1999 硅基光电器件研究进展 郭宝增 摘要 在信息处理和通信技术中,光电子器件起着越来越重要的作用。然而,因为硅是间接带隙半导体,试图把光电子器件集成在硅微电子集成电路上却遇到很大困难。为解决这一困难,人们发展了多种与硅微电子集成电路兼容的光电子器件制造技术。本文介绍最近几年这方面技术的发展情况。 关键词 多孔硅 光电子器件 硅集成电路 Research Development of Silicon-Based Optoelectronic Devices Guo Baozeng (Department of Electronic & Informational Hebei University,Baoding 071002) Abstract Silicon-based optoelectronic devices are increasingly important in information and communication technologies.But attempts to integrate photonics with silicon-based microelectronics are hampered by the fact that silicon has an indirect band gap,which prevents efficient electron-photon energy conversion.In order to solve this problem,many technologies to make optoelectronic devices which can be compatible with conventional silicon technology have been developed.In this article,we review the deve-lopment of these thchnologies. Keywords Porous silicon Optoelectronic devices Silicon integrated circuit 1 引 言 硅是微电子器件制造中应用得最广泛的半导体材料。硅集成电路的应用改变了当代世界的面貌,也改变了人们的生活方式。但是,一般硅集成电路只限于处理电信号,对光信号的处理显得无能为力。然而,光电器件的应用却是非常广泛的,光纤通信、光存储、激光打印机及显示设备都 要用到各种光电器件。从更广的意义上说,我们所处的世界实际上是一个光的世界。据心理学家分析,人们通过眼睛所接收的信息占总接收信息量的83%,即人们接收的信息83%是光信号。因此可以想象,在未来信息化社会里,对光电子器件的需求决不亚于对微电子器件的需求。目前采用的光电子器件,主要是Ⅲ-Ⅴ族材料,这些器件与广泛使用的硅技术不兼容,而且制造成本高,因

探析硅光学技术的原理、种类及优势

探析硅光学技术的原理、种类及优势 当互联网流量在用户和数据中心之间传递时,越来越多数据通信发生在数据中心,让现有数据中心交换互联变得更加困难,成本越来越高,由此技术创新变得十分重要与紧迫。 现在有一种半导体技术——硅光子,具有市场出货量与成本成反比的优势,相比传统的光子技术,硅光器件可以满足数据中心对更低成本、更高集成、更多嵌入式功能、更高互联密度、更低功耗和可靠性的依赖。 微电子技术按照“摩尔定律”飞速发展已有五十几年了,但随着器件的特征尺寸减小到十几个纳米以下,微电子产业能否再依照“摩尔定律”前进已面临挑战。器件的速度、功耗和散热已经成为制约微电子技术发展的瓶颈。另一方面,基于计算机与通信网络化的信息技术也希望其功能器件和系统具有更快的处理速度、更大的数据存储容量和更高的传输速率。仅仅利用电子作为信息载体的硅集成电路技术已经难以满足上述要求。因此,应用“硅基光电子技术”,将微电子和光电子在硅基平台上结合起来,充分发挥微电子先进成熟的工艺技术,大规模集成带来的低廉价格,以及光子器件与系统所特有的极高带宽、超快传输速率、高抗干扰性等优势,已经成为了信息技术发展的必然和业界的普遍共识。 什么是硅光技术? 硅光子是一种基于硅光子学的低成本、高速的光通信技术,用激光束代替电子信号传输数据,她是将光学与电子元件组合至一个独立的微芯片中以提升路由器和交换机线卡之间芯片与芯片之间的连接速度。 硅光子技术是基于硅和硅基衬底材料(如SiGe/Si、SOI 等),利用现有CMOS 工艺进行光器件开发和集成的新一代技术,结合了集成电路技术的超大规模、超高精度制造的特性和光子技术超高速率、超低功耗的优势,是应对摩尔定律失效的颠覆性技术。这种组合得力于半导体晶圆制造的可扩展性,因而能够降低成本。 硅光子架构主要由硅基激光器、硅基光电集成芯片、主动光学组件和光纤封装完成,使用

硅基光电子技术在大数据时代的机遇与挑战(周治平)

Silicon Photonics: Challenge and Opportunity in Big Data Era 周治平.北京大学 Zhiping Zhou Peking University, China zjzhou@https://www.doczj.com/doc/1115750993.html, CIOEC, Sept. 2, 2015 Shenzhen, China

Silicon Photonics Edited by Zhiping Zhou

Outline ?Interconnect and the emerging silicon photonics ?Current silicon photonics interconnect ?Difficulties and challenges ?Conclusions

Applications push the growth of data centers Source: Intel IDF14 Scalability: both quantity and continuous improvement of device performance

Today’s interconnects in data centers Rack to rack: optical (VCSEL-based) In-rack: imminent transformation to optical solution Source: M Paniccia, Presentation at Purdue University (2007).

硅基发光材料与光互连的基础研究

硅基发光材料与光互连的基础研究 ★项目简介: 建立在硅材料基础之上的微电子技术对人类社会的进步发挥了巨大的作用,对我国国民经济的发展,工业、科技和国防的现代化也起着至关重要的作用。在进入21世纪以后,我国正大力发展微电子工业,有望成为新兴的国际微电子工业基地,是国家发展的重大需求所在。随着信息产业的发展,信息数据将海量增加,对信息计算、传输等技术在今后的发展也提出了更高的要求和挑战。其主要的解决途径之一就是将现有成熟的微电子和光电子结合,实现硅基光电集成,这将成为信息产业发展的重要方向之一。近十年来,由于重大的工业意义,硅基光电集成关键材料和器件的研究引起了国际科学界(如美国MIT、哈佛大学)和工业界(如Intel,ST)的严重关注,仅Intel公司对硅基光电子的研发就投入数十亿美元巨资。一旦突破,不仅可以实现芯片光互连、光电集成以及将来的光计算,而且在光通讯、光显示等领域具有重大的潜在应用前景,对我国的信息产业的发展具有重大意义。本项目的主要目标是:探索硅基发光和光互连的新材料、新原理和新器件。采用能带工程、缺陷工程等途径,对硅基发光材料进行人工改性,发展新的硅基发光材料;提高硅基电致发光效率,实现硅基电泵激光。研究硅基微纳尺度下光的传输与控制,解决硅基芯片光互连和光电集成的关键问题。为我国硅基光电子产业的发展提供坚实的理论基础和技术、人才贮备,促进高速、大容量计算机技术的重大突破。本项目拟解决的关键科学问题是:(1)硅基高效率发光微结构体系的构建原理、可控制备和表征,以及硅基发光材料表面、界面结构的调控。(2)硅基发光材料的载流子注入、输运与复合过程,硅基电致发光的内、外量子效率增强和电泵激光的机制。 (3)微纳尺度下,硅基光波导中的光传输和控制,硅基光互连和单片集成中的光电融合。围绕科学问题,我们研究(1)硅基纳米材料的发光原理和技术,(2)硅基化合物半导体材料的发光原理及技术,(3)硅基材料杂质和缺陷的发光原理和技术,(4)硅基SiGe量子阱材料的发光原理和技术,(5)硅基光电子光互连和光电集成的关键原理和工艺。针对上述主要研究内容,为解决关键科学问题,我们设立五个课题,分别为:(1)硅基纳米材料的构建、调控及发光原型器件,(2)纳米化合物半导体/硅异质结构发光材料及原型器件,(3)基于缺陷工程的硅基发光材料及原型器件,(4)基于能带工程的硅基发光材料及光电子原型器件,(5)硅基微纳光波导传输与单片光电集成技术。前四个课题是通过不同的技术途径研究硅基发光来解决硅基光源问题,重点放在硅基纳米硅、硅基铒离子注入和硅基纳米硫化镉/硒化镉化合物异质结这三种材料体系中实现光放大和光增益。在此基础上,结合实际的器件或集成工艺,形成电致发光器件,并力争实现真正的硅基电致激光。而在实现硅基发光的基础上,最后一个课题则研究硅基光互连和光电集成。我们充分发挥人员交叉、学科交叉和单位交叉的优势,由国内硅基光电子研究的主要优势单位承担本课题。 项目由浙江大学牵头、中科院半导体所、北京大学、南京大学、南开大学和厦门大学参加,研究队伍包括了固体微结构国家实验室(筹)和集成光电子学、人工微结构与介观物理和硅材料三个国家重点实验室中研究硅基发光的几乎所有骨干力量,课题组成员包括2位中科院院士、3位国家杰出青年基金获得者和一批优秀的中青年学术骨干。在过去5年中,这一团队在本领域获得包括2项国家自然科学二等奖在内的一批科研成果,承担和完成了20多项相关的科研项目。本项目的完成不仅会提高我国硅基光电子材料的整体研究水平、跻身于国际研发的先进行列,还将培养一批优秀的中青年学术带头人,为我国新一代光电集成、计算机等的工业应用和发展提供理论基础和技术、人才储备。 ★项目专家组: 姓名单位 杨德仁浙江大学 徐骏南京大学 江晓清浙江大学 俞育德中国科学院半导体研究所 秦国刚北京大学

编码器工作原理,光电编码器的工作原理分析

编码器工作原理,光电编码器的工作原理分析 编码器工作原理 绝对脉冲编码器:APC 增量脉冲编码器:SPC 两者一般都应用于速度控制或位置控制系统的检测元件. 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过 零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线, 一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设 备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块 与高速模块之分,开关频率有低有高。

硅基发光材料简述

硅基发光材料简述 摘要:本文简要描述了三种硅基发光材料:掺铒硅、多孔硅、纳米晶硅的发光特性、优缺点和应用前景。从而对这些硅基发光材料有所了解并对其可能的研究方向进行初步的了解。 关键词掺铒硅多孔硅纳米硅晶光学特性 一、前言 硅材料在半导体工业中有着不可替代的作用,硅在地球上储量丰富,硅基器件制造成本低廉、环境友好且制造工艺非常成熟,是迄今最适合于集成工艺的材料。然而,由于体硅为间接带隙材料其发光效率低下,故而被认为不是良好的光电子材料,不适宜应用于光电子领域。然而相较于在光电子领域站优势地位的化合物半导体材料,硅基光电子材料又有着成本低廉、易于实现光电集成等优点,且随着对硅材料的进一步深入研究,人们又发现了硅基发光的一些新特性,因而近年来对于硅基发光材料的研究受到越来越多的关注。本文将回顾硅基发光的研究历史,并归纳几种硅基发光材料的性质和特点,以期能对硅基发光材料有着更好地理解并对硅基发光材料未来的研究方向有所了解。 二、实现硅基发光的几种方法 由于硅单晶并不是一种很好的光电子材料,因此虽然经过各种技术上的改进,体硅发光二极管发光效率已可达到1%,但体硅发光并不是硅基发光的主要研究方向。目前,对硅基发光的努力方向主要有如下几个方面: 1 通过杂质或利用缺陷处复合放光; 2 通过合金或分子调节发射波的波长; 3利用量子限制效应或能带工程,通过增加电子-空穴复合的几率来增加发光效率; 4采用硅基混合的方法将其他直接带隙材料与硅相结合; 下面本文将简要介绍几种硅基发光材料。 2.1 掺铒硅的发光 对于间接带隙半导体材料,可以通过引入杂质的方法使电子或空穴局域化,形成复合中心,提高复合率,达到发光效率增加的目的。目前,硅中稀土杂质(特别是铒)的掺杂被认为是这种手段中最具有应用前景的一种手段。 稀土元素铒4f壳层中的正三价态离子的分离态具有具有类似于原子跃迁(I l3/2→l5/2)的辐 射发光特性,可发射波长1.54μm的光,对应着石英光纤的最低损耗波长区域,因而掺铒硅 发光在硅基光通讯中有着重大的潜在应用前景。掺铒硅的发光独立于体硅发光,是典型的第

光电成像原理复习指南(含答案)

复习指南 注:答案差不多能在书上找到的都标注页数了,实在找不到的或者PPT上的才打在题后面了,用红色和题干区分。特此感谢为完善本文档所做出贡献的各位大哥。(页码标的是白廷柱、金伟其编著的光电成像原理与技术一书) 1.光电成像系统有哪几部分组成?试述光电成像对视见光谱域的延伸以及所受到的限制(长波限制和短波限制)。(辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。P2-4) 答:辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。 [1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?(P5) 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节( 4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点?(P8)固体成像器件主要有哪两类?(P9,CCD CMOS) 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 电荷耦合器件,简称CCD;自扫描光电二极管阵列,简称SSPD,又称MOS图像传感器 4.什么是像管?由哪几部分组成?(P8第一段后部) 器件本身具有图像的转换、增强及显示等部分,它的工作方式是:通过外光电效应将入射的辐射图像转换为电子图像,而后由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增,经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。这样的器件通常称为像管。 基本结构包括有:光电发射体、电子光学系统、微通道板(电子倍增器件)、荧光屏以及保持高真空工作环境的管壳等。 5.像管的成像包括哪些物理过程?其相应的物理依据是什么?(P8第一段工作方式) (1)像管的成像过程包括3个过程 A、将接收的微弱的可见光图像或不可见的辐射图像转换成电子图 像B、使电子图像聚焦成像并获得能量增强或数量倍增C、将获得增强后的电子图像转

硅基光波导结构与器件 - 中国科学院半导体研究所机构知识

Ξ硅基光波导结构与器件 刘育梁 王启明 (中国科学院半导体研究所集成光电子学国家重点联合实验室,北京,100083) 摘要 简要评述硅基光波导的结构、工艺及其器件,包括低损耗的硅基光波导、电光波导器件、红外波导探测器、氧化硅光波回路等. 关键词 硅,光波导. 引言 硅是微电子学领域最重要的半导体材料,其工艺技术和集成电路技术得到了高度发展.将硅从微电子学领域拓展到光电子学领域,发展集电子学功能和光子学功能于一体的硅基光电子器件与回路已成为一个重要的发展趋势,吸引了越来越多的科学家和工程技术人员,并取得了一定的进展.其主要标志为:(1)SiGe Si 超晶格和多孔硅的高效光发射现象的发现和研究表明了硅基材料中确定存在着可用于实际器件制作的高效发光机制;(2)可见光范围的硅雪崩光电探测器早已投入实际应用.可望用于113Λm 光通信系统的SiGe Si 多量子阱光波导探测器也已在实验室研究成功,并开始了探测器阵列的研究;(3)硅基无源光波导器件的研究卓有成效,取得了许多实际成果.其中最重要的,一是80年代以来提出的各种结构的硅基光波导的传输损耗几乎都已降至1dB c m ,制作这些光波导大都采用常规的微电子加工工艺,这为进一步研制各种功能器件奠定了坚实的基础;二是硅上二氧化硅光波导器件与回路已逐渐推向市场. 硅基光波导器件的这种发展趋势明显地反映在重要的国际光电子期刊中,80年代中期很少看到这方面的研究论文,而到90年代初,硅基光波导器件的研究论文在这类期刊中所占比例越来越大,近期已发展到专集讨论的程度[1].目前从事硅基光波导与光电子器件研究的实验室很多,有3个实验室的工作最具连贯性,代表了现今硅基光波导器件的发展水平.它们是:N T T 光电子实验室(集中从事Si O 2平面光波导器件与回路的研究开发工作),A T &B T B ell 实验室(M u rray H ill )(主要从事Si O 2光波导与回路、Ge x Si 1-x Si 波导探测器的研究)和柏林工业大学(TUB )(从事SO I 光波导、Ge 扩散硅光波导、光开关和Ge x Si 1-x Si 波导探测器的研究工作).本文将专门就硅基光波导及器件的发展作一简要评述. 1 低损耗硅基光波导结构及工艺 1.1 外延型光波导 第15卷第1期 1996年2月 红外与毫米波学报J.Infrared M illi m .W aves V o l .15,N o.1Feb ruary,1996 Ξ

图像光电转换的基本过程

图像光电转换的基本过程

————————————————————————————————作者:————————————————————————————————日期:

图像光电转换的基本过程 电视图像的传送是基于光电转换原理,而实现光电转换的关键器件是发送端的摄像管和接收端的显像管。 1. 图像的分解 电视系统处理和传送的对象是光的景物,景物存在于三维空间,其光学特性(即景物的亮度和色度信息)不仅随空间位置的不同而不同,而且还与时间有关系(静止景物除外)。因此,景物信息是三维空间和时间的函数,可用光学信息表达式为:。 但是目前的电视系统仍为平面彩色电视,只传输景物的二维光学信息,因此上式中的z可不考虑。另外,这里仅讨论黑白平面活动图像,只需传输各像素的亮度信息,其光学信息表达式简化为:。 但是,亮度仍然是x、y、t的三维函数,而经传输通道传送的电信号为电压(或电流),只能是时间的一维函数为:。实现转换的方法是:将景物信息分解成很多小点,这样

就能以每个小点为单位进行光电转换和传送。因此,对于每个小点来说,其光学特性以及经光电转换得到的电信号就只与时间有关了,也就是将景物信息转化成时间的一维函数。 将景物图像化整为零的方法称为图像的分解,分解之后的小点称为像素。所谓像素,就是组成图像的元素,即基本单位,具有单值的亮度信息和空间位置。一幅电视图像由许许多多个像素组成,电视系统能够分解的像素数越多,图像就越清晰、细腻。在我国的黑白广播电视标准中,一幅图像包含大约40~50万个像素。图像的结构—导学。 图像的分解是在摄像端的光电转换和扫描过程中完成的。在接收端,通过显示装置的扫描和电光转换作用,这些被分解的像素又会在屏幕上合成出原来的图像,从而实现电视的全过程。 2.图像的传送 一幅图像由许多像素组成,这些像素的亮度信息经光电转换之后变成相应的电信号。电视系统的任务是将各像素的变换成, 实现转换的方式,有同时传输制和顺序传输制。 ●像素信息同时传输制

太阳能光电转换材料的制备及研究进展

太阳能光电转换材料的制备及研究进展 陈泽伟 西北工业大学11070901班 摘要:本文在对太阳能电池基本原理进行介绍的基础上,综述了近年来光电转换材料的发展情况,重点对各种材料的优缺点、制备方法以及未来的发展趋势进行探讨。 关键词:太阳能电池,光电转换材料,转换效率 Solar photovoltaic conversion Preparation and Research Chen Zewei Northwestern Polytechnical University 11070901 class Abstract: In this paper, the basic principles of solar cells are described, based on the paper, the recent development of photoelectric conversion materials, focusing on the advantages and disadvantages of various materials, preparation methods and future trends are discussed. Key words: solar cells, photoelectric conversion materials, conversion efficiency. 1、前言 在20世纪的世界能源结构中,人类所利用的一次性能源主要是石油、天然气和煤炭等化石能源。这些化石能源本质上是数万年前甚至

是更长时间以来太阳能辐射到地球上的一部分能源储存到古生物,经沧海桑田的变化而演化成今天地球上的能源矿藏。经过人类数千年,特别是近百年的消费,这些化石能源已经被消耗了相当的比例。随着经济的发展、人口的增加和社会生活水平的提高,未来世界能源消费量将持续增长,世界上的化石能源消费总量总有一天将会到达极限[1]。太阳能电池作为解决人类所面临的能源与环境问题的最佳选择,具有来源广泛、使用方便、无污染等优点,在航空、航天、通讯及微功耗电子产品等领域具有广阔的应用前景[2],因而逐渐成为研究的重点方向和主流。太阳能电池, 一种利用光生伏特作用直接将太阳能转换为电能的光电池,自问世以来,受各国专家的重视,且迅速发展。因其具有众多优点,将在更多的领域中有广泛的应用。因此,对其的组成及原理的研究有着极其重要的作用。本文在对太阳能电池基本原理进行介绍的基础上,综述了近年来光电转换材料的发展情况,重点对各种材料的优缺点、制备方法以及未来的发展趋势进行探讨[3]。 2、太阳能电池的基本原理 太阳能电池的基本原理[4]: 当电池的表面受到光照时,由于减反射膜的作用,入射光线小部分被反射,大部分进入光吸收层。其中,能量大于禁带宽度的光子被吸收后,激发出光生载流子。在电池内部产生的光生电子-空穴对扩散到PN 结并受结电场影响而分开。太阳能电池的PN 结处存在一个由N 区指向P 区的内电场。在N 区产生的光生空穴会向PN 结扩散,进入PN 结后,即被内电场推向P 区; 在P

2009硅基微纳光电子系统中光源的研究

https://www.doczj.com/doc/1115750993.html, 中国光学期刊网1引言硅材料在20世纪通过半导体集成电路垄断了数字电子工业,并改变了人们的生活方式以后,现在又成为光学及光电子学青睐的材料。成熟的大规模、低成本硅基半导体集成电路生产工艺是人们期望用硅材料来制备微纳光电子器件及系统的最主要原因之一。其目的就是要大幅度地降低目前基于III-V 族材料的微纳光电子器件及系统的成本。众所周知,硅在1.3~1.5m m 通信波段是非常好的低损耗传输介质。人们已经利用这种特性,开发出了微纳尺寸的光波导、分束器、耦合器、调制器以及 探测器等光通信用基础元器件[1,2]。锗硅探测器已达到40Gb/s 的指标[3]。如能实现硅基微纳放大器和激光器,与微电子集成类似的微光电子集成就不难实现了。然而,硅是一种间隙材料,单纯的体硅发光效率是非常低的。这也是目前硅基光电子学领域研究人员正 在集中攻关的重点之一。 为了能够将光源引入到单片硅基光电子系统中 去,人们采用了耦合、贴片及混合集成等方式[4,5],但大部分的努力仍然是希望通过单片集成的方式将光源 硅基微纳光电子系统中光源的研究现状及发展趋势周治平王兴军冯俊波王冰 (北京大学区域光纤通信网与新型光通信系统国家重点实验室,北京100871)Zhou Zhiping Wang Xingjun Feng Junbo Wang Bing (State Key Laboratory of Advanced Optical Communication Systems Networks,Peking University,Beijing 100871,China ) 摘要综合了微电子学及微纳光学的优势,硅基微纳光电子学正在快速走向实用阶段。与微电子制造技术兼容 的微纳光子器件,包括调制器、探测器、分束器以及耦合器等均取得了重要的突破。但硅基微纳光源的研 究则仍处在探索阶段。外部光源在多大程度上能代替片上光源?片上光源的最佳选择是什么?介绍、分 析了目前硅基微纳光源的研究现状及进展,并对片上光源的研究趋势进行展望。 关键词微纳光电子学;集成光学;硅基光源 Abstract Si based micro -nano optoelectronics is rapidly moving toward commercial applications.Nano - photonic devices compatible with the microelectronics manufacturing technology,including modulators, detectors,splitter and coupler,etc.have made an important breakthrough.However,research on Si light source is still in the exploratory stage.Is the external light source enough for chip size optoelectronic systems?What will be the better choice as the on-chip light source?This article will introduce the current research progress and development of Si based micro-nano light source,and prospect further outlook on-chip light source development trends. Key words micro-nano optoelectronic;integrated optics;Si based light source 中图分类号TN253doi :10.3788/LOP20094610.0028 Research Progress and Development Trends of Light Source for Silicon Based Micro-Nano Optoelectronic Systems

相关主题
文本预览
相关文档 最新文档