当前位置:文档之家› 硅基发光材料研究进展

硅基发光材料研究进展

硅基发光材料研究进展
硅基发光材料研究进展

硅基发光材料研究进展

摘要:硅基发光材料是实现光电子集成的关键材料。本文分析了传

统工艺制作的硅基发光材料存在发光效率低、发光性能不稳定等缺点,在此基础上,总结目前量子理论、超晶格理论和纳米技术在硅基发光材料研究进展以及多孔硅的实践应用,并对硅基发光材料的前景进行展望。

关键词硅基发光材料多孔硅量子限制效应

Abstract: Si-based light emitting material is the key material of optoelectronic integration. This paper analyzes the traditional craft of Si-based light emitting that exists the defects, such as the inefficiency and the unsteady property of light emitting, and sums up the current progresses of quantum theory, superlattice theory, nano-scale technology in the Si-based light emitting material and the applied of porous silicon. Also some prospects of Si-based light emitting material is mentioned in this parper

Key words Si-based light emitting material porous silicon

Quantum confinement effect

目录:

1 引言 (3)

2 早期Si基发光材料的研究 (3)

2.1 缺陷工程 (3)

2.2 杂质发光 (3)

2.3 能带工程 (4)

2.4 异质外延 (4)

3 发光多孔硅 (4)

3.1 多孔硅的制作 (4)

3.2 多孔硅发光微观结构与发光机理 (5)

3.3 多孔硅光致发光光谱 (7)

3.4 多孔硅应用研究的展望 (7)

4 硅基发光材料研究进入多孔硅的后续发展阶段 (8)

4.1 硅基多孔SiC蓝光发射材料 (8)

4.2离子注入硅基SiO2 发光薄膜 (9)

4.3 硅基低维发光材料 (10)

5 结束语 (11)

引用文献 (12)

1.引言

硅不仅电学性质良好,许多光电性质也比较优越。但是 ,因为硅是间接带隙材料 , 发光效率很低 (在近红外区其效率为)106- ,硅的导带

底不在布里渊区的中心]

1[,而是在 (110) 方 向轴上 0 . 85 (a π

2) 处 ,所以一共有 6 个等价的导带极小 ,当电子从价带被激发至导带 ,通过与 晶格的相互作用 ,放出声子 ,弛豫至导带 ,由于价带顶在布里渊区的中心 ,波矢为零的电子不能直接由导带底跃迁至价带顶发出光子 ,它只能通过同时发射或者吸收一个声子 ,间接跃迁 至价带顶 ,这种间接跃迁的几率比直接跃迁的几率小得多 ,导致其发光效率非常低。

基于上面硅的所具有的缺点,人们曾经想过用可发光的直接带隙材料(如砷化钾)来替代。但是由于无法发展出一套可以与硅抗衡的平面工艺和集成技术,在微电子集成和光电子集成方面始终未能取代硅。于是人们把光电子集成基础材料的希望又转向了硅。本文主要介绍了早期Si 基发光材料、发光多孔硅以及在发光多孔硅带动下硅基发光材料的新发展。

2.早期Si 基发光材料的研究

长期以来,人们在硅基发光材料研究上作了坚韧不拔的努力。 几乎在硅集成技术和硅平面工艺发展的每一个阶段 ,人们都曾运用各种工艺技术来探索硅基发光材料]3][2

[。下面仅列 举几个主要研究方面 。

2.1 缺陷工程 缺陷工程的基本思想是在硅单晶中引入光活性缺陷中心 ,它可以由辐照损伤引入 ,也可 以由杂质引起某种结构缺陷。 通过这些缺陷中心实现无声子跃迁而发光. 等电子陷阱是一个 典型例子。 它是在硅中掺

入与硅同族 ( ⅣA 族) 的杂质 , 如 C , G e , Sn 或 Pb , 可 形 成 等 电 子 陷 阱 ,它们是辐射复合中心. 在掺 C 的硅中可观 测到无声子跃迁, 但发光效率很低。有趣的是 ,在非直接带隙的 GaP 中掺入等电子陷阱杂质氮 ,却实现了高效率无声子复合 ,制出了高效发光二极管。

2.2 杂质发光

硅中掺入某些杂质,可在禁带内引入辐射复合中心。 一个典型例子是,硅中掺稀土元素铒形成发光中心。 发光波长为154μm ,这正是光纤的低损耗窗,所以倍受重视。 只可惜铒在硅中的固溶度

很低,仅为5 ×1018cm-2 ,难以获得强光发射。近年来人们用铒与氧共注入提高了铒的固溶度。

2.3 能带工程

用一种或多种Ⅳ族元素与硅形成合金,改变其能带结构,使竖直跃迁成为可能,还可以控制发光波长。

2.4 异质外延

利用外延技术,在硅衬底上外延生长直接带隙材料,例如在硅上生长GaAs。虽然进行了大量研究,但始终未能获得理想结果。

在90 年代之前,人们研制硅基发光材料,基本上是运用硅材料和器件工艺技术,如掺杂、辐照、外延生长和合金技术等,虽长期努力,却进展不大,只能在低温下获得较弱的发光。 1990年有了一个突破性进展,即是发光多孔硅的发现。

3 发光多孔硅

1990年]4[

Canham报导:在HF荣溶液中,以单晶为阳极进行电化学腐

蚀,表面形成多孔结构,即多孔硅。在室温下可以和较强的可见光。他还指出多孔硅是一种量子线,它的发光可用二维量子限制效应解释,这是纳米材料的小尺寸效应之一。光电子集成诱人的应用前景,纳米材料量子尺寸效应的理论兴趣,推动着多孔硅研究迅速发展。

3.1 多孔硅的制作

3.1.1电化学腐蚀法

电化学腐蚀法是以单晶硅为材料,以HF 酸为主电解溶液,将难于与HF 酸溶液反应的导体碳棒或金属铂为阴极,单晶硅为阳极,对溶液进行电解,则单晶硅在阳极失去电子被氧化。硅在阳极氧化过程中,由于在外电场的作用下,正、负离子沿着电场方向集结。所以,在此过程中,单晶体硅片的腐蚀过程是均匀的,它先在硅表面腐蚀一些孔,而对于孔顶和孔的垂直方

向腐蚀比较快,而对孔壁的横向腐蚀比较慢,从而形成了各种类珊瑚状或

海绵状的多孔硅。]5[

3.1.2 光化学腐蚀法

光化学腐蚀法是把单晶硅片浸泡HF 酸溶液中,再利用适当频率的光波照射在单晶硅片上,产生非平衡载流子,为单晶硅片提供必需的电子和

空穴,加速单晶硅和HF 酸的反应速度。该制作方法如果使用频率太小的入射光,光子能量小于硅的禁带宽度而无法提供必需的电子- 空穴对,如

果使用频率太大,则单晶硅因为大面积吸收而影响电子- 空穴对的产生率。单晶硅片通过适当的光波照射,在HF 酸溶液中溶解,和金属在酸、碱溶液中腐蚀过程相似,在硅表面的一些杂质小区域内,产生空穴的区域为

阳极区,产生电子的区域为阴极区,便可在硅片内部形成一个个小小短路

的电化学体系。]5[

3.1.3 化学腐蚀法

化学腐蚀法是采用单晶硅片浸入HF 酸和强氧化剂的混合溶液中,在室温下,它们就可以发生化学反应]5[。该方法使用设备简单、操作方便,

而且不需要光照条件或者对系统施加电场。强氧化剂的选择和溶液的体积配比都会影响到生成物的不同,如果采用溶液的体积配比为:

V ( HF 酸) ∶V ( HNO

3 ) ∶V ( H

2

O) = 1 ∶1 ∶1。 5。

那么,硅片便先与强氧化剂发生如下反应:

3Si + 4HNO

3 = 3SiO

2

+ 2H

2

O + 4NO ↑,

生成一层非常紧密的SiO

2保护膜,而SiO

2

又可以与HF 酸溶液发生反应,

使得SiO2 溶解在HF 酸溶液中,生成可溶于水的H

2SiF

6

,其反应为:

SiO

2 + 6HF = H

2

SiF

6

+ 2H

2

O

由此可见,当有HF 酸的存在,硅表面的SiO

2

不断地被破坏,从而导致内层的

硅又不断地被HNO

3氧化,生成SiO

2

保护层,保护层SiO

2

又与HF 酸发生反

应,生成可溶于水的H

2SiF

6

,如此无限循环下去,硅片便不断地被腐蚀掉。

又因为硅片被腐蚀的不定向性,在一段时间内,单晶硅便会被腐蚀成多孔状,形成的便是多孔硅。除了上述三种制作方法以外,还有火花放电、水热腐蚀法等也可以制作出多孔硅,但是,电化学腐蚀法仍然是普遍采用的制作方法。

3.2 多孔硅发光微观结构与发光机理

3.2.1 多孔硅的微观结构

通过制备方法制备后的硅片表面形成一层多孔的结构,这种结构很象呈树枝状的珊瑚结构或显海绵状的多孔结构,一般以晶体硅为核心,外吸附以H、O、N、C、F 等元素及各种小分子团,内部孔隙异常丰富,具有很

大的表面积与体积比 600 m2 / cm3 ]4[

。利用不同的制备条件可以制备

几个微米到几十个微米, 甚至可达到上百个微米厚的多孔硅, 其孔径大小为10~50nm ,硅晶柱尺寸为2~8nm。一般认为多孔硅由三层结构组成,从上到下分别为: ①表面层/ 纳米孔洞层,厚度为1μm ; ②硅柱层,一般厚度为10~100μm; ③硅衬底/ 体硅层。

3.2.2 多孔硅的光致发光机制

现今,人们对多孔硅的发光机理提出多种模型进行解释,但由于主观因素与客观因素的制约,且多孔硅具有复杂的微结构和光学性质,使得多孔硅发光机理仍众说不一。其中包括量子限制模型、量子限制- 发光中心模型、硅氧烯发光、表面化学吸附发光等。但量子限制模型与量子限

制- 发光中心模型被更多的各国学者所认同。

3.2.2.1 量子限制模型]4[

该模型是由Canham 在1990 年首先提出的,后来,他本人又对该模型进行了一些发展,它的主要内容是:多孔硅是由纳米量级的硅线(量子线quantum wire)组成的,由于被激发的电子- 空穴对被限制在纳米硅内部,将附加一个量子限制能量,而导致多孔硅发光能量为1.12 eV + △E 。 电子-空穴对在纳米硅内部复合发光。如果假设硅线是平均边长为L 的正方形的横截面积,那么△E 可表示为:

2*2

4L

m h E =?,(3-1) 其中,*m 为电子与空穴的折合质量,电子的有效质量为*

e m ,空穴的有效质量为*h m ,那么*m 就可以表示为: *****e h e

h m m m m m +=, (3-2)

这只是一个简单的表示形式,由式(1) 可知: △E 就是由量子限制效应增加的带宽,与L 2成反比,也就是硅线L 越小,发光能量越大,发光峰蓝移。 该模型提出以后,受到一段时期的广泛认同,而且许多实验都证明纳米硅粒在发光中心所起的作用。 但是,随着研究的深入,这种模型却难于解释一些新的现象,遂产生一种新的模型。

3.2.2.2 量子限制- 发光中心模型

[6] 量子限制- 发光中心模型又称为表面态模型,它是由北京大学秦国刚教授在1993 年首先提出的,并在1997 - 1998 年加以完善。 该模型的基本观点是在多孔硅的光致发光过程中,存在三个相互竞争的发光过程: ①光激发和光发射均发生在纳米硅内部(量子限制模型) ;②纳米硅内光激发产生的电子和空穴将能量转移(最有可能是隧穿) 到界面或者包围纳米硅的SiOx 层中的发光中心,然后复合发光; ③氧化硅层内发光中心直接被光激发,然后复合发光,发光情况如图1所示。 在这三个过程中哪个占主导地位,取决于多孔硅的氧化情况。一般情况下,②过程占主导地位。

图1.多孔硅的三个竞争过程

3. 3 多孔硅光致发光光谱

多孔硅的光致发光很强,它的效率可达到2

10 这一数量级,而且发光范围也很宽,已经实践了从红外区、可见光到达紫外区的发光波段范围。多孔硅光致发光的典型特点是呈带状,并且发光效率比单晶硅高出好几个数量级,发光的中心波峰高,典型光谱]5[如图2所示,改变多孔硅的孔隙率便可以调节峰值波长

图2.多孔硅光致发光光谱

3.4 多孔硅应用研究的展望

多孔硅是一种新的多孔结构材料。多孔结构材料是一种跨物理学、化学、材料科学、生物化学和医药学的新的前沿研究领域,例如,在医药方面,将药物嵌入多孔材料中使药物缓慢释放,长时间均匀地发挥疗效。在化学化工中,多孔结构材料或其嵌入相可作为高效率催化剂,多孔材料还可作各种过滤膜等等。人们研究最多的是分子筛、沸石、多孔玻璃、多孔有机物等。而多孔硅作为多孔结构材料中的一个新成员,为多孔结构材料研

究领域带来了一股新风。例如将各种染料嵌入多孔硅形成各种发光材料(可称其为多孔硅基发光材料) ,将CdS嵌入多孔硅也可形成多孔硅基发光

材料。 C

60在室温下几乎是不发光的,近来我们将C

60

嵌入多孔硅,在室温下

观察到C

60的强发光谱)7(,这对多孔硅和C

60

的研究都很重要。

多孔硅还打破了单晶硅难以实现高效率发光的禁锢,实现了有效的硅基可见光光电器件,将它和成熟的硅大规模、超大规模集成工艺相结合,就可以实现全硅光电子集成,这无疑会对未来的光通信和光电子计算机的建立产生革命性的影响。事实上,在多孔硅的光电子集成方面已有了突破性进展。 1996 年Hirschman 等报道了将多孔硅发光器件与硅基微电子器件集成在一块芯片上的研究进展,这是利用多孔硅实现光电子集成的首例实验,其意义在于明确地表明在技术上多孔硅的光电子集成是可行的。

多孔硅室温下高效、多色的光致、电致发光特点,使其在显示技术和超高速处理技术中的应用有很大潜力。利用多孔硅的光学性能,可以制作出光—电、电—光转换器件,应用于卫星的太阳能板及环境传感器等多种

设备;用多孔硅制成的发光二极管和激光器(多孔硅镶嵌激光染料]8[、

Pavesi 等在纳米硅/ 氧化层界面实现光放大]9[为发展激光器指明了一条

可行途径) 可用在数字电路中,用光子代替电子传输信号,使得运算速度大大提高;多孔硅还可以做成光敏、湿敏、气敏元件。此外,多孔硅还可以应用在医学领域:现在已制成一种混杂硅芯片,包含单晶硅层、多孔硅层和羟基磷灰石层,具有生物相容性,它用羟基磷灰石层附于多孔硅之上,作为单晶硅和生物体之间的桥梁,克服了单晶硅不具有生物相容性的缺点,使生物体能容纳而且能传递信息给硅元件。从某种角度来看,多孔硅也可以称为一种新型的生物材料。

4 硅基发光材料研究进入多孔硅的后续发展阶段

发光多孔硅出现之前是硅基发光材料研究的早期阶段,由于理论概念和工艺技术的限制,进展不是很显著。自发光多孔硅出现后,硅基发光材料进入了一个新阶段,即利用纳米尺寸材料的量子限制效应实现硅基材料发光。此后人们找到了一条明确的途径,利用纳米尺寸的量子限制效应去探寻与开发硅基发光材料

4.1硅基多孔SiC蓝光发射材料]10[

蓝光发光材料是当今研究热潮, 而且在GaN 和SiC 蓝光发射研究方面取得了重大进展,并逐步形成产业。但它们都不是硅基材料,不能直接用于光电子集成。多孔硅发光波长主要集中于红- 黄范围,难以获得蓝

光。文献将碳注入硅形成β-SiC 薄层。β-SiC 带隙为2.2eV ,属非直接带隙材料,发光很弱。用电化学方法将其多孔化,形成纳米SiC ,由于量子限制效应, 可以得到高亮度、高稳定的蓝光(460nm) 发射。图3 给出的是多孔SiC 的PL谱图中除了给出多孔SiC 的蓝光谱,还给出了多孔硅的PL 谱作为比较。多孔SiC 的重要性在于,这是一种新的硅基发光材料,也是一种获得蓝光发射材料的新方法。

图3 多孔SiC光致发光谱

(a)多孔SiC蓝光发射谱

(b)多孔硅光致发光谱

4.2 离子注入硅基SiO2 发光薄膜]11[

,经Si 离子注入和适当的退火可以获得三硅单晶衬底上生长SiO

2

基色(蓝、黄、红)波长的发光,其发光强度可与多孔硅相比拟。其PL 谱示于图4。蓝光谱波长为460nm ,它是由氧空位缺陷发光。黄光峰也是由缺陷引起。而红光峰则是由注入的过剩Si 聚集成纳米晶粒, 因量子

发光 ,其意义在于, 限制效应而发光。离子注入 SiO

2

图4 Si离子注入SiO2光致发光谱

首先在一种材料上可获得红、黄、蓝全部三种基色,为全色固态显示提供了可能,其次,扬弃了多孔结构和电化学工艺,在工艺上完全与硅平面工艺相容。

4.3 硅基低维发光材料

在发光多孔硅的研究实践下,硅基低维发光材料也受到重视并总结了

硅基低维发光材料必须具备三个基本条件]12[:①在硅基上形成稳定低维

结构②在低维结构周边可以建立起量子限制势垒③量子限制后能获得所需要的发光波长、并具有较高的发光效率。

依照以上三个原则,人们在硅基上用各种方法制备了零维(量子点),一维(量子线)和二维(量子阱,超晶格)的发光材料。

4.3.1 硅量子点(线)阵列]12[

在硅衬底上直接制备空间有序排列的纳米尺寸的量子点或线。量子点阵列研究的主要目标是量子器件和单电子器件等,它同时又是量子发光材料。从发光材料角度看,量子点空间有序的排列为光学研究提供某些机会,并且为量子器件和光电子器件结合提供可能,但是它的发光效率是低的。

4.3.2 硅基量子阱和超晶格发光材料]12[

理论上曾预言,在锗- 硅超晶格中,可能得到准直接带隙材料,但实验

上尚没有获得较理想的光发射。 另一种材料结构是将x x Ge Si -1合金量子点嵌入体硅中,硅较宽的带隙对锗- 硅合金较窄的带隙起到量子限制作用,低温下可以得到近红外发射光谱。 由于两者的带隙差别不大,量子限制效应是较弱的。 所以只能在低温下发光,且发光强度较弱。

纳米硅/ 非晶硅超晶格发光材料]13[是一种硅基多层结构一维量子限制发光材料,发光波长在红- 黄光波段,性质稳定。 其发光体是纳米硅层,可以改变该层的厚度获得不同的发光波长。 这种材料也扬弃了多孔结构和电化学工艺,而且不需任何后处理。 另一种类似结构的发光材料是纳米硅/ 氮化硅多层材料,带隙的氮化硅提供了更强的量子限制势垒,使发光效率提高。

以上列举了目前受到重视的硅基发光材料。 它们的共同特点之一,是利用量子限制效应实现发光。 多孔SiC ,注硅SiO 2 ,硅量子点和嵌入式

x x Ge Si -1 量子阱都是三维量子限制发光材料,当然注硅SiO 2 还利用了缺陷

发光。 量子线阵列是二维限制发光材料,而Ge-Si 超晶格和纳米硅/ 非晶硅则是用一维量子限制效应实现发光。 利用量子限制效应设计发光材料结构,是多孔硅之后硅基发光材料发展的主流。

5 .结论

综上所述,在硅基发光材料发展的早期,由于硅是间隙发光材料,使硅基发光材料的发展存在一度的困惑。但是随着量子理论、超晶格理论和纳米技术的发展以及多孔硅的实践应用,人们在低维以及多维的硅基发光材料实现了诸多突破。

由于多孔硅启示,引发硅基发光材料研究仍在发展,并可以归为三个主要发展方向:①完善多孔硅、实现光电子集成;②研究多种硅基低维材料,从中择优发展;③在新的条件下继续硅的体材料(三维)发光改性研究。在硅基发光材料进入新的研究应用阶段,即量子限制效应的硅基发光材料研究应用阶段,与之集成的恐怕已不是传统的微电子学而是采用了量子化器件的微电子学。

引用文献

[1] 黄昆.固体物理,半导体电子论.高等教育出版社.

[2] S. S. Lyer and Y. H. Xie , Science , 260 (1993) ,40.

[3] L.T.Canham ,K. G.Barraclough and D.J.Robbins ,A ppl.Phys.Lett, 51

(1987) ,1509.

[4] L. T. Canham ,Appl.Phys. Lett, 57 (1990) ,1046.

[5] 王晓静,李清山,王佐臣.多孔硅的不同制备方法及其光致发光[J] .发光学

报,2003 ,4 (24) :203 - 207.

[6] Qin G G,Jia J Q. Mechanism of t he visible luminescenc in porous si

licon [J] .Solid State Communications , 1993 ,(86) :559-563. Dalton Trans. .2001 ,(6):789 -799

[7] F. Yan , X. M. Bao , X. W. Wu, et al. , A ppl . Phys.

Lett , 67 (1995) ,3471.

[8] Pavesi.L. et al . ,Nature 2000[J ] ,408 :440.

[9] 张志,崔作林. 纳米技术与纳米材料[M] ,北京:国防工业出版社,2000 ,221 —

222

[10] L. S. Liao , X. M. Bao , Z. F. Yang et al. , A ppl . Phys. Lett ,66

(1995) ,2382.

[11] L. S. Liao , X. M.Bao , X. Q. Zheng et al. , A ppl . Phys.Lett , 68 (1996) ,850.

[12] 鲍希茂,宋海智.硅基发光材料研究进展.材料研究学报(Vol.11,No.6)

[13] S. Tong , X. N. Liu and X. MBao , Appl . Phys. Lett ,66(1995) ,469

锂离子电池硅基负极材料研究现状与发展趋势

XX大学 毕业论文 题目锂离子电池硅基负极 材料研究现状与发展趋势 姓名XX 教育层次大专 学号XX 省级电大XX 专业应用化工技术分校 XX 指导教师 XX 教学点XX 目录

一、 (4) 二、 (4) 三、 (5) 四、 (6) 五、 (6) (一) (6) (二) (7) 参考文献 (7) 致谢 (8) 锂离子电池硅基负极材料研究现状与发展趋势

摘要: 硅基负极材料因具有高电化学容量是一种极具发展前景的锂离子电池负极材料. 评述单质硅、硅-金属合金、硅-碳复合材料以及其他硅基复合材料作为锂离子二次电池负极材料的最新研究成果, 分析锂离子电池硅负极材料存在问题, 探讨硅基负极材料的合成、制备工艺以及未来硅基材料的研究方向和应用前景. 分析结果表明, 通过硅的纳米化、无定形化、合金化及复合化等技术手段, 实现硅基负极材料同时兼备高容量、长寿命、高库伦效率和倍率性能, 是未来的主要发展方向. 关键词: 应用化学; 锂离子电池; 负极材料; 硅基复合材料。 锂离子二次电池因具有比能量高、充放电寿命长、无记忆效应、自放电率低、快速充电、无污染、工作温度范围宽和安全可靠等优点, 已成为现代通讯、便携式电子产品和混合动力汽车等的理想化学电源. 在制造锂离子二次电池的关键材料中, 负极材料是决定锂离子电池工作性能和价格的重要因素. 目前商业化的负极材料主要是石墨类碳负极材料, 其实际容量已接近理论值(372 mA·h / g), 因此不能满足高能量密度锂离子微电池的要求. 另一方面, 石墨的嵌锂电位平台接近金属锂的沉积电势, 快速充电或低温充电过程中易发生“析锂” 现象从而引发安全隐患. 此外, 石墨材料的溶剂相容性差, 在含碳酸丙烯酯等的低温电解液中易发生剥离导致容量衰减[1] . 因此, 寻求高容量、长寿命、安全可靠的新型负极材料来代替石墨类碳负极, 是锂离子电池发展的迫切需要. 在各种新型合金化储锂的材料中, 硅容量最高, 能和锂形成Li 12 Si 7 、Li 13 Si 4、Li7Si3 、Li15Si4 和Li22Si5等合金, 理论储锂容量高达4212mA·h / g, 超过石墨容量的10倍[2-3] ; 硅基负极材料还具有与电解液反应活性低和嵌锂电位低(低于0.5 V) 等优点[4-5] . 硅的嵌锂电压平台略高于石墨, 在充电时难以引起表面锂沉积的现象, 安全性能优于石墨负极材料[6] . 此外, 硅是地壳中丰度最高的元素之一, 其来源广泛, 价格便宜, 没有毒性, 对于硅负极材料的商业化应用具有极大的优势. 本文评述了近年来单质硅、硅-金属合金以及硅-碳复合材料和其他硅基复合体系作为锂离子二次电池负极材料最新研究成果, 并对今后研究方向和应用前景作了展望. 一、硅脱嵌锂时的结构变化

平面光波导(PLC, planar Lightwave circuit)技术

平面光波导(PLC, planar Lightwave circuit)技术 随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。 1.平面光波导材料 PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。 图1. PLC光波导常用材料 铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。 InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。 二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。 SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,波导结构为脊形。 聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。 玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。

表1. PLC光波导常用材料特性 2.平面光波导工艺 以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。 二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步: 1)采用火焰水解法(FHD)或者化学气相淀积工艺(CVD),在硅片上生长一层SiO2,其 中掺杂磷、硼离子,作为波导下包层,如图2(b)所示; 2)采用FHD或者CVD工艺,在下包层上再生长一层SiO2,作为波导芯层,其中掺杂锗离 子,获得需要的折射率差,如图2(c)所示; 3)通过退火硬化工艺,使前面生长的两层SiO2变得致密均匀,如图2(d)所示。 4)进行光刻,将需要的波导图形用光刻胶保护起来,如图2(e)所示; 5)采用反应离子刻蚀(RIE)工艺,将非波导区域刻蚀掉,如图2(f)所示; 6)去掉光刻胶,采用FHD或者CVD工艺,在波导芯层上再覆盖一层SiO2,其中掺杂磷、 硼离子,作为波导上包层,如图2(g)所示; 7)通过退火硬化工艺,使上包层SiO2变得致密均匀,如图2(h)所示。 图2. 二氧化硅光波导的制作工艺 玻璃光波导的制作工艺如图3所示,整个工艺分为五步: 1)在玻璃基片上溅射一层铝,作为离子交换时的掩模层,如图3(b)所示; 2)进行光刻,将需要的波导图形用光刻胶保护起来,如图3(c)所示;

半导体材料硅的基本性质

半导体材料硅的基本性质 一.半导体材料 1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 1.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为: 本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为: 施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图1.1所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图1.1所示。 二.硅的基本性质 1.1 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

常见发光材料

一.常见发光种类 光致发光 灯用材料 日光灯,节能灯,黑光灯,高压汞灯,低压汞灯,LED转换组合白光 长余辉材料 放射性永久发光,超长余辉,长余辉 紫外发光材料 长波3650发光,短波2537发光,真空紫外发光,量子点发光…… 红外线发光材料 上转换发光,红外释光,热释发光, 多光子材料 荧光染料\颜料 稀土荧光,有机荧光 电致发光 高场发光 直流粉末DCEL,交流粉末ACEL,薄膜发光,厚膜发光,有机发光 低场发光 发光二极管(LED),有机发光(OEL-OLED),硅基发光,半导体激光 阴极射线发光 彩色电视发光材料 黑白电视发光材料 像素管材料 低压荧光材料 超短余辉材料 放射线发光 α射线发光材料,β射线发光材料,γ射线发光材料,氚放射发光材料,闪烁晶体材料 X射线发光 X存储发光材料 X增感发光材料 CT扫描发光材料 摩擦发光 单晶发光,微晶发光 化学发光 有机化合物发光(荧光染料) 液体发光 有机稀土发光 生物发光 酶发光,有机发光, 反射发光(几何光学) 光学镀膜反射材料,玻璃微珠反射材料 二.常见发光材料成份 物质发光过程有激励、能量传输和发光三个过程。激励方式主要有电子束激发,光激发和电场激发。电子束激发有阴极射线(CRT)发光材料,真空荧光(VFD)材料,场发射(FED)显示材料;光激发有荧光灯用发光材料,等离子显示(PDP)发光材料,X射线激发光材料等;电场激发有电致发光(EL)材料,发光二极管(LED)材料。 1 .阴极射线(CRT)稀土发光材料

表1 阴极射线稀土发光材料 组份发光色余辉用途 Y2O2S:Eu3+ 红 M 彩电,终端显示 Y2O2S:Eu3+ 红 M 投影电视 Y3(Al,Ga)5O12:Tb3+ 绿 M 投影电视 Y2SiO5:Tb3+ 绿 M 投影电视 InBO3:Tb3+ 绿 M 终端显示 InBO3:Eu3+ 红 M 终端显示 Y2SiO5:Ce3+ 415nm S 束电子引示管 (Beam index tube) Y3Al3Ga2O12:Ce3+ 520nm S 束电子引示管 (Beam index tube) YAlO3:Ce3+ 370nm S 束电子引示管 (Beam index tube) Y3Al5O12:Ce3+ 535nm S 飞点扫描管 2 .真空荧光显示(VFD)稀土发光材料 VFD用稀土发光材料较少,效率也不高,如SnO2:Eu3+, Y2O2S:Eu3+,很少使用。 3. 场发射显示(FED)稀土发光材料 FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度(寻址时间)非常快,而功耗仅是LCD的1/3,其应用前景令人关注。FED稀土发光材料如表2所示。 表2 FED稀土发光材料 组成颜色发光效率 SrTiO3:Pr 红 0.4 Y2O3:Eu 红 0.7 Y2O2S:Eu 红 0.57 Y3(Al,Ga)5O12:Tb 绿 0.7 Y2SiO5:Tb 绿 1.1 SrGa2S4:Eu[1] 绿 4.0 ZnS:Cu,Al 绿 2.6 Y2SiO5:Ce 兰 0.4 SrGa2S4:Ce[1] 兰 1.5 ZnS:Ag,Cl 兰 0.75 4 .灯用稀土发光材料 使用稀土三基色荧光粉的节能灯流明效率高,显色性好,是欧美、日和我国大力推广的绿色照明。灯用稀土发光材料如表3所示。 表3 灯用稀土发光材料 组成颜色用途 Y2O3:Eu 红节能灯 Y(V,P)O4:Eu 红高压汞灯 MgAl11O19:Ce,Tb 绿节能灯 LaPO4:Ce,Tb 绿节能灯 GdMgB5O10:Ce,Tb 绿节能灯 BaMgAl10O17:Eu,Mn 兰绿节能灯

阐述硅基负极材料粘结剂的研究进展并对不同类型粘结剂进行优缺点对比

阐述硅基负极材料粘结剂的研究进展并对不同类型粘结剂进行优缺点对比硅(Si)基负极材料的理论比容量(4200 mAh/g)高、嵌脱锂平台较适宜,是一种理想的锂离子电池用高容量负极材料。在充放电过程中,Si的体积变化达到300%以上,剧烈的体积变化所产生的内应力,容易导致电极粉化、剥落,影响循环稳定性。 在锂离子电池中,粘结剂是影响电极结构稳定性的重要因素之一。根据分散介质的性质,锂离子电池粘结剂可分为以有机溶剂为分散剂的油性粘结剂和以水为分散剂的水性粘结剂。刘欣等综述了髙容量负极用粘结剂的研究进展,认为聚偏氟乙烯(PVDF)改性粘结剂和水性粘结剂的应用,可使高容量负极电化学的性能得到提高,但没有针对硅基负极用粘结剂进行论述或比较。 本文作者就硅基负极材料粘结剂的研究进展进行了综述并对不同类型粘结剂的优缺进行了比较。 1、油性粘结剂 在油性粘结剂中,PVDF的均聚物和共聚物应用得最为广泛。 1.1 PVDF均聚物粘合剂 在锂离子电池的规模化生产中,普遍以PVDF作为粘结剂,有机溶剂N-甲基吡咯烷酮(NMP)等作为分散剂。PVDF 具备良好的粘性和电化学稳定性,但电子和离子导电性较差,有机溶剂易挥发、易燃易爆且毒性大;而且PVDF只以弱范德华力与硅基负极材料相连,不能适应Si剧烈的体积变化。传统型PVDF并不适用于硅基负极材料[3 -5]。 1.2 PVDF改性粘结剂 为改善PVDF应用于硅基负极材料的电化学性能,有学者提出共聚和热处理等改性方法。Z. H. Chen等发现:三元共聚物聚偏氟乙烯-四氟乙烯-乙烯共聚物[P(VDF- TFE-P)]可增强PVDF的机械性能和粘弹性。J. Li等发现:在300℃、氩气保护的条件下热处理,可提高PVDF 的分散性和粘弹性。改性PVDF/Si电极以150 mA/g在0.17 ~ 0_ 90 V循环50次,比容量为600 mAh/g。PVDF/Si电极经改性处理,循环性能虽然有所改善,但循环稳定性仍不理

光波导

西安邮电大学 专业课程设计报告书 院系名称:电子工程学院 学生姓名:刘寒 学号05103073 专业名称:光信息科学与技术班级:光信息1003 实习时间:2013年4月22日至2013年5月3日

课程设计题目:直波导和弯曲波导的耦合 一.课程设计的任务和要求 1. 学习使用OptiBPM软件 2. 运用BPM仿真直波导和弯曲波导的耦合 二.设计步骤 1.阅读OptiBPM提供的操作指南,了解和学习光波导的参数设置,以及各种波 导的画法。 2.先尝试画一条直波导,观察光在光波导中的能量分布,模拟出古斯汉欣位移 效应,并做出分析,选取不同的折射率观察对光能量有何影响。分析讨论古斯汉欣位移距离的量级。 3.做直波导与弯曲波导的耦合,改变波导的折射率、波导间距离、波导宽度等 参数,观察光波的传播规律。 三.仿真结果分析 1.直波导通入光后,古斯-汉欣位移效应,光波导宽度40um,纤芯折射率:3.3, 包层折射率:3.27.仿真图(图1-1)如下: 图1-1 光在波导中的光强度在波导中,从中心处向两边缘逐渐减小,可是光强的分布范围很明显大于40um的光波导宽度,多余出来的距离就是古斯-汉欣位移。所谓的古斯-汉欣位移,即就是实际的反射点与理想的反射点之间存在一定的距离D,可用公式表示为:

() 212 22 1 22 sin n n cn D -= θλ 式中,c 为常数,n1=3.3,n2=3.27,则C=0.03,λ为光波长。这个现象出现是基于实际光线都具有一定的空间谱宽,也即实际的光线由一光速构成,它们指向同一入射点,但入射角有一定的宽度?? 。接着在其他参数不改变的情况下,改变光波导的纤芯或者包层的折射率,然后再次观察古斯-汉欣位移的变化,如下 图1-2 虽然变化量很小,但依然可以看见,当包层折射率减小到3.15,古斯-汉欣位移减小了。之后再次改变纤芯的折射率到4.0,再次观察其位移的变化,与前两次 的进行比较,如图1-3 图1-3 这三次仿真结果对比,可以看出,无论纤芯的折射率还是包层的折射率的减小都会导致古斯-汉欣位移的减小。而且可以从图中看出古斯-汉欣位移的大小是um

光电器件研究进展和发展趋势

光电器件研究进展和发展趋势 原荣信息产业部电子第三十四研究所研究员 摘要:建设光纤接入网和DWDM系统离不开各种光学材料和器件,诸如光纤和光缆、连接器和耦合器、光发射/接收器、光波分复用/解复用器、光滤波器、光放大器、光开关以及光分插复用器等。本文就光纤通信系统用到的光电器件的研究进展和发展趋势作一个简要介绍。 一、光有源器件 1.1 可调谐激光器 可调谐激光器是实现宽带测试、WDM和光纤放大器泵浦的最重要的器件,近年制成的单频激光器都用多量子阱(MQW)结构、分布反馈(DFB)式或分布布喇格反射(DBR)式结构,有些能在80nm范围内调谐。在半导体激光器后面加上一个光纤布喇格光栅,可使波长稳定,如美国E-TEK研制的980nm泵浦激光器,输出光功率达220mW,又如法国alcatel Optronics公司研制的1480nm泵浦激光器,不但在半导体激光器后面加了一个光纤布喇格光栅,而且尾纤采用保偏光纤,既使波长稳定,又使功率也稳定。美国MPB公司推出的EBS-4022宽带光源,其输出功率达22dBm,在C波段40nm的带宽上,其平坦度≤1dB。美国Santec公司推出的TSL-220可调谐激光器,为保证pm数量级的波长精度,内置一个波长监测器;为去除ASE啐噪声,还内置一个可调谐滤波器,可调谐范围竟达80nm。 1.2光放大器 目前广泛使用的是光纤放大器,它有掺铒和掺氟2种,其单泵浦的增益典型值为17dB,双泵浦的增益典型值为35dB,噪声系数一般为5~7dB,带宽为30nm,在带宽内的增益偏差为1dB。在氟基光纤上掺镨就可制作出掺镨光纤放大器(PDFFA),可应用于工作在1.3mm波段上的G.652光纤。 半导体激光放大器(SLA)芯片具有高达30~35dB的增益,除输入和输出端存在总共8~10dB 的耦合损耗外,还有22~25dB的增益,另外行波半导体激光器具有很宽的带宽,可以对窄至几个ps的超窄光脉冲进行放大。SLA的另一个重要优点是它可与光发射机和接收机一起被单片集成在一起。欧洲ACTS KEOPS计划资助的全光分组交换系统采用的全光分组交换节点,在输入输出接口、光交换矩阵中都使用了半导体光放大器,在ns量级范围内实现了光门电路波长选择和波长转换器件的功能。 1.2.3 光纤喇曼放大器 当强激光通过光纤时,将产生受激喇曼散射(SRS)。光纤喇曼放大器(FRA)就是利用强泵浦光束通过光纤传输产生的受激喇曼散射。光纤喇曼放大器可覆盖的光谱范围宽,比泵浦光波长大约长100nm的波长区均可获得最大的增益,目前增益带宽已达132nm。这样通过选择泵浦光波长,就可实现任意波长的光放大,所以喇曼放大器是目前唯一能实现1290~1660nm光谱放大的器件。另外,它适用于任何种类的光纤。 光纤喇曼放大器由于其自身固有的全波段可放大的特性和可利用传输光纤做在线放大的优点,1999年已成功地应用于DWDM系统中。使用分布光纤喇曼放大器,可以增大传输距离,提高传输比特率,另外还允许通过加密信道间隔,提高光纤传输的复用程度和传输容量。传输跨距的延伸,有时可免除在两地之间安装昂贵的3R中继器,特别是在大陆和海岛、海岛和海岛间的海缆通信中,具有特别的意义。富士通在211×10Gb/s的DWDM系统中,使无中继传输距离从50km增加到80km,使系统传输距离达到7200km。朗讯和阿尔卡特也有类似的实验。阿尔卡特报道已将32×40Gb/s的无中继DWDM系统的传输距离延伸到250km。 1.3 光纤激光器

元器件简介

常用电子元器件介绍 在我们电子设计的过程中会用到很多的电子元器件,常用的一般有电阻、电容、电感、二极管、三极管、led、各类集成块、芯片等。 一.电容 常见电容器:纸介电容器、有机薄膜电容、云母电容、陶瓷电容、电解电容器、表贴电容器、空气介质可变电容等。 具体的分类如下: 1.从结构分:固定电容器、可变电容器和微调电容器。 2.从电解质分:有机介质电容器、无机介质电容器、电解电容器和空气介质电 容器等。 3.从用途分:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型 电容器。 应用:电源滤波,低频耦合,去耦,旁路等 二.电感 1. 分类:a.按电感形式分类:固定电感、可变电感。 b.按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。c.按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 d.按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。 2.主要参数:电感量,品质因数,额定电流 3.应用:滤波、振荡、延迟、陷波等,阻交流通直流,阻高频通低频(滤波) 滤波用的。 三.二极管 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。 常用二极管的特性:1.正向导电性 当正向电压达到某一数值(锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 3发光特性 常用二极管的应用:1、整流 2、开关3、限幅4、继流在开关电源的电感中和继电器等感性负载中起继流作用。5、检波在收音机中起检波作用。 四.LED LED也是二极管的一种,它是一种发光二极管, 这种半导体组件一般是作为指示

探析硅光学技术的原理、种类及优势

探析硅光学技术的原理、种类及优势 当互联网流量在用户和数据中心之间传递时,越来越多数据通信发生在数据中心,让现有数据中心交换互联变得更加困难,成本越来越高,由此技术创新变得十分重要与紧迫。 现在有一种半导体技术——硅光子,具有市场出货量与成本成反比的优势,相比传统的光子技术,硅光器件可以满足数据中心对更低成本、更高集成、更多嵌入式功能、更高互联密度、更低功耗和可靠性的依赖。 微电子技术按照“摩尔定律”飞速发展已有五十几年了,但随着器件的特征尺寸减小到十几个纳米以下,微电子产业能否再依照“摩尔定律”前进已面临挑战。器件的速度、功耗和散热已经成为制约微电子技术发展的瓶颈。另一方面,基于计算机与通信网络化的信息技术也希望其功能器件和系统具有更快的处理速度、更大的数据存储容量和更高的传输速率。仅仅利用电子作为信息载体的硅集成电路技术已经难以满足上述要求。因此,应用“硅基光电子技术”,将微电子和光电子在硅基平台上结合起来,充分发挥微电子先进成熟的工艺技术,大规模集成带来的低廉价格,以及光子器件与系统所特有的极高带宽、超快传输速率、高抗干扰性等优势,已经成为了信息技术发展的必然和业界的普遍共识。 什么是硅光技术? 硅光子是一种基于硅光子学的低成本、高速的光通信技术,用激光束代替电子信号传输数据,她是将光学与电子元件组合至一个独立的微芯片中以提升路由器和交换机线卡之间芯片与芯片之间的连接速度。 硅光子技术是基于硅和硅基衬底材料(如SiGe/Si、SOI 等),利用现有CMOS 工艺进行光器件开发和集成的新一代技术,结合了集成电路技术的超大规模、超高精度制造的特性和光子技术超高速率、超低功耗的优势,是应对摩尔定律失效的颠覆性技术。这种组合得力于半导体晶圆制造的可扩展性,因而能够降低成本。 硅光子架构主要由硅基激光器、硅基光电集成芯片、主动光学组件和光纤封装完成,使用

光波导的一些基本概念

平面光波导,英文缩写PLC是英文Planar Lightwave Circuit的缩写,翻译成中文为: 平面光波导(技术)。所谓平面光波导,也就是说光波导位于一个平面内。正如大家所熟悉的单层电路板,所有电路都位于基板的一个平面内一样。因此,PLC是一种技术,它不是泛指某类产品,更不是分路器!我们最常见的PLC分路器是用二氧化硅(SiO2)做的,其实PLC技术所涉及的材料非常广泛,如玻璃/二氧化硅(Quartz/Silica/SiO2)、铌酸锂(LiNbO3)、III-V族半导体化合物(如InP, GaAs等)、绝缘体上的硅 (Silicon-on-Insulator, SOI/SIMOX)、氮氧化硅(SiON)、高分子聚合物(Polymer)等。 基于平面光波导技术解决方案的器件包括:分路器(Splitter)、星形耦合器(Star coupler)、可调光衰减器(Variable Optical Attenuator, VOA)、光开关(Optical switch)、光梳(Interleaver)和阵列波导光栅(Array Waveguide Grating, AWG)等。根据不同应用场合的需求(如响应时间、环境温度等),这些器件可以选择不同的材料体系以及加工工艺制作而成。值得一提的是,这些器件都是光无源器件,并且是独立的。他们之间可以相互组合,或者和其他有源器件相互组合,能构成各种不同功能的高端器件,如:VMUX = VOA + AWG、WSS = Switch + AWG等(图2)。这种组合就是PLC技术的未来发展方向-光子集成(Photonic Integrated Circuit, PIC

2019-2020年高中化学4.1.1单质硅与半导体材料二氧化硅与光导纤维课时作业鲁科版必修

2019-2020年高中化学4.1.1单质硅与半导体材料二氧化硅与光导纤 维课时作业鲁科版必修 A组——知能训练 1.常温下能与硅发生反应的气体是( ) A.O2B.H2 C.F2D.Cl2 解析:常温下与Si反应的物质有F2、氢氟酸和强碱溶液。 答案: C 2.科学家提出硅是“21世纪的能源”,这主要是由于作为半导体材料的硅在太阳能发电过程中具有重要的作用。下列关于硅的说法中正确的是( ) A.自然界中硅元素的含量最丰富 B.自然界中存在大量单质硅 C.高纯度的硅被用于制做计算机芯片 D.光导纤维的主要成分是Si 解析:自然界中含量最丰富的元素是氧元素,A项错误;硅的性质虽然不活泼,但自然界不存在游离态硅,只有化合态硅,B项错误;硅是良好的半导体材料,可用于制造计算机芯片等,C项正确;光导纤维的主要成分是SiO2,不是Si,D项错误。 答案: C 3.关于硅的化学性质的叙述中,不正确的是( ) A.在常温下,不与任何酸反应 B.在常温下,可与强碱溶液反应 C.在加热条件下,能与氧气反应 D.单质硅的还原性比碳的还原性强 解析:A项,在常温下,Si能与氢氟酸反应,不正确,Si在常温下能与强碱溶液反应,加热条件下也能与Cl2、O2等反应。B、C正确,碳和硅最外层电子数相同,化学性质相似,但硅比碳易失电子,还原性比碳强,D正确。 答案: A 4.能证明硅酸的酸性弱于碳酸酸性的实验事实是( ) A.CO2是气体,SiO2是固体 B.高温下SiO2与碳酸盐反应生成CO2 C.CO2溶于水形成碳酸,SiO2难溶于水 D.CO2通入Na2SiO3溶液中析出硅酸沉淀 解析:酸性强弱与这种酸的酸酐的状态、物理性质和化学性质均无关,A、B、C都不

硅基发光材料与光互连的基础研究

硅基发光材料与光互连的基础研究 ★项目简介: 建立在硅材料基础之上的微电子技术对人类社会的进步发挥了巨大的作用,对我国国民经济的发展,工业、科技和国防的现代化也起着至关重要的作用。在进入21世纪以后,我国正大力发展微电子工业,有望成为新兴的国际微电子工业基地,是国家发展的重大需求所在。随着信息产业的发展,信息数据将海量增加,对信息计算、传输等技术在今后的发展也提出了更高的要求和挑战。其主要的解决途径之一就是将现有成熟的微电子和光电子结合,实现硅基光电集成,这将成为信息产业发展的重要方向之一。近十年来,由于重大的工业意义,硅基光电集成关键材料和器件的研究引起了国际科学界(如美国MIT、哈佛大学)和工业界(如Intel,ST)的严重关注,仅Intel公司对硅基光电子的研发就投入数十亿美元巨资。一旦突破,不仅可以实现芯片光互连、光电集成以及将来的光计算,而且在光通讯、光显示等领域具有重大的潜在应用前景,对我国的信息产业的发展具有重大意义。本项目的主要目标是:探索硅基发光和光互连的新材料、新原理和新器件。采用能带工程、缺陷工程等途径,对硅基发光材料进行人工改性,发展新的硅基发光材料;提高硅基电致发光效率,实现硅基电泵激光。研究硅基微纳尺度下光的传输与控制,解决硅基芯片光互连和光电集成的关键问题。为我国硅基光电子产业的发展提供坚实的理论基础和技术、人才贮备,促进高速、大容量计算机技术的重大突破。本项目拟解决的关键科学问题是:(1)硅基高效率发光微结构体系的构建原理、可控制备和表征,以及硅基发光材料表面、界面结构的调控。(2)硅基发光材料的载流子注入、输运与复合过程,硅基电致发光的内、外量子效率增强和电泵激光的机制。 (3)微纳尺度下,硅基光波导中的光传输和控制,硅基光互连和单片集成中的光电融合。围绕科学问题,我们研究(1)硅基纳米材料的发光原理和技术,(2)硅基化合物半导体材料的发光原理及技术,(3)硅基材料杂质和缺陷的发光原理和技术,(4)硅基SiGe量子阱材料的发光原理和技术,(5)硅基光电子光互连和光电集成的关键原理和工艺。针对上述主要研究内容,为解决关键科学问题,我们设立五个课题,分别为:(1)硅基纳米材料的构建、调控及发光原型器件,(2)纳米化合物半导体/硅异质结构发光材料及原型器件,(3)基于缺陷工程的硅基发光材料及原型器件,(4)基于能带工程的硅基发光材料及光电子原型器件,(5)硅基微纳光波导传输与单片光电集成技术。前四个课题是通过不同的技术途径研究硅基发光来解决硅基光源问题,重点放在硅基纳米硅、硅基铒离子注入和硅基纳米硫化镉/硒化镉化合物异质结这三种材料体系中实现光放大和光增益。在此基础上,结合实际的器件或集成工艺,形成电致发光器件,并力争实现真正的硅基电致激光。而在实现硅基发光的基础上,最后一个课题则研究硅基光互连和光电集成。我们充分发挥人员交叉、学科交叉和单位交叉的优势,由国内硅基光电子研究的主要优势单位承担本课题。 项目由浙江大学牵头、中科院半导体所、北京大学、南京大学、南开大学和厦门大学参加,研究队伍包括了固体微结构国家实验室(筹)和集成光电子学、人工微结构与介观物理和硅材料三个国家重点实验室中研究硅基发光的几乎所有骨干力量,课题组成员包括2位中科院院士、3位国家杰出青年基金获得者和一批优秀的中青年学术骨干。在过去5年中,这一团队在本领域获得包括2项国家自然科学二等奖在内的一批科研成果,承担和完成了20多项相关的科研项目。本项目的完成不仅会提高我国硅基光电子材料的整体研究水平、跻身于国际研发的先进行列,还将培养一批优秀的中青年学术带头人,为我国新一代光电集成、计算机等的工业应用和发展提供理论基础和技术、人才储备。 ★项目专家组: 姓名单位 杨德仁浙江大学 徐骏南京大学 江晓清浙江大学 俞育德中国科学院半导体研究所 秦国刚北京大学

硅基锂电池负极材料的研究进展及应用前景

硅基锂电池负极材料的研究进展及应用前景硅是目前已知比容量(4200mAh/g)最高的锂离子电池负极材料,但由于其巨大的体积效应(>300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层SEI,最终导致电化学性能的恶化。近年来,研究者们做了大量的研究和探索,尝试解决这些问题并取得了一定的成效,本文表述了该领域的研究进展,并提出进一步的研究方向和应用前景。 硅的脱嵌锂机理和容量衰减机制 硅不具有石墨基材料的层状结构,其储锂机制和其他金属一样,是通过与锂离子的合金化和去合金化进行的,其充放电电极反应可以写作下式: Si+xLi++x e-=Li x Si 图1 硅基锂离子电池原理图:(a)充电;(b)放电在与锂离子发生合金与去合金化过程中,硅的结构会经历一系列的变化,而硅锂合金的结构转变和稳定性直接关系到电子的输送。 根据硅的脱嵌锂机理,我们可以把硅的容量衰减机制归纳如下:

(1)在首次放电过程中,随着电压的下降,首先形成嵌锂硅与未嵌锂晶态硅两相共存的核壳结构。随着嵌锂深度的增加,锂离子与内部晶体硅反应生成硅锂合金,最终以Li15Si4的合金形式存在。这一过程中相比于原始状态硅体积变大约3倍,巨大的体积效应导致硅电极的结构破坏,活性物质与集流体'活性物质与活性物质之间失去电接触,锂离子的脱嵌过程不能顺利进行,造成巨大的不可逆容量。 (2)巨大的体积效应还会影响到SEI的形成,随着脱嵌锂过程的进行,硅表面的SEI 会随着体积膨胀而破裂再形成,使得SEI越来越厚。由于SEI的形成会消耗锂离子,因而造成了较大的不可逆容量。同时SEI较差的导电性还会使得电极的阻抗随着充放电过程不断增大,阻碍集流体与活性物质的电接触,增加了锂离子的扩散距离,阻碍锂离子的顺利脱嵌,造成容量的快速衰减。同时较厚的SEI还会造成较大的机械应力,对电极结构造成进一步破坏。 (3)不稳定的SEI层还会使得硅及硅锂合金与电解液直接接触而损耗,造成容量损失。 硅材料的选择与结构设计 1. 无定型硅和硅的氧化物 (1)无定型硅 无定形硅在低电位下拥有较高的容量,作为锂离子电池负极材料"相比于石墨类电极材料安全性能更高。但无定形硅材料只能在有限程度上缓解颗粒的破碎和粉化,其循环稳定性仍不能满足作为高容量电池负极材料的要求。 (2)硅的氧化物 作为锂离子电池负极材料,SiO具有较高的理论比容量(1200mAh/g以上)、良好的循环性能以及较低的脱嵌锂电位,因此也是一种极具潜力的高容量锂离子电池负极材料。但氧化硅含氧量的不同也会影响其稳定性和可逆容量:随着氧化硅中氧的提高,循环性能提高,但可逆容量减小。 除此之外,硅氧化物作为锂离子电池负极材料还存在一些问题:由于首次嵌锂过程中Li2O和锂硅酸盐形成过程是不可逆的,使得首次库仑效率很低;同时Li2O和锂硅酸盐导电性差,使得电化学动力学性能较差,因而其倍率性能差;相比于单质硅,硅氧化物作为负极材料的循环稳定性更好,但是随着循环次数继续增加,其稳定性仍然很差。 2. 低维硅材料 低维度的硅材料在同质量下拥有更大的表面积,利于材料与集流体和电解液的充分接触,减少由于锂离子不均匀扩散造成的应力和应变,提高材料的屈服强度和抗粉化能力,使

硅基发光材料简述

硅基发光材料简述 摘要:本文简要描述了三种硅基发光材料:掺铒硅、多孔硅、纳米晶硅的发光特性、优缺点和应用前景。从而对这些硅基发光材料有所了解并对其可能的研究方向进行初步的了解。 关键词掺铒硅多孔硅纳米硅晶光学特性 一、前言 硅材料在半导体工业中有着不可替代的作用,硅在地球上储量丰富,硅基器件制造成本低廉、环境友好且制造工艺非常成熟,是迄今最适合于集成工艺的材料。然而,由于体硅为间接带隙材料其发光效率低下,故而被认为不是良好的光电子材料,不适宜应用于光电子领域。然而相较于在光电子领域站优势地位的化合物半导体材料,硅基光电子材料又有着成本低廉、易于实现光电集成等优点,且随着对硅材料的进一步深入研究,人们又发现了硅基发光的一些新特性,因而近年来对于硅基发光材料的研究受到越来越多的关注。本文将回顾硅基发光的研究历史,并归纳几种硅基发光材料的性质和特点,以期能对硅基发光材料有着更好地理解并对硅基发光材料未来的研究方向有所了解。 二、实现硅基发光的几种方法 由于硅单晶并不是一种很好的光电子材料,因此虽然经过各种技术上的改进,体硅发光二极管发光效率已可达到1%,但体硅发光并不是硅基发光的主要研究方向。目前,对硅基发光的努力方向主要有如下几个方面: 1 通过杂质或利用缺陷处复合放光; 2 通过合金或分子调节发射波的波长; 3利用量子限制效应或能带工程,通过增加电子-空穴复合的几率来增加发光效率; 4采用硅基混合的方法将其他直接带隙材料与硅相结合; 下面本文将简要介绍几种硅基发光材料。 2.1 掺铒硅的发光 对于间接带隙半导体材料,可以通过引入杂质的方法使电子或空穴局域化,形成复合中心,提高复合率,达到发光效率增加的目的。目前,硅中稀土杂质(特别是铒)的掺杂被认为是这种手段中最具有应用前景的一种手段。 稀土元素铒4f壳层中的正三价态离子的分离态具有具有类似于原子跃迁(I l3/2→l5/2)的辐 射发光特性,可发射波长1.54μm的光,对应着石英光纤的最低损耗波长区域,因而掺铒硅 发光在硅基光通讯中有着重大的潜在应用前景。掺铒硅的发光独立于体硅发光,是典型的第

硅基光电器件研究进展

半导体技术 Semiconductor Technology 1999年 第1期 No.1 1999 硅基光电器件研究进展 郭宝增 摘要 在信息处理和通信技术中,光电子器件起着越来越重要的作用。然而,因为硅是间接带隙半导体,试图把光电子器件集成在硅微电子集成电路上却遇到很大困难。为解决这一困难,人们发展了多种与硅微电子集成电路兼容的光电子器件制造技术。本文介绍最近几年这方面技术的发展情况。 关键词 多孔硅 光电子器件 硅集成电路 Research Development of Silicon-Based Optoelectronic Devices Guo Baozeng (Department of Electronic & Informational Hebei University,Baoding 071002) Abstract Silicon-based optoelectronic devices are increasingly important in information and communication technologies.But attempts to integrate photonics with silicon-based microelectronics are hampered by the fact that silicon has an indirect band gap,which prevents efficient electron-photon energy conversion.In order to solve this problem,many technologies to make optoelectronic devices which can be compatible with conventional silicon technology have been developed.In this article,we review the deve-lopment of these thchnologies. Keywords Porous silicon Optoelectronic devices Silicon integrated circuit 1 引 言 硅是微电子器件制造中应用得最广泛的半导体材料。硅集成电路的应用改变了当代世界的面貌,也改变了人们的生活方式。但是,一般硅集成电路只限于处理电信号,对光信号的处理显得无能为力。然而,光电器件的应用却是非常广泛的,光纤通信、光存储、激光打印机及显示设备都 要用到各种光电器件。从更广的意义上说,我们所处的世界实际上是一个光的世界。据心理学家分析,人们通过眼睛所接收的信息占总接收信息量的83%,即人们接收的信息83%是光信号。因此可以想象,在未来信息化社会里,对光电子器件的需求决不亚于对微电子器件的需求。目前采用的光电子器件,主要是Ⅲ-Ⅴ族材料,这些器件与广泛使用的硅技术不兼容,而且制造成本高,因

半导体硅材料

半导体硅材料和光电子材料的发展现状及趋势 随着微电子工业的飞速发展, 作为半导体工业基础材料的硅材料工业也将随之发展,而光电子科技的飞速发展也使半导体光电子材料的研究加快步伐,所以研究半导体硅材料和光电子材料的发展现状及未来发展趋势势在必行。现代微电子工业除了对加工技术和加工设备的要求之外,对硅材料也提出了更新更高的要求。 在当今全球超过2000亿美元的半导体市场中,95%以上的半导体器件和99%以上的集成电路都是用高纯优质的硅抛光片和外延片制作的。在未来30-50年内,它仍将是集成电路工业最基本和最重要的功能材料。半导体硅材料以丰富的资源、优质的特性、日臻完善的工艺以及广泛的用途等而成为了当代电子工业中应用最多的半导体材料。 随着国际信息产业的迅猛发展, 电子工业和半导体工业也得到了巨大发展,并且直到20世纪末都保持稳定的15%的年增长率迅速发展,作为半导体工业基础材料的硅材料工业也将随之发展,所以研究半导体硅材料的发展现状及未来发展趋势势在必行。

一、半导体硅材料的发展现状 由于半导体的优良性能,使其在射线探测器、整流器、集成电路、硅光电池、传感器等各类电子元件中占有极为重要的地位。同时,由于它具有识别、存储、放大、开关和处理电信号及能量转换的功能,而使“半导体硅”实际上成了“微电子”和“现代化电子”的代名词。 二、现代微电子工业的发展对半导体硅材料的新要求 随着微电子工业飞速发展, 除了本身对加工技术和加工设备的要求之外, 同时对硅材料也提出了更新更高的要求。 1. 对硅片表面附着粒子及微量杂质的要求 随着集成电路的集成度不断提高,其加工线宽也逐步缩小,因此, 对硅片的加工、清洗、包装、储运等工作提出了更高的新要求。对于兆位级器件, 0.10μm的微粒都可能造成器件失效。亚微米级器件要求0.1μm的微粒降到10个/片以下同时要求各种金属杂质如Fe、Cu、Cr、Ni、A1、Na 等, 都要控制在目前分析技术的检测极限以下。 2. 对硅片表面平整度、应力和机械强度的要求

锂离子电池大容量硅基负极材料的研究进展

综述专论 化工科技,2017,25(1):67~72 SCIENCE &TECHNOLOGY IN CHEMICAL INDUSTRY ?通讯联系人:王存国(1967-) ,男,山东高密人,青岛科技大学教授,潍坊市高层次创业创新人才,主要从事新能源电池材料及环境修复研究 .作者简介:潘一璇(1992-) ,女,陕西渭南人,青岛科技大学硕士研究生,主要从事新能源电池材料研究.收稿日期:2016-11-15 锂离子电池大容量硅基负极材料的研究进展 潘一璇,王存国?,朱孟康,刘艺涵,路乃群 (青岛科技大学橡塑材料与工程教育部重点实验室山东省橡塑材料与工程重点实验室,山东青岛266042) 摘一要:高容量锂离子电池是目前新能源电池的研究重点之一.由于硅的理论容量(4200mAh /g ) 是石墨电极材料容量(372mAh /g )的十倍以上,因而成为锂离子电池负极材料的研究热点.然而,在充放电过程中,由于硅电极体积变化较大,可造成活性物质的破坏和失效,导致其循环性能变差.此外,硅的电导率较低,并且与传统电解质的相容性较差.这些缺点严重影响了硅的电化学性能,限制了其在锂离子电池领域的广泛应用.综述了锂离子电池硅基负极材料的研究进展,探讨了高性能硅基复合电极材料的制备方法. 关键词:锂离子电池;硅;负极材料;循环性能;二次电池 中图分类号:O 613.7;O 646.5;TQ 152一文献标识码:A一文章编号:1008-0511(2017)01-0067-06 一一锂离子电池具有较高的能量密度和高工作电 压(3.0~3.8V ) 等优点,从而被广泛应用到移动电源设备二储能设备等产品中[ 1] .为了适用电动汽车等大容量动力电池要求,科学家们一直在不断寻找具有更高能量密度的新型电极材料[ 2] .硅(Si ) 被认为是一种很有前途的锂离子电池负极材料,它在锂离子嵌入过程中会形成Li 7Si 3二Li 12 Si 7二Li 13Si 4二Li 15Si 4二Li 22Si 5等锂含量很高的硅锂合金,其中Li 4.4Si 的容量达到4200mAh /g ,是目前已知的具有最高理论容量的负极材料 [3] .同 时,Si 的电压平台高于碳材料,可以避免在充电过程中材料表面出现析锂现象,提高了电池的安全性能.另外,Si 在地壳中储量丰富二价格低廉等优点,从而受到人们的广泛关注.但是,硅作为电极材料仍然存在一些缺点,首先在充放电过程中,Si 原子结合Li 原子的同时会产生巨大的体积 膨胀(300%),使活性材料从集流体上逐渐脱落,使活性材料与集流体接触变差,初期循环后电极 容量大大衰减[4-5] .其次,电解液的分解物会腐蚀 硅,在Si 表面不断生成SEI 膜(表面结构钝化 膜),也会使电极容量加剧衰减,充放电效率急剧降低.并且,Si 自身也会逐渐粉化从而失去与集 流体之间的电接触致使容量骤减,循环性能迅速 下降[6-8] .再者,Si 本身是半导体材料, 作为负极材料,必须提高其导电性能.针对上述问题,人们从各种途径进行探索来改善Si 负极材料的性能,例如设计低维化与复合化的Si 负极材料来弥补 其性能上的不足[9-10] ,作者在此详细叙述了硅基 电极材料的改性研究与最新进展,为人们深入研究提供参考与借鉴. 1一硅材料的低维化改进 1.1一零维化纳米硅颗粒 低维化也称之为纳米化,目前低维化主要有零维化二一维化及二维化.零维化即制备纳米级 的Si 颗粒[ 11-12] .块状的硅在首次循环中库仑效率较低,只有约35%,且容量衰减很快.这是因为硅在首次嵌锂过程中硅与硅之间的键受到了破坏,致使硅形成了一系列的锂硅合金原子团或硅原子团,如:Li 12Si 7,Li 14Si 6,Li 13S 4,Li 22Si 5,呈现不同程度的体积膨胀,使活性材料与集流体之间的接触变差,循环性能大大降低.在嵌入锂离子的过程中,硅材料的电阻也随之发生了规律性的变化,锂硅合金的电阻在首次嵌锂过程中减小,达

相关主题
文本预览
相关文档 最新文档