当前位置:文档之家› 弹性变形与塑性变形

弹性变形与塑性变形

弹性变形与塑性变形
弹性变形与塑性变形

一、弹性和塑性的概念

可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。

根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elasticity)”和“塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面:

1)变形是否可恢复

.......:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性

变形则是不可恢复的,塑性变形过程是一个不可逆的过程。

2)应力和应变之间是否一一对应

.............:在弹性阶段,应力和应变之间存在一一对应的单值函数关

系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。

工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。

二、弹塑性力学的研究对象及其简化模型

弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力

学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。

构成实际固体的材料种类很多,它们的性质各有差异,为便于研究,往往根据材料的主要性质做出某些假设,忽略一些次要因素,将它抽象为理想的“模型”。在弹性理论中,实际固体即被抽象为所谓的“理想弹性体”,它是一个近似于真实固体的简化模型。“理想弹性”的特征是:在一定的温度下,应力和应变之间存在一一对应的关系,而且与加载过程无关,与时间无关。

在塑性理论中,由于实际固体材料在塑性阶段的应力-应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。常用的简化模型可分为两类,即理想塑性模型和强化模型。

1.理想塑性模型

在单向应力状态下,理想塑性模型的特征如图0.1所示。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。当所研究的问题具有明显的弹性变形时,常采用理想弹塑性模型。在总变形较大、而且弹性变形部分远小于塑性变形部分时,为简化计算,常常忽略弹性变形部分,而采用理想刚塑性模型;另外,在计算结构塑性极限荷载时,也常采用理想刚塑性模型。

2.强化模型

在单向应力状态下,强化模型的特征如图0.2所示。强化模型又分为线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型三种。

以上介绍的塑性简化模型仅仅是材料在单向应力状态下的情况,在二维和三维复杂应力状态下,塑性模型就要复杂得多了,有关这方面的概念,将在第三章中介绍。由于在土木工程

实践中,理想塑性模型应用较多,所以,本书在介绍与塑性理论相关的容时,基本都采用了这个简化模型。

三、基本假定

弹塑性力学是一门力学学科,所以,由牛顿最早总结出,其后又由拉格朗日(Lagrange)和哈米尔顿(Hamilton)等发展了的力学的一般原理在这里仍然有效,而且是构成它的理论体系的基石。但除此而外,它还包含有新的容,这主要是以下几个基本假定:

1.连续性假定

所谓连续性假定,是指将可变形固体视为连续密实的物体,即组成固体的质点无空隙地充满整个物体空间。任何物体都是由原子分子组成的。对于固体来讲,还由于整个固体由许多结晶颗粒组成,从而更增加了固体的不连续性。所以,仔细推敲起来,这个假设与实际情况是不相符合的。但如果研究的是固体的宏观力学性态,则所研究的每个微小单位实际上不仅包含有相当多的原子、分子,而且还包含有相当多的晶体,这时物体便可以认为是“连续的”了。可见,连续性假定是在一定条件下对客观事物的一个近似。从这一假定出发进行的力学分析,得到的结果已被广泛的实验和工程实践证明是正确的。

根据连续性假定,固体部任何一点的力学性质都是连续的,例如密度、应力、位移和应变等,就可以用坐标的连续函数来表示(因而相应地被称为密度场、应力场、位移场和应变场等),而且变形后物体上的质点与变形前物体上的质点是一一对应的。有了连续性假定,在进行弹塑性力学分析时,就可以利用基于连续函数的一系列数学工具,避免了数学上的极大困难。

2.均匀性假定

所谓均匀性假定,即认为所研究的可变形固体是由同一类型的均匀材料所构成的,因此,其各部分的物理性质都是相同的,并不因坐标位置的变化而变化。例如,固体各点的弹性性

质都相同。根据均匀性假定,在研究问题的时候,就可以从固体中取出任一单元来进行分析,然后将分析的结果用于整个物体。

3.各向同性假定

所谓各向同性,即假定可变形固体部任意一点在各个方向上都具有相同的物理性质,因而,其弹性常数不随坐标方向的改变而改变。实际上,有不少固体材料不具有这种性质,例如木材、竹材、纤维增强复合材料等,但这类材料不在本书讨论围之。此外,各向同性假定也仅仅应用于弹性阶段,即使是初始各向同性的固体,在进入塑性阶段后,也成为各向异性的。4.小变形假定

所谓小变形假定,即假定固体在外部因素(外力、温度变化等)作用下所产生的变形,远小于其自身的几何尺寸。根据小变形假定,可以不考虑因变形引起的固体的尺寸变化,而采用变形前的几何尺寸来代替变形后的尺寸,使得问题大为简化。例如,在研究物体的平衡时,可不考虑由于变形所引起的物体尺寸和位置的变化;在建立应变和位移之间的关系时,就可以略去几何方程中的二阶小量等,使基本方程线性化。

5.无初应力假定

假定所研究的可变形固体初始处于自然状态,即在外部因素(外力、温度变化等)作用之前,其部是没有应力的。这个假定仅仅为了表述简便而引进的,若固体有初应力存在,则在外部因素(外力、温度变化等)作用时,其部实际存在的应力即等于初应力加上外部因素作用所产生的应力。

以上假定是本书所讨论的问题的基础。此外,本书还不考虑固体与时间有关的力学性质如粘性等;同时,也不考虑固体在外力作用下的动力效应,即假设外力作用过程是一个缓慢的加载过程,在这个过程中,惯性力效应可以忽略不计(这样的加载过程称为准静态加载过程)。

四、弹塑性力学问题的研究方法

弹塑性力学作为固体力学的一个独立的分支学科,已有一百多年的历史。它源于生产实践,反过来又直接为生产实践服务。弹塑性力学虽然是一门古老的学科,但在土木、机械、水利、航空、材料等工程领域,随着新材料、新结构和新技术的不断发展,实践又给它提出了越来越多新的理论问题和工程应用问题,使这门古老的学科处于不断的发展中。

工程实践中,一个具体的弹塑性力学问题的求解方法可以分为以下几类:

1)经典方法。采用数学分析方法对弹塑性力学问题的定解方程进行求解,从而得出固体部的应力和位移分布等。这种方法需要求解一个偏微分方程组的边值问题,在很多情况下,求解的难度都相当大,所以,常采用近似解法,例如,基于能量原理的Ritz法和迦辽金等。

2)数值方法。许多实际工程问题无法采用经典解法求解,而需要采用数值方法求得近似解。在数值方法中,常用的有差分法、有限元法及边界元法等。随着电子计算机技术的不断发展,目前,数值方法已被广泛应用于各类工程结构弹塑性力学问题的求解中。

3)实验方法。采用机电方法、光学方法、声学方法等来测定结构部件在外力作用下的应力和应变的分布规律,如光弹性法、云纹法等。

4)实验与数值分析相结合的方法。这种方法常用于形状非常复杂的工程结构。例如对结构的特殊部位的应力分布规律难以确定,可以用光弹性方法测定;而对结构整体,则采用数值方法进行分析。

五、与初等力学理论的联系和区别

弹塑性力学的主要任务是研究可变形固体在外部因素(例如外力、温度变化等)作用下的应力和变形分布规律,这也构成了弹塑性力学的基本容。从研究对象、研究问题的容和基本任务来看,弹塑性力学与材料力学和结构力学都是相同的;从处理问题的方法来看,弹塑性力学与材料力学和结构力学都是从静力学、几何学和物理学三个方面进行分析。

弹性变形与塑性变形

一、弹性和塑性的概念 可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elastici ty)”和“塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面: 1)变形是否可恢复 .......:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性变形则是不可恢复的,塑性变形过程是一个不可逆的过程。 2)应力和应变之间是否一一对应 .............:在弹性阶段,应力和应变之间存在一一对应的单值函数关系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型 弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力

弹性变形与塑性变形

可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elastici ty)”和“塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面: 1)变形是否可恢复 .......:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性变形则是不可恢复的,塑性变形过程是一个不可逆的过程。 2)应力和应变之间是否一一对应 .............:在弹性阶段,应力和应变之间存在一一对应的单值函数关系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型 弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。

弹性变形与塑性变形

一、弹性与塑性的概念 可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。“弹性(Elasticity)”与“塑性(P lasticity)”就是可变形固体的基本属性,两者的主要区别在于以下两个方面: 1)变形就是否可恢复 ........:弹性变形就是可以完全恢复的,即弹性变形过程就是一个可逆的过程;塑性变形则就是不可恢复的,塑性变形过程就是一个不可逆的过程。 2)应力与应变之间就是否一一对应 ..............:在弹性阶段,应力与应变之间存在一一对应的单值函数关系,而且通常还假设就是线性关系;在塑性阶段,应力与应变之间通常不存在一一对应的关系,而且就是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性与韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型 弹塑性力学就是固体力学的一个分支学科,它由弹性理论与塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力

变形与断裂总结

第一章: 单向静拉伸试验:是应用最广泛的力学性能试验方法之一。 1)可揭示材料在静载下的力学行为(三种失效形式):即:过量弹性变形、塑性变形、断裂。 2)可标定出材料最基本力学性能指标:如:屈服强度、抗拉强度、伸长率、断面收缩率等。 拉伸力-伸长曲线 拉伸曲线: 拉伸力F -绝对伸长△L 的关系曲线。 在拉伸力的作用下,退火低碳钢的变形过程四个阶段: 1)弹性变形:O ~e 2)不均匀屈服塑性变形:A ~C 3)均匀塑性变形:C ~B 4)不均匀集中塑性变形:B ~k 5)最后发生断裂。k ~ 第二章: 弹性变形:当外力去除后,能恢复到原形状或尺寸的变形。 特点:可逆性、单值线性、同相位、变形量小 本质:都是构成材料的原子(离子)或分子从平衡位置产生可逆位移的反映。 弹性模量E :是表征材料对弹性变形的抗力,工程称材料的刚度. E 值越大,在相同应力下产生的弹性变形就越小。 弹性模量是结构材料的重要力学性能指标之一。 影响因素:1、键合方式 2、原子结构 3、晶体结构 4、化学成分 5.微观组织 6.温度 弹性模量 E 与切变模量 G 关系:(其中: ν-泊松比。) 比例极限σp :是材料弹性变形按正比关系变化的最大应力,即拉伸应力一应变曲线上开始偏离直线时的应力值。 弹性极限:材料由弹性变形过渡到弹-塑性变形时的应力,当应力超过弹性极限σe 后,便开始产生塑性变形。 (比例极限σp 和弹性极限σe 与屈服强度的概念基本相同,都表示材料对微量塑性变形的抗力,影响因素也基本相同。) 弹性比功ae :(弹性比能、应变比能)表示材料在弹性变形过程中吸收弹性变形功的能力。一般用材料开始塑性变形前单位体积吸收的最大弹性变形功表示。 物理意义:吸收弹性变形功的能力。 几何意义:应力σ -应变ε曲线上弹性阶段下的面积。 欲提高材料的弹性比功:提高σe ,或降低 E 2E G ν=(1+)

弹性变形与塑性变形

、弹性和塑性的概念 可变形固体在外力作用下将发生变形。根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段: 当外力小于某一限值(通常称之为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。 根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,则定义为在去掉外力后不能恢复原来形状的性质。弹性(Elasticity)”和塑性(Plasticity)”是可变形固体的基本属性,两者的主要区别在于以下两个方面:1)变形是否可恢复: 弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性....... 变形则是不可恢复的,塑性变形过程是一个不可逆的过程。 2)应力和应变之间是否一一对应: 在弹性阶段,应力和应变之间存在一一对应的单值函数关............. 系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存 在一一对应的关系,而且是非线性关系(这种非线性称为物理非线性)。 工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。 通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 二、弹塑性力学的研究对象及其简化模型

弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。 构成实际固体的材料种类很多,它们的性质各有差异,为便于研究,往往根据材料的主要性质做出某些假设,忽略一些次要因素,将它抽象为理想的“模型”。在弹性理论中,实际固体即被抽象为所谓的“ 理想弹性体”,它是一个近似于真实固体的简化模型。“理想弹性”的特征是: 在一定的温度下,应力和应变之间存在一一对应的关系,而且与加载过程无关,与时间无关。 在塑性理论中,由于实际固体材料在塑性阶段的应力-应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。常用的简化模型可分为两类,即理想塑性模型和强化模型。 1.理想塑性模型 在单向应力状态下,理想塑性模型的特征如图 0.1 所示。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。当所研究的问题具有明显的弹性变形时,常采用理想弹塑性模型。 在总变形较大、而且弹性变形部分远小于塑性变形部分时,为简化计算,常常忽略弹性变形部分,而采用理想刚塑性模型;另外,在计算结构塑性极限荷载时,也常采用理想刚塑性模型。 2.强化模型 在单向应力状态下,强化模型的特征如图 0.2 所示。强化模型又分为线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型三种。

塑性变形力学计算

杆件的塑性变形 15.1 概 述 工程问题中绝大部分构件必须在弹性范围内工作,不允许出现塑性变形。但有些问题确须考虑塑性变形。 15.2 金属材料的塑性性质 图15.1是低碳钢拉伸的应力-应变曲线。过屈服极限后,应力和应变的关系是非线性的有 p e εεε+= (15.1) 弹性范围内,应力和应变之间是单值对应的。塑性阶段却并非如此,应力和应变不再是单值对应的关系(如图15.2)。 下面是几种常见的塑性材料模型。 图 15.1 低碳钢拉伸的应力-应变曲线 图15.2 弹塑性应力-应变

有时也把应力-应变关系近似地表为幂函数,幂强化材料的应力-应变关系曲线如图15.7所示。 n εσc = 15.3 拉伸和压缩杆系的塑性分析 现以图15.8所示两端固定的杆件为例来说明静不定拉压杆系的塑性分析,当载荷P 逐渐增加时,杆件两端的反力是 b a Pa R b a Pb R += ' += 21 (a) P 力作用点的位移是 ()b a EA Pab EA a R += =1δ (b) 如a b >则21R R >。随着P 的增加, AC 段 图 图图 图 图 图

的应力将首先达到屈服极限。若相应的载荷 为1P ,载荷作用点的位移为1δ,由(a )、(b ) 两式求得 () b b a A P A b a b P R += =+= s 1, S 111σσ E a s 1σδ= 由平衡方程可知 S 2σA P R -= (c) 载荷作用点c 的位移为 ()EA b P P 11-+ =δδ (d) CB 段也进入塑性阶段时,S 2σA R =,由(c )式求出相应的载荷为 S 22σA P = 载荷达到2P 后,整个杆件都已进入塑性变形。 例18.1 在图15.9a 所示静不定结构中,设三杆的材料相同,横截面面积同 为A 。试求使结构开始出现塑性变形的载荷1P 、极限载荷p P 。 解:以1N 和2N 分别表AC 和AD 杆的轴力,3N 表AB 杆的轴力。令s 1E E =, s 1A A =,得 图

相关主题
文本预览
相关文档 最新文档