当前位置:文档之家› 巧用配方法解题3

巧用配方法解题3

巧用配方法解题3
巧用配方法解题3

巧用配方法解题

配方法是一元二次方程解法中非常重要的一种方法,其实质是一种恒等变形,它通过加上并且减去相同的项,把算式的某些项配成完全n 次方的形式,通常是指配成完全平方式.

配方法的在中学数学中的应用非常广泛,主要有以下几个方面.

一、用配方法解方程

例1 解方程:2x 2-3x+1=0.

分析:用配方法解一元二次方程的一般步骤是:

1.将二次项的系数化为1;

2.移项,使含未知数的项在左边,常数项在右边;

3.配方,方程两边都加上一次项系数一半的平方;

4.将方程化为(x+m)2=n 的形式;

5.用直接开平方法进行求解(n<0无解).

解:方程两边都除以2,得.02123—

2=+x x 移项,得.2

1—23—2=x x 配方,得222)4

3(21—)43(23—+=+x x , 16

1)43—(2=x , 即4143—=x 或.4

1—43—=x 所以x 1=1,.2

12=x 二、用配方法分解因式

例2 把x 2+4x-1分解因式.

分析:在原式中加上4的同时又减去4.

解:原式=x 2+4x+4-4-1=x 2+4x+4-5

=(x+2)2-2)5(=).5—2)(52(+++x x

三、用配方法求代数式的值

例3 已知实数a ,b 满足条件:0454—42

2=+++b a b a ,求—ab 的平方

根.

分析:一个方程含有两个未知数,看似无法求出a ,b .但仔细观察发现,等式左边可以分成两组分别配方,正好得到两个完全平方式的和为0,利用非负数的性质可求出a ,b 的值. 解:∵0454—422=+

++b a b a , ∴0)144()4

1—(22=++++b b a a , 即0)12()2

1—(22=++b a , ∴.2

1—,21==b a ∴±.2

1)21(21——±=×±=—ab 四、用配方法求代数式的最大(小)值

例4 代数式2x 2-3x-1有最大值或最小值吗?求出此值.

分析:代数式2x 2-3x-1的值随x 的变化而变化,但有某一个值可能是其最小(大)的,如果我们将其变形为一个常数和一个完全平方式的和,便可求出其最小(大)值.

解:2x 2-3x-1=2(x 2-23x)-1=2(x-43)2+.8

1 ∴当43=x 时,2)4

3—(x 有最小值0, ∴当43=x 时,2x 2-3x-1有最小值为8

1. 五、用配方比较两个代数式的大小

例5 对于任意史实数x ,试比较两个代数式3x 3-2x 2-4x+1与3x 3+4x+10的值的大小.

分析:比较两个代数式的大小,可以作差比较,本题两个代数式相减后,可以得到一个二次三项式,将此二次三项式配方后,即可判断差的正负,从而可以判断两个代数式的值的大小.

解:(3x 2-2x 2-4x+1)-(3x 3+4x+10)

=-2x 2-8x-9=-2(x+2)2-1<0,

所以对于任意实数x ,恒有

3x 3-2x 2-4x+1<3x 3+4x+10.

六、用配方法证明等式和不等式

例6 已知方程中(a 2+b 2)x 2-2b(a+c)x+b 2+c 2=0中字母a ,b ,c 都是实数. 求证:.x a

b b

c == 分析:一个方程含有四个未知数,看似无法求出a ,b ,c ,x .但仔细观察发现,方程左边可以分成两组分别配方,正好得到两个完全平方式的和为0,利用非负数的性质可求出a ,b ,c ,x 之间的关系.

证明:原方程坐标拆成两个二次三项式为:(a 2x 2-2abx+b 2)+(b 2x 2-2bcx+c 2)=0, ∴(ax-b)2+(bx-c)2=0.

∵a ,b ,c ,x 都是实数,

∴(ax-b)2≥0,(bx -c)2≥0.

∴ax-b=0,bx-c=0. ∴

.x a

b b

c ==

配方法及其应用(题目)

配方法及其应用 初一( )班 学号:_______ 姓名:____________ 一、配方法: 将一个式子变为完全平方式,称为配方,它是完全平方公式的逆用。配方法是一种重要的数学方法,它是恒等变形的重要手段,又是求最大最小值的常用方法,在数学中有广泛的应用。 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简,何时配方需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方,有时也将其称为“凑配法”. 配方法使用的最基本的配方依据是二项完全平方公式(a +b )2=a 2+2ab +b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ; a 2+a b +b 2=(a +b )2-ab =(a -b )2 +3ab =? ????a +b 22+? ????32b 2; a 2+b 2+c 2+ab +bc +ca =12 [(a +b )2+(b +c )2+(c +a )2]. 下面举例说明配方法的应用: 一、求字母的值 【例1】已知a ,b 满足a 2+2b 2-2ab -2b +1=0,求a +2b 的值. 分析:可将含x,y 的方程化为两个非负数和为0的形式,从而求出两个未知数的值. 解:∵a 2+2b 2-2ab -2b +1=0, ∴a 2+b 2-2ab +b 2-2b +1=0, ∴(a -b )2+(b -1)2=0. ∵(a -b )2≥0,(b -1)2≥0, ∴a -b =0,b -1=0, ∴a =1,b =1, ∴a +2b =1+2×1=3, ∴a +2b 的值是3. 变式练习: 1、已知,6134222x xy x y x =+++则x,y 的值分别为___ ___.

论述题的答题方法与技巧

论述题的答题方法与技巧 一、认真读材料,仔细审题目 论述题的设问方式一般是两种类型:“怎么办?”和“为什么?” 1.“怎么办?”型:常见表述有“运用政治(经济)常识的知识论述如何(怎样)??” 2.“为什么?”型:常见表述有“运用政治(经济)常识的知识论述??的重要性或必要性”、“请论述?? 的政治(经济)意义” 、“请运用政治(经济)常识的知识论述?? 对??的重要性或必要性或意义”等等。 二、搜索教材相关知识,根据设问归纳论点 1、“怎么办?”型 论点表述方式一般把设问的对象放在后面,根据教材获取的对象放在前面。基本格式 是:(教材知识点) +“可以、能够等” +(设问的对象) 例:运用经济常识的知识论述如何切实增加农民收入? 答:①扩大农民就业可以增加农民收入。 (教材知识点) +“是” +(设问的对象) +“基础、保障、方式、环节、措施”等词 语 2.“为什么?”型 论点表述方式一般把设问的对象放在前面,根据教材获取的对象放在后面。基本格式 是: 1)问意义:(设问的对象) +“可以、有利于、有助于、能够”+(教材知识点) 2)问重要性或必要性:(设问的对象) +“是” +(教材知识点) +“要求、需要、体 现”等词语 三、寻找论据,围绕论点,适当展开论述 不管是哪一种设问方式,论述展开过程大致相似。论述过程实际上就是将所归纳的论 点运用科学的原理或事实进行展开,最后又回到论点的过程。 例1:扩大农民就业可以增加农民收入。随着农业劳动生产率的提高,我国农村出 现了大量的剩余劳动力,扩大农民就业是解决我国“三农”问题的当务之急。就业是民生治 本。扩大农民就业不但能更加充分地利用农村丰富的劳动力资源,而且能够促进广大农民 收入的普遍增长,从而形成收入增长→内需扩大→经济繁荣→就业增加→收入增长的良性 循环。 四、要注意的问题

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

数学解题中的构造法思想

数学解题中的构造法思想 数学科 庞春英 我们首先从下面例题的解法开始讨论: 例:解方程组 ?? ???=++=++=++323232c z c cy x b z b by x a z a ay x 解法一:直接按照三元一次方程组的消元法解题 (略)。 解法二:把原方程组改写为?????=---=---=---0002323 23x cy z c c x by z b b x ay z a a 利用方程根的定义,我 们把a,b,c 看成关于t 的三次方程023=---x yt zt t 的三个根。根据韦达定理得: x abc y ac bc ab z c b a ==++=++,,,因此原方程组的解为:?? ? ??++=++==c b a z ca bc ab y abc x 。 比较例题的两种解法:解法一作为一般的方法,求解极为麻烦,运算量大;解法二则是构造一个满足问题条件的关于t 的三次方程,构造的元件是a,b,c ,构造的“支架”是原方程变形的关系式“023=---x yt zt t ”。在解法二中,以问题已知元素或条件为“元件”,数学中的某些关系式为“支架”,在思维中构造了一种新的“建筑物”这种方法有一定的普遍意义。 在解题过程中思维的创造活动的特点是“构造”,我们称之为构造性思维,运用构造性思维解题的方法称为构造法,即为了解决某个数学问题,我们通过联想和化归的思想,人为地构造辅助图形、模型、方程、函数以帮助解决原来的问题,这样的解题方法,可以看作是构造解题。 早在公元前三百年左右,欧几里德为了证明素数有无穷多个,假设只有有限个素数n p p p p 321,,,而构造一个新素数121+n p p p ,从而证明了原命题。另外,古希腊人为了证明毕达哥拉斯学派的信条“万物皆为(有理数)”是不对的,构造一个边长为1的正方形,则它的对角线竟不是一个“有理数”。上述这些大概是数学史上最早采用构造法解题的例子吧。 所谓构造法,其实质就是运用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决。构造法体现了数学发现的思想,因为解决问题同获得知识一样,首先需要感知它,要通过仔细地观察、分析,去发现问题的各个环节以及其中的联系,从而为寻求解法创造条件;构造法还体现了类比的思想,为了找出解题的途径,很自然地联系已有知识中与之类似的或与之相关的问题,从而为构造模型提供了参照对象;构造法还体现了化归的思想,把一个个零散的发现由表及里,由浅入深地集中和联系起来,通过恰当的方法加

配方法题研究-备战2021年中考数学解题方法之探究十法(解析版)

备战2020中考数学解题方法专题研究 专题6 配方法专题 【方法简介】 配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用. 运用配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 【真题演练】 1. 用配方法解一元二次方程x 2﹣4x ﹣6=0,变形正确的是( ) A .(x ﹣2)2=0 B .(x ﹣4)2=22 C .(x ﹣2)2=10 D .(x ﹣2)2=8 【解答】解:x 2﹣4x ﹣6=0, 移项得:x 2﹣4x =6, 配方得:x 2﹣4x+4=10,即(x ﹣2)2=10. 故选:C . 2. 用配方法解下列方程: (1)x 2+3x -4=0; (2)x(x +8)=609. 【解析】解:(1)由x 2+3x -4=0, 得x 2+3x + ????322-????322-4=0, 即????x +322-254=0,????x +322=254 , ∴x +32=±52,x =-32±52 , ∴x 1=1,x 2=-4.

王春雨配方法

浅谈配方法在高中数学中的应用 中实学校 王春雨 摘 要 应用配方变形来解数学题的方法叫做配方法,配方是一种以“出现平方式” 为思维指向的恒等变形,因而,配方法既具有恒等变形的功能,又具有“平方式”,从而在数学范围内产生非负数的特殊功能。本文从利用配方法求最值等四方面简单阐述说明配方法在解高中数学题中的应用 关键字 配方法 解题方法 一、 利用配方法化简、求值 如:化简442121721217-++ 原式=223223) 223()223(42 42 -++=-++ =221212)21)21(22=-++=-++ 再如:设的值,求ca bc ab c b a c b b a ---++-=-+=-2 2232,32 可利用配方 22 2222b bc ac ab c b b a ca bc ab c b a -+-+-+-=---++)()( 15 ) 32)(32()32()32())(()()() ()()()(2 2 2222=-++-++==--+-+-=-+-+-+-=c b b a c b b a b c b c b a c b b a 二、 利用配方法求最值 (1) 代数应用 一般含参数的一元二次方程在某段区间上的参数的最值问题通常运用判别式求解,但一般只能求得一个最值,如果用配方法便可求得,举例来说明一下 方程01)22 1(22=-+-+a x a x 的解集在区间[]2,0上,求实数a 的最大值和最小值。 通常用判别式法求解,由 △=8 17 04172)1(4)221(22≤ ≥+ -=---a a a a 得,只求得最大值,无法求最小值。今用配方法,不但可求得完整的解答,而且实践易行,有很好 的推广价值。因所求解为a 的最值,故调整原方程,以a 为主元。具体方法如下:把原方程化为

三角函数综合应用解题方法总结(超级经典)

精锐教育学科教师辅导教案

例3:求函数y=f(x)=cos 2 2x-3cos2x+1的最值. 解 ∵f(x)=(cos2x- 23)2-4 5, ∴当cos2x=1,即x= k π,(k ∈Z)时,y=min=-1, 当cos2x=-1,即x= k π+ 2 π ,( k ∈Z)时,y=max=5. 这里将函数f(x)看成关于cos2x 的二次函数,就把问题转化成二次函数在闭区间[-1,1]上的最值值问题了. 4.引入辅助角法 y=asinx+bcosx 型处理方法:引入辅助角?,化为y=22b a +sin (x+?),利用函数()1sin ≤+?x 即可求解。Y=asin 2 x+bsinxcosx+mcos 2 x+n 型亦可以化为此类。 例4:已知函数()R x x x x y ∈+?+= 1cos sin 2 3cos 212当函数y 取得最大值时,求自变量x 的集合。 [分析] 此类问题为x c x x b x a y 2 2 cos cos sin sin +?+=的三角函数求最值问题,它可通过降次化简整理为 x b x a y cos sin +=型求解。 解: ().4 7,6,2262,4562sin 21452sin 23 2cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+??? ??+=+???? ??+=++=+?++?=y z k k x k x x x x x x x x y ππππππ 5. 利用数形结合 例5: 求函数y x x = +s in c o s 2的最值。 解:原函数可变形为y x x = ---s i n c o s () .0 2 这可看作点Ax xB (c o s s i n )() ,和,-20的直线的斜率,而A 是单位圆x y 2 2 1+=上的动点。由下图可知,过B ()-20,作圆的切线时,斜率有最值。由几何性质,y y m a x m i n .= =-333 3 , 6、换元法 例6:若0

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

语文阅读理解答题方法和技巧汇总(超级经典)

语文阅读理解答题方法和技巧的整理汇总 一、常用阅读理解答题方法一般可以概括为下列六个步骤: ?看标题信息,揣摩记叙类型; ?抓记叙要素,了解大致内容; ?理行文线索,分清段落层次; ?辨叙述方式,领会布局特点; ?挖中心思想,理解作品意义; ?析表现手法,以供习作借鉴。 总结多年的经验,在考场上遇到阅读理解类的考试题,一般按以下程序进行较为快捷有效,当然这个程序不光指记叙文阅读,对其他文体的阅读也适用。 具体过程是:阅读理解题目——阅读文章——看清文章后面的试题——按试题要求回头有重点地再看原文——答题。 一、通读全文,把握文章内容,理清脉络。 答题时切忌文章都没完整的阅读就匆匆忙忙地写答案。最好先把文章从头到尾通读一遍,对文章有一个整体的认识和理解。 二、弄清题意,确定解决问题的阅读空间。 在通读全文的基础上再去浏览所设试题,经过初步的思考,确定解决问题的阅读空间。 三、从文章中直接提取信息。 有些试题可以用文中的原话来作答,这时就可以“从文章中直接提取信息”,回答问题。 四、挖掘句子的隐含信息和深层含义。 有些试题则需要结合全文内容,挖掘句子的隐含信息,经过缜密的思考,寻求完美的答案。 五、组织语言规范答题,认真书写。 答案基本考虑成熟之后,还需要注意一下表述的语言。语言简洁明了,能达到事半功倍的效果;啰嗦重复,不得要领,往往会出力不讨好。从长远角度考虑,语文阅读理解能力的提高非一日一时之功。它需要在长期的学习过程中多关注最新信息,多阅读名家名著,开阔视野,增加实践,培养对语言的品评、赏析、感悟的能力,培养学习语文、陶冶性情的兴趣,在多读深思中进入学习语文的崭新境界。 有些同学做阅读题时,全凭自己的感觉答题,其实,答阅读题也是有技巧可寻的。 以下是针对《考试说明》,提出的几种答题技巧: 一、看分值答题法: 可以从试题的分值中推测答题的要点。如一道题给的分值是3分,答案可能就有3个要点,一个要点一分,所以从试题所给的分值中,我们就能推测答案的要点和要求的字数。例如:陕西省中考题:目前一般有哪几种消暖雾的方法?文中提到的咱们陕西的消雾作业属于其中哪一种?(3分)答案是:3种。“加热法”、“吸湿法”、“人工搅动混合法”。文中提到的属于第二种。 二、用原文答题法: 做题要牢牢地记住:“答案不在你的脑子里,答案只在原文中。”无论在任何情况下作答,既要体现个性和独特见解,又要较好地忠实于作者的主张。 1.尽量利用原文语句。注意摘取原文,离开了原材料恐怕谁也答不准,答不全。因此,准确解答阅读题最重要最有效的方法是在原文中找答案。大多数题目在文章里是能够抠出答案的。当然,找出的语句不一定能够直接使用,还必须根据题目要求进行加工,或摘取词语或压缩主干或抽取要点或重新组织。即使是归纳概括整段整篇文意也必须充分利用原文。 这里,提供十六字诀的解题方法供你参考。 (1)、字不离词。 汉语中一词多义现象相当普遍。在理解词语中某个字的意思的时候,必须把它放到这个词语中去考察,即字不离词,这样才能准确的理解这个字的意思。如:道听途说,道,指道路;志同道合,道,指道理 (2)、词不离句。 在综合阅读题中,常常要求理解词语在上下文中的含义和作用。这类要求有以下几方面情况:一词多义。这在文言文中是常见的。如:策之不以其道,策,驱使;执策而临之,策,马鞭在现代文中则多表现为语境义,这些,都应根据具体的语言环境即句子本身去推断它的意思,也就是词不离句。如:“见教”一词的本意是客套话,指教(我)的意思。它在不同的语言环境中则表现为不同的意义。在《范进中举》一文中,范进中举前面对胡屠户的“教导”,称“岳父见教的是”。至于某个词在句中的表达作用,更要根据具体的语言环境去理解,而不能离开句子作单独解释。 (3)、句不离段。 也就是说,对句子的分析理解不能离开具体的语段,不能离开具体的语言环境。如果离开具体的语段,离开具体的语言环境,许多句子只能狭隘的理解甚至于不知所云。只有结合具体的语段和语言环境,才会知道这句话在全文中占着什么样的位置。 (4)、段不离文。 段落是文章的有机组成部分,体现了作者的写作思路。因此,对语段的阅读理解不能离开文章的主要意思,不能偏离文章的中心。否

巧用配方法解题3

巧用配方法解题 配方法是一元二次方程解法中非常重要的一种方法,其实质是一种恒等变形,它通过加上并且减去相同的项,把算式的某些项配成完全n 次方的形式,通常是指配成完全平方式. 配方法的在中学数学中的应用非常广泛,主要有以下几个方面. 一、用配方法解方程 例1 解方程:2x 2-3x+1=0. 分析:用配方法解一元二次方程的一般步骤是: 1.将二次项的系数化为1; 2.移项,使含未知数的项在左边,常数项在右边; 3.配方,方程两边都加上一次项系数一半的平方; 4.将方程化为(x+m)2=n 的形式; 5.用直接开平方法进行求解(n<0无解). 解:方程两边都除以2,得.02123— 2=+x x 移项,得.2 1—23—2=x x 配方,得222)4 3(21—)43(23—+=+x x , 16 1)43—(2=x , 即4143—=x 或.4 1—43—=x 所以x 1=1,.2 12=x 二、用配方法分解因式 例2 把x 2+4x-1分解因式. 分析:在原式中加上4的同时又减去4. 解:原式=x 2+4x+4-4-1=x 2+4x+4-5 =(x+2)2-2)5(=).5—2)(52(+++x x 三、用配方法求代数式的值 例3 已知实数a ,b 满足条件:0454—42 2=+++b a b a ,求—ab 的平方

根. 分析:一个方程含有两个未知数,看似无法求出a ,b .但仔细观察发现,等式左边可以分成两组分别配方,正好得到两个完全平方式的和为0,利用非负数的性质可求出a ,b 的值. 解:∵0454—422=+ ++b a b a , ∴0)144()4 1—(22=++++b b a a , 即0)12()2 1—(22=++b a , ∴.2 1—,21==b a ∴±.2 1)21(21——±=×±=—ab 四、用配方法求代数式的最大(小)值 例4 代数式2x 2-3x-1有最大值或最小值吗?求出此值. 分析:代数式2x 2-3x-1的值随x 的变化而变化,但有某一个值可能是其最小(大)的,如果我们将其变形为一个常数和一个完全平方式的和,便可求出其最小(大)值. 解:2x 2-3x-1=2(x 2-23x)-1=2(x-43)2+.8 1 ∴当43=x 时,2)4 3—(x 有最小值0, ∴当43=x 时,2x 2-3x-1有最小值为8 1. 五、用配方比较两个代数式的大小 例5 对于任意史实数x ,试比较两个代数式3x 3-2x 2-4x+1与3x 3+4x+10的值的大小. 分析:比较两个代数式的大小,可以作差比较,本题两个代数式相减后,可以得到一个二次三项式,将此二次三项式配方后,即可判断差的正负,从而可以判断两个代数式的值的大小. 解:(3x 2-2x 2-4x+1)-(3x 3+4x+10) =-2x 2-8x-9=-2(x+2)2-1<0, 所以对于任意实数x ,恒有

浅谈构造法解题在高中数学竞赛中的应用

学好构造法 妙解竞赛题 在数学竞赛辅导过程中,需要长期给学生进行有针对性的数学思想方法的训练。其中构造法解题的思想,就是一种值得推广的解题思想方法。通过构造,可以建立起各种数学知识之间的联系与相互转化,让学生在熟练掌握各种数学知识的前提下交互使用,融会贯通。 一、构造几何模型,使代数问题几何化。 代数运算虽然直接,但有时会比较抽象且运算复杂,构造合乎要求的几何图形,可以是所求解的问题变得直观明朗,从而找到一个全新的接替办法。 例一,设a 为实数,证明:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,且三角形的面积为定值。 分析:从题目给出的三个根式我们知道,当实数a 去互为相反的两数时,只是其中两式角色互换,实质一样,故只需争对非负实数a 展开讨论即可。 ()( ) ? ???-+=++????-+=+-+= +120cos 121160cos 12113 2342222222 22a a a a a a a a a a 构造合乎要求的几何图形如图所示: ? =∠?=∠======120601CBE DAB CD BE AB a BC DF AD 于是:()( ) 343 2,3,222 2+=+= = =a a EF AE a AF 1 120cos 121,1,160cos 121,1,2 2 2 222++=????-+===+-=????-+====a a a a CE BE a BC a a a a DB FC AB a AD 所以:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,即ECF ?。 则:AEF AECF ECF S S S ??-= ?60 F E D C B A ?30 ? 120a a a 1 1 1

高中数学解题基本方法之配方法

配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如: a2+b2=(a+b)2-2ab=(a-b)2+2ab; a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b 2 )2+( 3 2 b)2; a2+b2+c2+ab+bc+ca=1 2 [(a+b)2+(b+c)2+(c+a)2] a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα)2; x2+1 2 x =(x+ 1 x )2-2=(x- 1 x )2+2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n }中,a 1 ?a 5 +2a 3 ?a 5 +a 3 ?a 7 =25,则 a 3 +a 5 =_______。 2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k=1 4 或k=1 3. 已知sin4α+cos4α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log 1 (-2x2+5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [5 4 ,+∞) C. (-1 2 ,5 4 ] D. [5 4 ,3) 5. 已知方程x2+(a-2)x+a-1=0的两根x 1、x 2 ,则点P(x 1 ,x 2 )在圆x2+y2=4上,则 实数a=_____。

初中数学解题方法与技巧

初中数学解题方法与技 巧 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学解题方法与技巧 要学好数学,学会解题是关键。在进行解题的过程中,不仅需要加强必要的训练,其还要掌握一定的解题规律与技巧。 一、数学思想方法在解题中有不可忽视的作用 解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。 基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。著名的数学教育家波利亚说“如果没有反思,就错过了解题的的一次重要而有意义的方面。” 教师在教学设计中要让解学生好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。 1. 函数与方程的思想 函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。 2. 数形结合的思想

数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。 3. 分类讨论的思想 分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。 解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:类型 1 :由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型 2 :由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型 3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型 4 :由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。类型5 :由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。 分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分

初中数学解题技巧:六种方法教你解决难题

初中数学解题技巧:六种方法教你解决难题 初中数学解题技巧:六种方法教你解决难题 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

中学数学 配方法 练习题

21.2.2配方法解一元二次方程(1) 教学目标 1、理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 2、通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤. 重点:讲清“直接降次有困难”,如x2+6x-16=0的一元二次方程的解题步骤.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 【课前预习】 导学过程 阅读教材部分,完成以下问题 解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 填空: (1)x2+6x+______=(x+______)2;(2)x2-x+_____=(x-_____)2 (3)4x2+4x+_____=(2x+______)2.(4)x2-x+_____=(x-_____)2 问题:要使一块长方形场地的长比宽多6cm,并且面积为16cm2,场地的长和宽应各是多少?

思考? 1、以上解法中,为什么在方程x 2+6x=16两边加9?加其他数行吗? 2、什么叫配方法? 3、配方法的目的是什么? 这也是配方法的基本 4、配方法的关键是什么? 用配方法解下列关于x 的方程 (1)2x 2-4x-8=0 (2)x 2-4x+2=0 (3)x 2-21x-1=0 (4)2x 2+2=5 总结:用配方法解一元二次方程的步骤: 【课堂活动】 活动1、预习反馈 活动2、例习题分析 例1用配方法解下列关于x 的方程: (1)x 2-8x+1=0 (2)2x 2+1=3x (3)3x 2-6x+4=0

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

版集合问题的解题方法和技巧

最新版集合问题的解题方法 和技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

集合问题解题方法和技巧 一、集合间的包含与运算关系问题 解题技巧:解答集合间的包含与运算关系问题的思路:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的规律为: (1)若给定的集合是不等式的解集,用数轴来解; (2)若给定的集合是点集,用数形结合法求解; (3)若给定的集合是抽象集合, 用Venn 图求解。 例1、(2012高考真题北京理1)已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B= ( ) A (-∞,-1) B (-1,-23) C (-23 ,3)D (3,+∞) 【答案】D 【解析】因为3 2}023|{->?>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D . 例2、(2011年高考广东卷理科2)已知集合A={ (x ,y)|x ,y 为实数,且 x 2+y 2=l},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为( ) A .0 B . 1 C .2 D .3 答案:D 解析:作出圆x 2+y 2=l 和直线y=x,观察两曲线有2个交点 例3(2012年高考全国卷)已知集合 {}|A x x =是平行四边形,{}|B x x =是矩形,{}|C x x =是正方形,{}|D x x =是菱形,则 ( ) A .A B ? B . C B ? C . D C ? D .A D ? 答案:B 【命题意图】本试题主要考查了集合的概念,集合的包含关系的运用. 【解析】由正方形是特殊的菱形、特殊的矩形、特殊的平行四边形,矩形是特殊的平行四边形,作出Venn 图,可知集合C 是最小,集合A 是最大的,故选答案B.

在三角形中巧用面积法解题

在三角形中巧用面积法解题 所谓面积法是指借助图形面积自身相等的性质、可拆分的性质和可比的性质进行解题的一种方法。在中学阶段它是数学中一种常用的解题方法。并且具有解题便捷快速、简单易懂等特点。现分类举例如下,希望同学们在今后的做题中有所启发。 一、利用面积自身相等的性质解题 例1 如图,在直角三角形ABC 中,AB=13,AC=12,BC=5,求AB 边上的高AD 的长。 C A B D 例2 在A B C 中,AB >AC,BD 、CE 分别是AC 、AB 边上的高,试判断BF 和CE 的大小关系,并说明理由。 D F C B E A 。 小结:利用一个图形面积自身相等的性质解题,就是从不同的角度使用面积公式来表示同一个图形的面积,列出等式求出未知的量。 二、利用面积的可比性解题 例3 如图,由图中已知的小三角形的面积的数据,可得A B C 的面积为 。 D C B A 小结:我们知道等底等高的两三角形的面积相等,等底不等高的两三角形面积的比等于其对应高的比,等高而不等底的两三角形面积的比等于其对应底的比。 三、利用面积的可分性解题 例 4 如图,已知等边三角 ABC ,P 为A B C 内一点,过 P 作 ,,,PD BC PE AC PF AB ABC ⊥⊥⊥ 的高为h.试说明P D P E P F h ++=。

A B C D P F E 小结:用面积的可分性解题,一般要将图形分成若干个小三角形,利用其整体等于部分之和建立关于条件和结论的关系式,从而方便快捷地解决问题。 现提供部分习题供同学们练习: 1、如图,已知A B C 和B D C ,AC 与BD 交于点o,且直线AD ∥BC,图中四个小三角形的面积分别为1S 、2S 、3S 、4S ,试判断2S 和4S 的大小关系,并说明理由。 D B A O C S4 S3 S1 S2 2、如图,四边形ABCD 中,对角线BD 上有一点O ,OB :OD=3:2,S A O B =6,S C O D =1,试求S A O D 与S B O C 的面积比。 D A C B O 3、 如图,P 是等腰三角形ABC 底边BC 上的任一点,PE AB ⊥于E,PF AC ⊥于F ,BH 是等腰三角形AC 边上的高。猜想:PE 、PF 和BH 间具有怎样的数量关系? B C 4、其它练习题见《培优竞赛新方法》112-116部分习题。

相关主题
文本预览
相关文档 最新文档