当前位置:文档之家› 三电平

三电平

三电平
三电平

目前,世界上对高压电动机变频调速技术的研究非常活跃,高压变频器的种类层出不穷,作为用户都希望能选择实用而具有良好性价比的高压变频器,如何选择便是值得研究的问题。知己知彼,百战百胜,首先按照自己的工况拟定对高压变频器的技术要求,针对性的选择高压变频器的方案、产品和售后服务,否则会出现应用不理想,投资损失大。不同高压变频器的电路拓扑方案具有不同的技术水平。技术水平决定变频器和传动系统的稳定性、可靠性、使用寿命、维护费用、性价比等重要指标。就如同笔记本电脑功能都基本相同,但不同的技术水平,质量价位从3000元到数万元之差。为此,了解不同种类的高压变频器内含技术水平,选择变频器的品质与工况相结合,达到投入少、节能回报率高的理想效果。

2 高压变频器的概念

按国际惯例和我国国家标准对电压等级的划分,对供电电压≥10kV时称高压,1kV~10kV 时称中压。我们习惯上也把额定电压为6kV或3kV的电机称为高压电机。由于相应额定电压1~10kV的变频器有着共同的特征,因此,我们把驱动1~10kV交流电动机的变频器称之为高压变频器。高压变频器又分为两种性质类型,电流型和电压型,其特点区别:

(1) 变频器其主要功能特点为逆变电路。根据直流端滤波器型式,逆变电路可分为电压型和电流型两类。前者在直流供电输入端并联有大电容,一方面可以抑制直流电压的脉动,减少直流电源的内阻,使直流电源近似为恒压源;另一方面也为来自逆变器侧的无功电流提供导通路径。因此,称之为电压型逆变电路。

(2) 在逆变器直流供电侧串联大电感,使直流电源近似为恒流源,这种电路称之为电流型逆变电路。电路中串联的电感一方面可以抑制直流电流的脉动,但输出特性软。电流型变频器是在电压型变频器之前发展起来的早期拓扑。

3 电压型逆变器与电流型逆变器的特点区别

(1) 直流回路的滤波环节

电压型逆变器的直流滤波环节主要采用大电容,因此电源阻抗小,相当于电压源。电流型逆变器的直流滤波环节主要采用大电感,相当于恒流源。

(2) 输出波形

电压型逆变器输出的电压波形是SPWM高频矩形载波,输出的电流波形在感性负载时近似于正弦波,含有部份的高次谐波分量,输入采用简易滤波,便可满足国家谐波含量标准。电流型变换器输出的电流波形是一个交变矩形波,其输出的电压波形接近正弦波,含有丰富的高次谐波分量,电机易发高热,一般使用时都要选用进口的特制电动机。输入谐波含量极高,须采用巨大,笨重的滤波器,方能使用。

(3) 四象限运行

电流型逆变器由于在其直流供电侧串联大电感,在维持电流方向不变的情况下,可控硅整流桥可改变电压极性,所以很容易使逆变器运行在整流状态,从而使整流桥处于逆变状态,实

现四象限运行。电压型高压变频器只有二电平采用IGBT整流回馈,方可四象限运行。

(4) 动态性能

电流型逆变器有大电感,电流动态响应较困难,需求的动态力矩跟不上,特性软;而电压型逆变器可以用电流反馈环控制,响应速度快,适应现代控制理论:高级的佳灵直接速度控制、富士矢量控制,ABB直接转矩控制,次之的空间电压矢量控制和转差优化F/U控制。在速度开环的条件下,可高速、高精度地实现对电机的磁通力矩控制,使电机特性可柔、可刚;动态性能尤好。

(5) 过流及短路保护是高压变频器关键的保护功能

电流型逆变器因回路中串有大电感,能抑制短路等故障时电流的上升率,故电流型逆变器的过流和短路保护容易实现,而一般的电压型逆变器则较为困难,只有二电平电压型高压变频器设有直流电感,可抑制di/dt的上升速率,易实现过流保护和短路保护。

(6) 对开关管的要求

电压型逆变器中的开关管要求关断时间短,但耐压较低;而电流型逆变器中的开关管对关断时间无严格要求,但耐压要求相对较高。

(7) 采用电流型逆变器需加两个电感,并且开关管截止时所承受的电压比电压型高的多。目前只有AB公司有该技术方案的产品。

从上述区别中表明电压型高压变频器比电流型高压变频器更具应用前景。

4 四种电压型高压变频器的拓扑方式的特点

4.1 目前电压型高压变频器实现高压的拓扑方式

近年来,随着电力电子技术应用的发展需要,促使电力电子器件快速发展;反过来,一代新器件或一项新技术一旦克服了老器件的某些缺点,就会推动包括变频器在内的电力电子应用装置出现革命性的变化。

IGBT在90年代迅速发展,绝缘性、模块化与其工作频率可达20kHz,使变频器进入静音时代。它没有二次击穿的困扰,在380V、660V异步电动机变频调速的使用效果,被社会广泛接受,使得低电压变频器的发展,在目前进入大发展的全盛时期。

在电压为1140V至3~10kV的高压电动机变频调速中,IGBT模块的工作电压己远远跟不上使用要求。由于IGBT元件目前IGBT作到3.3kV,IGCT作到4.5kV,但也不能满足直接使用的电压等级。又其性能差价格高昂,制造产品昂贵。由于IGBT元件串联后将出现的一些世界级技术难题,在高开关频率下的多环节动态dv/dt高峰值,线路电感、引线电感、母板技术、串联同步控制、动态均压等等,都使产品出现崩溃性的难点,被国内外业内研发专家列为研发的禁区。高压变频器究竟用什么器件,成为世界业内电气设计的研究创造的热门。

因此,高压变频器在不同的历史时期,就有不同的技术与技术产品出现:

(1) A类:风机、水泵专用高压变频器

驱动对象:高压交流异步电动机传动的风机、水泵专用(要求不高的平方转矩和对动态控制要求不高的工况);

高-低-高方式,采用降压变压器→低压变频器→特殊升压变压器→电机;

12脉冲变压器→整流→IGBT三电平两电位重叠间接高压方式;

曲折多脉冲变压器→整流→IGBT单元串联多电位重叠间接高压方式。

注:间接—指在变频器变流环节中,存在利用了变压器来进行电压变换的过程。

(2) B类:通用高压变频器

驱动对象:高压交流异步电动机;高压交流同步电动机。

(3) 负载通用类

既可适用风机、水泵,也可使用于全程快速高转矩控制和四象限运行的各种机械传动控制;

(4) 直接整流→IGBT元件串联直接高压方式。

4.2 高-低-高方式

电压变换方式:降压变压器(R1)→低压变频器(R2) 升压变压器(R3)→电机(R4)。

系统等效阻抗R=R1+R2+R3+R4

输出变压器需特殊制造,成本高,功率因数低,效率低,自损耗大,笨重。系统性能差,可用于一般工艺调速,不宜于调速节能的应用。

4.3 IGBT三电平两电位重叠间接高压方式(简称:三电平高压变频器)

电压变换方式:电源→降压变压器(R1)→IGBT三电平逆变器(R2)→电机(R3)。

系统等效阻抗R=R1+R2+R3(升压时加升压变压器阻抗R4)

三电平高压变频器又称中性点箝位式(也称NPC(Netural Point Clamped中点箝位方式)高压变频器,这是近几年才开发和推出的一种高压变频器,高压变频调速系统采用中性点箝位三电平技术。变频器主要由输入12脉冲变压器、整流器、中性点箝位回路、三电平模式逆变器、输出滤波器、控制部分等组成。

整流电路一般采用二极管,箝位采用高压快恢复二极管,逆变部分功率器件采用GTO、IGBT 或IGCT。输出电压等级4.16kV。

初期使用时,由于输出电压与电机工作电压不直接匹配,对6kV须将高压电机Y接法改为Δ接法。当变频器故障时,又改回去,工频运行。

目前为可在输出端增设一个自耦升压变压器,可直接用于6kV和10kV高压电机,类似高—低—高方式。目前为ABB公司和西门子公司技术方案产品。

4.3.1技术特征

变频器主电路拓扑结构图>

图1 中性点箝位三电平PWM高压变频器主电路拓扑结构图

由图1可以看出,该系列变频器采用类似传统的电压型变频器结构,关键技术在对中点上、下漂动处理,空载和轻载漂动小,随负载的加重或动态变化,电容难以支撑中点位,特别是各电容的容抗不等因素,箝位中点也稳不住,箝位电压随之浮动。中点的浮动的幅度大小,将会产生输出电压的非对称性,输出谐波,波形失真,共模电压的增大变化。其表现为,若输出端在不接电抗器,直接连高压电机运行,电动机会出现剧烈抖动和高热(这是任何一种方式变频器都不会产生的现象)。为此,三电平高压变频器不管电机离的远近,都须装输出电抗器,以解决电机振动大,噪音大的缺陷。而共模电压的隐患导致电机绝缘老化问题。由于三电平逆变开关模式中存在的多点死区,而需长死区时间保障开关切换就带来很高的共模电压。其缺陷是由电路特点,硬件产生的,单靠优化控制软件,只能收到微小的效果。还需同佳灵JCS型一样,增加输出共模抑制器方可有效。

三电平在输出电压较低时,实际上也相当于二电平的电压波形,其11、13、17次谐波含量仍很高,谐波电流仍很大。若不加滤波器,还只能用供应商的专用电动机,且其输出电压只能达4200V,实际上是在后面加上了升压变压器才能达到。

4.3.2 产品特点

(1) 效率极低

三电平变频器的结构简单,但二极管的增多、线路增多,况且每个IGBT的驱动波形不一致,也必将导致箝位和开关性能的不一致。功率元件的导通和关断是由箝位二极管来保证的。箝位二极管的耐压要求高,快恢复性能好,主器件数量多,致使系统结构相对复杂,而且扩展能力有限。

(2) 变频器容量需增大20%,投资高

开关器件的导通负荷不一致。靠近母线的开关和靠近输出端的导通负荷不平衡,这样就导致开关器件的电流等级不同。在电路中,如果按导通负荷最严重的情况设计器件的电流等级,则每相有2×(m-2)个外层器件的电流等级过大,造成浪费。变频器输出线电压为4.16kV,电机三角形接法为 3.3kV,变频器输出必降压设定为 3.3kV。变频器将产生无用功率为:4.16kV-3.3kV=0.86kV

在使用选型时,变频器的容量至少需增加20%的匹配容量,从而增大投资。

(3) 由于需星/三角变换装置,才能实现工频/变频切换

对于6kV高压电机,三电平变频器采用Y/△改接的办法,将Y型接法的6kV电机改为△接法。但在进行了Y/△改接后,电机的电压与电网的电压不一致,无法实现旁路功能,当变频器出现故障时,又要保证生产的正常进行,必须首先将电机改回Y型接法,再投入6kV 电网。为此,电机的改接必须加装Y/△切换柜实现,以便实现旁路功能。

(4) 输出谐波含量大,需要专用变频电机

由于三电平变频器所固有的输出波形中含高的谐波分量,使得输出性能不良好。输出电流、电压波形见图2。低速区变频器的波形极差,基本上不能满足工况的要求。因此,在变频器的输出侧必须配置LC滤波器才能用于普通的鼠笼型电机。同样由于谐波的原因,电动机的功率因数和效率、甚至寿命都会受到一定的影响,只有在额定工况点才能达到最佳的工作状态,但随着转速的下降,功率因数和效率都会相应降低。输出电压谐波5、7高,11次、13次谐波达到20%以上,会引起电动机谐波无功发热、转矩脉动,这对电缆和电动机都是致命的影响。因此,外商一般都力荐采用专用电动机。

变频器输出波形图>

图2 三电平变频器输出波形图

4.4单元串联多重化变频器

曲拆多脉冲变压器→整流→IGBT单元串联多电位重叠间接高压方式;

电压变换方式:电源→变压器(R1)→单元串联变频器(R2)→电机(R3);

系统等效阻抗R=R1+R2+R3。

4.4.1 主电路

单元串联多重化技术高压变频器,是利用移相主变压器降压,再通过多个低压单相变频器(如图3a所示)串联和控制器结构组成。各功率单元由一个曲折多绕组的移相主变压器降压供电。变压器是单元串联高压变频器设备电路结构中的一个重要部件。3kV有12个功率单元,每4个功率单元串联构成一相。6kV系列有15个功率单元,每5个功率单元串联构成一相。10kV系列有21个功率单元,每7个功率单元串联构成一相。移相变压器中,变频器6kV 时需要3×5个绕组,引出主接线头48根,(10kV时需3×7个绕组,引出主接线头66根,)。变压器输入端采用内部三角形,输出为外部星形的延边三角形接法,如图3所示。

变频器>

图3 单元串联多重化技术高压变频器

所谓多重化技术就是每相由几个低压PWM功率单元串联组成,各功率单元由一个多绕组的隔离变压器多级移相叠加的整流方式供电,由CPU实现控制再以光导纤维隔离驱动。输出侧由每个单元的U、V输出端子相互串接而成星型接法给电机供电。通过对每个单元的PWM 波形进行重组多重化。可实现输入端(变频器在高频段输出50Hz时)条件下有较低的谐波含量(输出端谐波含量高)。如图3(b)所示为6kV变频器的主电路拓扑图,每组由5个额定电压为690V的功率单元串联,因此相电压为690V×5=3450V,所对应的线电压为6000V。每个功率单元由输入隔离变压器的15个二次绕组分别供电,15个二次绕组分成五组,每组之间存在一个12°的相位差。以中间△接法为参考(0°),上下方各有两套分别超前(+12°、+24°)和滞后(-12°、-24°)的四组绕组。所需相差角度可通过变压器的不同联接组别来实现。

图3(c)中的功率单元都是由低压(IGBT)构成的三相输入,单相输出的低压PWM电压型逆变器。每个功率单元按预编程时序输出不同相位差的PWM电压为1、0、-1三种状态电平,每相5个单元成阶梯叠加,就可产生11个不同的梯度电平波形。图4为一相合成的输出正弦波包络电压波形。这种电压波形对电单元串联机无特殊要求,可用于普遍笼型电机。

变频器输出波形图>

图4 功率单元串联高压变频器输出波形图

这种多重化技术构成的高压变频器,也称为单元串联电压型变频器,采用功率单元串联双Y 回路,采取变压器多绕组别分组分压整流单元均压,单元电平叠加,变频器输出高电压的正弦波包络阶梯电压波形。适应普通笼型电机的变频调速驱动。

多重化被称为完美无谐波,是外国某公司营销技术名词,以为中国人对变频技术的不了解,用输入端满载谐波含量作误导宣传,是概念混淆,偷梁换柱的说法。事实上,变频器产生的谐波应严格分为两个部分即:一是输入端谐波含量指标,指变频器对电网产生的骚扰作用;二是输出端谐波含量指标,指变频器的高频辐射和对电动机产生的运转脉动性、温升、绝缘老化、轴承疲劳的副作用。实际上人们都知道变压器本身在作隔离功能的同时将产生新的谐波源,完全正弦的工频变压器都存在的励磁谐波,那非线性整流叠加的的变压器怎能完美无谐波。谐波还是有的,可以说:输入端谐波含量低,符合标准。事实上《GB/T14549-93,电能质量,公用电网谐波》和GB/T12668.4高压变频器标准中的输入谐波含量指标,许多高压变频器都可达标到。单元串联多重化是在输出端建立在120°方波的基础上,变频器在额定频率、额定重负载时其波形较好,谐波含量较低。在低频段或轻负载时波形畸变大,输出三相电压非对称性频摆加大,电机磁链脉动增大,电机中性点与变频器中性点出现电位差,谐波剧增。由于这种结构的变频器中存在变压器,如果电机的中性点没有接地,电机就存在共模电压。当电机的中性点接地后,共模电压仍然存在,没有消失,通过接地点转移到变压器上。让变压器来承受共模电压对绝缘的冲击和谐波热能。这就是这种单元串联高压变频器变压器易坏的主要原因之一。变频器往往是用于低于工频下作节能运行的,这对电机寿命是极为不利的。外国某公司高压变频器在中国的初期应用中都须更换由他们生产的专用电机。也间接表明单元串联多重化变频器的输出谐波严重性。

4.4.2 单元串联多重化变频器的技术特点

(1) 是一种单变压器高—低-高的有效方式

采用功率单元串联电压相加回路,采取变压器多绕组别分组分压整流单元均压,单元电平叠加,变频器输出高电压的阶梯电压波形,经电机定子电感滤波,相电压为正弦波(实际上任何变频器输出波形很差,只要经电机定子电感滤波,相电压都为正弦波);

(2) 成熟技术易于组合不同电压输出的要求

由于采用功率单元串联,采用低压变频器成熟技术,由低压IGBT组成逆变单元,通过串联单元的个数适应不同的输出电压要求;

(3) 功率单元模块化、标准化、单元间具有互换性

由于多功率单元具有相同的结构及参数,便于单元间具有互换性,实现冗余设计,即使在个别单元故障时也可通过单元旁路功能将该单元短路,系统仍能降额地运行;

(4) 实现工/变频切换操作简单

若考虑变频器故障后的工频运行,可增设一个简单切换装置,可方便地通过倒切开关,切换到工频运行;

(5) 需制造复杂而昂贵的移相变压器

由于系统中存在着必须的移相变压器,系统效率再提高不容易实现;移相变压器中,6kV三相6绕组×3(10kV时需12绕组×3)延边三角形接法,在三相电压不平衡(实际上三相电压是不可能绝对平衡的)时,产生的内部环流,必将引起内阻的增加和电流的损耗,也相应的就造成了变压器的铜损增大。此时,再加上变压器的铁芯的固有损耗(励磁功率是为不变因数),变压器的效率就会降低。也就影响了整个系统的效率,并随负载率的降低,效率更要降低。变频器系统平均效率低。如果变压器损坏,维修极复杂,费用极高。总费用至少为购价的45%左右;

(6) 输入谐波重载时含量低

由于采用了必要的移相变压器,实现多组整流,间接地获得了输入端的低谐波含量指标;

(7) 使用的功率单元及功率器件数量太多

6kV系统要使用150只功率器件(90只二极管,60只IGBT);移相主变压器接点太多,接线复杂,系统的内阻和损耗增大,驱动元器和连线多。相应地长期使用中故障必然多,维护复杂且工作量大;

(8) 电机温度高

输出电压波形在额定负载时尚好,低于25Hz以下畸变突出,谐波含量大增。电机从0Hz起动时振动大,电机温度高,是不能快加速的原因;

(9) 只能用于风机水泵的变频调速

(10) 动态特性软,响应速度慢,加速和减速时间长

(11) 不易用于含有制动工况的机械转动

不易实现能量回馈的四象限运行,且无法实现制动;

(12) 装置的体积太大,重量大,安装占地面积大。

4.5 IGBT元件直接串联高压变频器(通用高压变频器)

直接整流→IGBT元件串联直接高压方式(无内含输入变压器)

在中高压领域,矛盾的焦点是自关断功率器件如IGBT的耐压问题,对3kV、6kV、10kV或更高的工作电压IGBT的耐压短期内是无法解决的,而对高速功率开关器件的串联问题是全世界公认都未解决的尖端难题。

电压变换方式:电源→IGBT元件串联直接高压器(R1)→电机(R2)。

系统等效阻抗R=R1+R2。

4.5.1主回路

IGBT元件直接串联高压变频器主回路原理图如图5所示。

变频器主回路原理图>

图5 IGBT元件直接串联高压变频器主回路原理图

前面已讨论多电平、多重化的优点,而现代PWM 控制技术的发展水平,产生的电压波形能基本消除低次谐波,二电平比三电平整体效果更好,与多重化相差不大,在低频段波形优于多电平和多重化。同时多电平、多重化带来的问题与直接串联比是相当多的。

4.5.2 静、动态性能

直接串联二电平可以像低压变频器一样加直流制动电路或能量回馈,其动态性能也可以像低压变频器一样优越,其电路仍很简单。这对于多电平,特别是多重化并不容易实现。使它们只能用于一些调速要求不高的场合。为此,IGBT元件直接串联高压变频器(通用高压变频器)应用了佳灵的核心技术-直接速度控制(DSC)技术对交流传动来说是一个最优的电机控制方法,它可以对所有交流电机的核心变量进行直接控制。不需在电动机转轴上安装脉冲编码器来反馈转子位置信号而具有精确的速度和转矩的控制技术。极其关键的是控制中不受定子温度和转子温度变化引起对电机参数变化的影响(矢量控制受转子温度影响而变差,直接转矩控制受定子温度影响而变差)。DSC开发出交流传动中前所未有的能力并给所有的应用提供了优秀服务。

DSC直接速度控制,是交流传动领域电机控制方式的一次革命,它从零速开始不使用电机轴上的脉冲码盘反馈就可以实现电机速度和转矩的精确控制。在零速度时能产生满载转矩。

在DSC中,定子磁通、转子磁场和转速被作为主要的控制变量。以滑差为误差,以转矩为调节量,以鲁棒性设计控制,确保稳定性和可靠性。高速数字信号处理器与先进的电机软件模型相结合使电机的状态每秒钟被更新4万次。由于电机状态以及实际值和给定值的比较值被不断地更新,逆变器的每一次开关状态都是单独确定的。这意味着变频器可以产生最佳的开关组合并对负载扰动和瞬时掉电、网压波动等动态变化做出快速响应。在DSC中不需要对电压,频率分别控制的PWM调制器。开环动态速度控制精度可以达到闭环磁通矢量控制的精度。DSC静态速度控制精度为标称速度的0.1%~0.4%(50Hz~2Hz),它满足了绝大多数的工业应用。当要求更精确的速度调节时,可以加装脉冲编码器可选件。DSC的开环转矩阶跃上升时间小于5ms,而不带速度传感器的磁通矢量控制变频器的开环转矩阶跃上升时间却多于100ms,与直接转矩控制同等,转矩脉动为0.3%,比直接转矩控制优。JL5000变频器其优良的鲁棒性,即可靠性稳定性是无与伦比的。

4.5.3 复杂程度

和其它高压变频器相比较,三电平要多6个快速二极管,五电平就更多了。多电平每个开关都要独立控制;多重化每个单元上的4个开关器件都要独立控制,并且都存在笨重、复杂、成本高、自损大的输入变压器。IGBT元件直接串联无输入变压器组成的同一组件都只需一个开关量控制。其高效性和可靠性从原理上讲就高许多。

4.5.4 节能效果

多重化为得到若干组不同的独立电压,变压器采用延边三角形法,很难得到三相平衡的移相电压。这必然形成环流,增大铜、铁损耗,并且负载变化不大,而数百个变压器的内外接头也将增大损耗,降低可靠性。输入变压器,降低了效率。应用变频器是为了获取节能产生经

济效益为主要目的。IGBT元件直接串联高压变频器在同等工况多节能5%以上,更高效的节能设备在运用若干年后产生的效益,也是很可观的。

以2000kW的高压变频器为例,仅变压器的自损耗一年就达360天×24h×100kW×0.5元/kW?h=360000元。

4.5.5 输入输出谐波含量符合国家标准

IGBT直接串联高压变频器在输入端加了采用无源校正技术,这种技术能对基波进行相移补偿或抑制某些指定的谐波。具体方法是在输入端增加无源元件,以补偿滤波电容的输入电流。在输入回路中串入电感器,以限制输入电流的上升速度,延长整流管导通时间,功率因数可以提高到0.9以上。谐波都被转移到调制频率附近。使得输入端谐波含量THD指标完全符合国家标准。在输出端采用了电压正弦波整形器,将高压变频器输出的PWM电压波形整形为和电网电压一样的标准正弦电压波形。无论变频器工作在高频段还是低频段和电机负载工作在重载或轻载条件中时波形都不变。并在输出端设有抗共模技术世界专利的共模电压治理器,成为唯一的一种解决了高压EMC问题的高压变频器。其输出端谐波含量指标完全符合国际标准。

4.5.6 世界唯一能用于任何电机负载性质的IGBT通用高压变频器

高效JCS系列高压变频器由于无输入、无输出主变压器和内含国际技术水平的高度,是在目前的高压变频器中一种无以伦比的高效、高质量性价比产品。其通用性:用于风机、水泵变工况调速节能应用;用于位势负载应用,例如起重机,提升机,电梯、皮带机等;用于对转角、位移做精确控制,如轧机;用于恒转矩的通用机械传动系统。

5 高压变频器的主要性能及效益比较

高压变频器的主要性能及效益比较如附表所示。

6 结束语

综上所述,可说在高压电动机变频调速应用领域中,体现了科技研究人员为人类社会发展,促进科学技术的飞跃,设计出了种种高压变频器,在一定时期起到了积极推广应用,做出了历史科学的重大贡献。新科学、新技术的更新或替代,是社会发展的必然规律。任何新技术都有一个从认识、认同、再创新发展的必然过程。从上述常见高压变频器电气方案的分析中,电流型、高-低-高、三电平技术方案高压变频器在选用时值得慎重考虑。单元串联叠加多电平技术高压变频器,在一定的时期范围可有应用价值。IGBT元件直接串联高压变频器(通用高压变频器)无输入、无输出主变压器和内含国际技术水平的高度,是在目前的高压变频器中一种无以伦比合理的质量性价比产品。尤其高控制技术获得通用性和具有纯国家知识产权的电力电子装置,是民族的智慧和强大的体现。JCS高压变频器是曾获得国内同行知名权威专家们的支持、帮助、认同的纯国产高新技术产品,值得全面推广应用。JCS高压变频器还应不断充实新技术,升化品质才能具有可持续长远发展的战略意义。

两电平和三电平脉冲整流器的比较

两电平与三电平的脉冲波形比较 电牵二班 组员:杨洋20121550 曾绍桓20121543 徐刚堂20121544 代思瑶20121565 黄异彩20121569 赵杰20121571

两电平与三电平的脉冲波形比较 我国引进的时速200公里动力分散型交流传动动车组中,CRHI 、CRHS 动车组主电路均采用了两电平全桥整流电路。为了降低开关管的电压应力和改善PWM 整流器网侧输出波形,CRHZ 动车组采用了二极管箱位三电平PWM 整流器电路结构。下面主要对这两种电路拓扑的工作原理及数学模型进行分析和研究。 1.1两电平整流器原理与数学模型 单相电压型两电平Pwm 整流器主电路如图2一1所示,网侧漏感L 二起传递和储存能量,抑制高次谐波的作用;支撑电容Cd 起抑制高次谐波,减少直流电压纹波的作用;电感LZ 和电容CZ 形成串联谐振电路,用于滤除电网的2次谐波分量。把开关器件(这里采用IGBT)视为理想开关元件,定义理想开关函数S,和S,,从而得到如图2一2所示简化等效电路。 两电平PWM 脉冲整流电路 两电平PWM 整流器等效电路 由于上桥臂与下桥臂不能够出现直通,则a 1S 与a 2S 、b 1S 与b 2S 不能同时导通和 关断,驱动信号应该互补。PWM 整流器网侧输入端电压ab U 取值有dc U 、0、-dc U 三种电平,有效的开关组合有22=4种,即S,S,=00、01、10、11四种逻辑,则PWM 整流器输入端电压ab U 有如下关系:

ab U =(B A S S -)dc U 则由式(2一2),系统的瞬时等值电路如图2一3所示 瞬时等值电路 由图2- 3可见,通过不同的控制方法适当调节“ab U 的大小和相位,就能控制 输入电流的相位以控制系统功率因数;同时控制输入电流的大小以控制传入功率变换的能量,也就控制了直流侧输出电压。因此,通常采用电压外环和电流内环相结合的双闭环控制方式。此等值电路的电压矢量平衡方程为: ab t iN i d d U R L U N N N N ++= 对应于四个开关的不同工作状态,电路共有以下三种工作模式: 工作模式1:B A S S =00或11,即下桥臂开关或上桥臂开关全部导通,则此时“ab U =0,电容d C 向负载供电,直流电压通过负载形成回路释放能量,直流电压下降,因此, 为了保证直流侧电压的稳定,工作模式1的导通时间比较短,这也是在空间电压矢量调制中,两个零矢量的作用时间要比其他六个矢量的作用时间短的原因。另一方面,网侧电压N U 二两端电压直接加在电感N L 上,对电感N L 充、放电。此时对应的电压矢量平衡方程如下(忽略等效电阻的影响): N U =N L t i d d N 工作模式3:B A S S =10,等效电路如图2- 4(b)所示,则ab U =dc U 。N U >0,储存在电感中的能量向负载L R 和电容d C 释放,电感电流N i 下降,一方面给电容充电,使得直流电压上升,保证直流电压稳定,同时高次谐波电流通过电容形成低阻抗回路;另一方面给负载提供恒定的电流。此时对应的电压矢量平衡方程如下: N L t i d d N =N U -dc U

两电平及多电平变换器介绍

PWM变流器简介 电力电子技术的应用包括四大类基本变流电路,即AC-DC(整流)、DC-DC (升降压斩波)、AC-AC(变频变相)、DC-AC(逆变)变流电路。由此产生的整流器,逆变器,变流器(双向整流逆变)等装置在工业生活中的应用日益广泛,无论是在UPS,新能源发电(光伏、风电),电能质量治理(无功、谐波),还是电动汽车等领域,对系统效率的期望比以往更高。在市电等级应用领域中,通常采用的是两电平变流器拓扑结构,而多电平变流器拓扑的提出,就是为了实现中高压应用的目标。本文将对常见的两电平、三电平变流器拓扑原理进行分析介绍。 1.一种典型的两电平-三相电压型桥式PWM变流器电路拓扑如下图所示: 图1三相电压型桥式PWM变流器 电路直流侧通常只有一个电容器就可以,为了方便分析,画作串联的两个电容器并标出理想中点N。其基本工作方式为180度导电,即每个桥臂导电角度为180度,同一相(即同一桥)上下两个臂交替导电,各相开始导电的角度依次相差120度。在任一瞬间,将有三个桥臂同时导通,每次换流都是在同一相上下两个桥臂之间进行,因此也称为纵向换流。 下面来分析该电路的工作波形,对于U相输出来说,当V1导通时,Uun=Ud/2;V4导通时,Uun=-Ud/2.因此Uun的波形是幅值为Ud/2的矩形波。V,W两相情况类似,只是相位依次相差120度。通常我们所说的几电平指的是逆变器输出的相电压,对两电平而言,逆变器输出的相电压只有上述分析的两种电平:±Ud/2。 负载线电压可分别由公式求出: Uuv=Uun-Uvn; Uvw=Uvn-Uwn; Uwu=Uwn-Uun 可以看出负载线电压有三个值:±Ud,0.

三电平与两电平逆变器谐波特性的比较

三电平与两电平逆变器谐波特性的比较 引言 三电平逆变器自1981年nabae提出后[1],在近几年得到了广泛的应用。因为相对于传统的两电平逆变器而言,它具有如下2个突出的优点[2]: (1) 每个桥臂上开关元件的电压应力为直流侧输入电压的一半,这样无需动态均压电路就可以将低耐压的器件应用于高压大功率场合。 (2) 在相同的载波频率下,三电平逆变器线电压的谐波成份较两电平逆变器要小得多,且由于开关频率也成倍减小,有效地减小了开关损耗。 本文采用双重傅立叶级数的方法分析了这两种逆变器的谐波特性,并分别给出仿真结果进行比较,证明三电平逆变器的这两个优点。 2 三电平逆变器的谐波分析 图1为二极管箝位型三相三电平逆变器主电路拓扑结构,图2是a相的波形图。 图1 三电平逆变器主电路 图2 三电平逆变器波形图 其中,载波幅值为1,角频率为ωs;调制波幅值为ma,也即逆变器的调制系数,角频率为ω0。载波和调制波可以写成如下形式

(1) (2) uar=masinω0t (3) 调制波和载波的交点即为开关的动作时间,在交点上,有up=uar(调制波的0~π区间)和un=uar(调制波的π~2π区间),如图3所示。 图3 调制波和载波的相位关系 (4) (5) 所以 (6) 将用双重傅立叶级数表示[3] (7) 式中

(8) 线电压uab是相电压ua0和ub0的矢量差,即 (9) (10) 将线电压uab的系数aknak分解成各频率分量可得 (1) 直流分量(k=0,n=0) a00=0,所以a00a0=0,uab不含直流分量。 (2) 基波分量(k=1,n=0) ,,所以uab的基波 (11) (3) 基波频率的整数倍分量(k>1,n=0) ak0=0,所以ak0ak=0,uab不含基波频率的整数倍分量。 (4) 载波频率的整数倍分量(k=0,n≥1) 因为a0=0,所以a0na0=0,uab不含载波频率的整数倍分量。 (5) 调制波和载波频率的和频与差频分量(k≠0,n≥1) (12) (13) (14) 从(14)式可看出,当k为偶数或3的倍数时,aknak=0。所以

三电平

目前,世界上对高压电动机变频调速技术的研究非常活跃,高压变频器的种类层出不穷,作为用户都希望能选择实用而具有良好性价比的高压变频器,如何选择便是值得研究的问题。知己知彼,百战百胜,首先按照自己的工况拟定对高压变频器的技术要求,针对性的选择高压变频器的方案、产品和售后服务,否则会出现应用不理想,投资损失大。不同高压变频器的电路拓扑方案具有不同的技术水平。技术水平决定变频器和传动系统的稳定性、可靠性、使用寿命、维护费用、性价比等重要指标。就如同笔记本电脑功能都基本相同,但不同的技术水平,质量价位从3000元到数万元之差。为此,了解不同种类的高压变频器内含技术水平,选择变频器的品质与工况相结合,达到投入少、节能回报率高的理想效果。 2 高压变频器的概念 按国际惯例和我国国家标准对电压等级的划分,对供电电压≥10kV时称高压,1kV~10kV 时称中压。我们习惯上也把额定电压为6kV或3kV的电机称为高压电机。由于相应额定电压1~10kV的变频器有着共同的特征,因此,我们把驱动1~10kV交流电动机的变频器称之为高压变频器。高压变频器又分为两种性质类型,电流型和电压型,其特点区别: (1) 变频器其主要功能特点为逆变电路。根据直流端滤波器型式,逆变电路可分为电压型和电流型两类。前者在直流供电输入端并联有大电容,一方面可以抑制直流电压的脉动,减少直流电源的内阻,使直流电源近似为恒压源;另一方面也为来自逆变器侧的无功电流提供导通路径。因此,称之为电压型逆变电路。 (2) 在逆变器直流供电侧串联大电感,使直流电源近似为恒流源,这种电路称之为电流型逆变电路。电路中串联的电感一方面可以抑制直流电流的脉动,但输出特性软。电流型变频器是在电压型变频器之前发展起来的早期拓扑。 3 电压型逆变器与电流型逆变器的特点区别 (1) 直流回路的滤波环节 电压型逆变器的直流滤波环节主要采用大电容,因此电源阻抗小,相当于电压源。电流型逆变器的直流滤波环节主要采用大电感,相当于恒流源。 (2) 输出波形 电压型逆变器输出的电压波形是SPWM高频矩形载波,输出的电流波形在感性负载时近似于正弦波,含有部份的高次谐波分量,输入采用简易滤波,便可满足国家谐波含量标准。电流型变换器输出的电流波形是一个交变矩形波,其输出的电压波形接近正弦波,含有丰富的高次谐波分量,电机易发高热,一般使用时都要选用进口的特制电动机。输入谐波含量极高,须采用巨大,笨重的滤波器,方能使用。 (3) 四象限运行 电流型逆变器由于在其直流供电侧串联大电感,在维持电流方向不变的情况下,可控硅整流桥可改变电压极性,所以很容易使逆变器运行在整流状态,从而使整流桥处于逆变状态,实

三电平理论

华中科技大学 硕士学位论文 三电平逆变器SVPWM控制策略的研究 姓名:刘亚军 申请学位级别:硕士 专业:控制理论与控制工程 指导教师:程善美 20080604

摘要 三电平逆变器输出由于具有更高的电能质量、更低的谐波含量,更好的电磁兼容性以及更低的开关损耗等优点,在中高压大容量交流调速领域得到了广泛的应用。但是,三电平逆变器也存在不少关键问题,如三电平算法的简化问题,过调制区中点电压控制问题,以及在高压运行时系统的稳定性问题。鉴于以上存在的问题,本论文深入地研究了三电平逆变器的结构,原理,控制策略,电容中点电压的控制,死区补偿,过调制处理以及SVPWM算法的实现。 论文在论叙二极管箝位三电平逆变器的结构和工作原理的基础上,分析了三电平逆变器的SVPWM调制策略,提出了一种实用的易于数字化实现的三电平SVPWM 算法。在该算法的基础上通过修改小矢量的作用时间给出了基于滞环控制和PI控制的电容中点电压控制策略,并得到了很好的效果。同时,论文对三电平逆变器的死区补偿和过调制处理进行了深入的研究,并且提出了一些新的方法来解决在过调制情况下的中点电压平衡问题,研究了三电平逆变器的死区实现方案和补偿策略,仿真实验证实了所提出的策略达到了预定的效果。为了验证所提出的三电平SVPWM 算法,本文在MATLAB下建立了基于三电平逆变器的感应电动机V/F控制系统和矢量控制系统,仿真结果验证了所提出的三电平空间矢量PWM算法是可行有效的。 论文对三电平逆变器的SVPWM算法的实现进行了研究,基于DSP和CPLD提出了两种实现方法。一种是采用数字信号处理器TMS320LF2407A中的两个事件管理器巧妙实现了三电平SVPWM算法;另一种是利用TMS320LF2407A和EPM240T100C5组成组合逻辑来实现。实验结果进一步证实了所做的研究工作和所提出的算法是实际可行的。 关键词:三电平逆变器SVPWM算法中点电压控制死区补偿过调制

三电平技术

能源短缺和环境污染是人类当前面临的共同的世纪性难题。20世纪70年代以来两次世界性的能源危机以及当前环境问题的严重性,引起世界各国对节能技术的广泛关注。我国能源生产和消费已列世界前茅,但仍远远满足不了工业生产和人民生活发展的需要。由于缺电,正常的生产秩序被打乱,造成巨大的经济损失;在能源十分紧张的情况下,浪费现象仍十分严重。例如,在工业用电中,高压大功率电机拖动的风机、水泵占很大比例,这些设备每天都在消耗大量的电能。如果采用高压大容量变频调速装置拖动交流电机,对降低单产能耗具有重大意义。在轧钢、造纸、水泥、煤炭、铁路及船舶等工业和生活领域中也广泛使用大中容量高性能交流电机调速系统。此时,交流调速系统的应用可改善工艺条件,实现整个系统的性能最佳,并大大提高生产效率和产品质量。另外,解决环境污染的重要途径是发展高速公共交通工具(如电力机车、城市地铁和轻轨),其核心也是大容量交流电机调速技术。然而,随着交流调速及电力电子装置等非线性设备在工业、交通及家电中的大量应用,电网中的无功和谐波污染日益严重。电力系统中的无功和谐波降低了电能的生产、传输和利用的效率,同时降低了电器设备运行的可靠性,严重时损坏设备、危及电网的安全。以柔性交流输电系统(FACTS)技术为代表的大功率电力电子技术,在电力系统中的应用可大幅度改善电力系统可控性及可靠性,提高输电线路的传输能力及系统的安全稳定性。在柔性交流输电系统中,采用高压大容量电力电子装置构成的无功补偿和电力有源滤波器无疑是一个发展趋势。 从20世纪90年代以来,以高压IGBT、IGCT为代表的性能优异的复合器件的发展引人注目,并在此基础上产生了很多新型的高压大容量变换拓扑结构,成为国内外学者和工业界研究的重要课题,使得传统上在大功率应用领域中占主导地位的SCR、GTO 及其变换器结构受到强有力的挑战。在工业发达国家,兆瓦级的高压多电平逆变器已有产品大量投入市场,并应用于电力机车牵引、船舶电力推进、轧钢、造纸、油气田、无功补偿等高性能系统中。我国也有不少单位在研究、开发和引进高压大容量多电平变换器的技术和设备。三电平逆变器的结构较简单,其电路拓扑形式从一定意义上来说可以看成多电平逆变器结构中的一个特例,它的中点钳位及维持中点电位动态平衡技术、功率器件尖峰吸收缓冲电路、PWM算法简化及控制策略、高压功率器件的驱动及系统的工作电源等也是多电平逆变器控制需要研究解决的问题。从

三电平分析

电力电子系统仿真报告 题目三电平H桥级联型逆变器 专业 班级 学生 指导教师 2016年3月10日

三电平H桥级联型逆变器 一、摘要 级联型多电平变频器输出电压谐波含量小,易于实现模块化,适用于高压大功率场合。本文主要针对三电平H桥级联型逆变器的拓扑结构和控制方式的相关问题进行分析与研究。级联个数不同,对控制方法也有不同的要求。提出了基于载波层叠调制和载波移相调制的混合载波调制方法,三电平桥臂内采用反相层叠载波调制,级联单元间及桥臂间均采用载波移相调制。本文根据级联个数的奇偶性,在级联单元间分别采用不同的载波移相控制方法,并通过PSIM软件仿真验证了这种采取不同控制方法的正确性,同时也对输出电压的谐波进行了分析。 二、选择PSIM仿真软件 PSIM是趋向于电力电子领域以及电机控制领域的仿真应用软件。PSIM是由SIMCAD 和SIMVIEM两个软件来组成的。它具有仿真高速、用户界面友好、波形解析等功能,为电力电子电路的解析、控制系统设计、电机驱动研究等有效提供强有力的仿真环境。PSIM还提供了一个强有力的对功率电子学、模拟及数字控制、磁以及电机驱动系统进行研究的仿真环境,需要用户确定的参数极少,仿真速度快,界面友好。与基于SPICE的仿真软件不同,PSIM并不是为一般的电子电路仿真而设计的,而是针对性很强的一种仿真软件。与SPICE相比,它具有更快的仿真速度和更强的收敛性。PSIM几乎不会出现仿真不收敛的情况。 根据其用户界面直观、易于使用,用PSIM直观、简单的操作界面可迅速搭建电路图,PSIM相比其它仿真软件的最重要的特点是仿真速度快,可仿真任意大小的电力变换电路和控制回路等这些特点。根据本文的要求以及仿真软件的特点,要想达到预期的仿真效果,我就选择用PSIM进行仿真来实现其仿真结果。 三、选择所需的仿真步长 我们知道仿真时的时间概念与真实的时间并不一样,它只是计算机在仿真中对时间的一种表示,比如10秒的仿真时间,如果采样步长定为0.1,则需要执行100步,若把步长减小,则采样点数增加,那么实际的执行时间就会增加。一般仿真开始时间设为0,而结束时间视不同的因素而选择。总的说来,执行一次仿真要耗费的时间依赖于很多因素,包括模型的复杂程度、解法器及其步长的选择、计算机时钟的速度等等。 在选择步长时我们主要考虑其仿真的速度和仿真的精度。若步长选择的很大则采样点数会减小,所以完成仿真的速度会很快,而仿真结果的精度就会降低。相反若选择的步长较小则采样点数增加,所以仿真速度就会降低而仿真结果的精

三电平

逆变器概述: 逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成。 三电平发展趋势: 近几年来,多电平逆变器成为人们研究的热点课题.三电平逆变器是多电平逆变器中最简单又最实用的一种电路.三电平逆变器与传统的两电平逆变器相比较,主要优点是:器件具有2倍的正向阻断电压能力,并能减少谐波和降低开关频率,从而使系统损耗减小,使低压开关器件可以应用更广泛。 三电平逆变器拓扑: (1) (2) (3)

三电平逆变器基本原理 日本学者南波江章(A.Kira Nabae)教授等人对Holtz提出的电路进行了改进与发展,于1980年在IEEE工业应用学会(IAS)年会上提出了二极管箝位式三电平逆变器主电路的结构,从此开创了多电平逆变器的研发新阶段。该拓扑为在两个电力电子开关器件串联的基础上,中性点加一对箝位二极管的三电平逆变器,又称为中性点箝位型(Neutral Point Clamped,简称NPC)三电平逆变器,所示即为三相三电平NPC逆变器拓扑结构,由两个直流分压电容C1=C2、三相逆变电路组成。负载为三相感应电机。电容不仅有滤波的作用,还起电压支撑的作用。每相电路的上、下桥臂均由两个开关器件串联构成,两个器件都反并联了二极管(图中为IGBT)。两个串联器件的中点通过箝位二极管和直流侧电容的中点相连接。

以A相逆变电路为例,分析二极管箝位型三电平电压型逆变器的工作原理。 A相逆变电路如图2.2所示。由两个直流母线分压电容C1、C2、四个主开关器件V11、V12、V41、V42,四个续流二极管VD11、VD12、VD41、VD42,两个箝位二极管VD1、VD4组成。直流母线电压被两个串联大电容C1和C2分割成三个等级。两个电容的中间点m被定义为中性点。以中性点m为参考点,当V11、V12同时导通,V41、V42同时关断时,uAm=+Ud/2;当V12、V41同时导通,V11、V42同时关断时,uAm=0;当V41、V42同时导通,V11、V12同时关断时,uAm=-Ud/2; 可见,A相输出电压uAm具有三种状态:+Ud/2、0、-Ud/2,分别定义为P、0、N。 对于三相电路而言,共有3^3=27种状态。对应着空间矢量控制的27个矢量状态,相比于两电平逆变器的2^3=8个状态来说,显然三电平提供的矢量状态丰富多了,选择的范围更大,更易获得好的控制性能。经过分析不难发现,由于箝位二极管的作用,每个主功率开关器件承受的电压是单个直流电容两端的电压,即直流侧电压的一半Ud/2,相对于传统两电平逆变器来说,主开关器件的耐压可降低一半。表2.1列出了A相逆变电路稳态工作模式下输出电平与开关状态的关系,可以看出,主开关器件V11、V42不能同时导通,V11和V41工作在开关互补状态,V12和V42工作在开关互补状态。也就是说,

三电平逆变器基本介绍

三电平逆变器基本介绍 一、三电平逆变器的基本工作原理 DC V 2 1DC V 21 图1 三电平逆变器主电路 图2 四个开关管的驱动信号波形

当u 时,u ,且表示Q1通Q3断,S 表示 Q1断Q3通; 0>DC V S 2/1**=1*=S 0*= 当u 时,u ,且表示Q2通Q4断,表示Q2断Q4通; 0+==时时0u 41*42/1*)1(0u 41*42/1*DC m t DC DC DC m t DC DC V v V V V S V v V V V S u 图3 三电平逆变器模型(包括调制部分)

图4 三电平逆变器的控制框图 二、三电平逆变器的缓冲电路 DC V 21DC V 21 图5 实验中所采用的NPC 缓冲电路

实验中发现在突加RCD 负载时会在Q2、Q3上产生很大的电压尖峰,经仔细分析,主要有以下两个方面的原因: 第一:在突加RCD 负载时会产生很大的电流尖峰,由于控制板在设计时考虑的状况是当出现过流信号时同时封锁Q1、Q2、Q3、Q4的驱动信号,从而导致A 点电位在封锁Q1、Q2、Q3、Q4驱动瞬间的变化最大幅值可以达到V ,很类似于两电平逆变 器工作时的状态,容易导致开关管上出现电压尖峰。 DC 解决办法:当出现电流尖峰时仅仅封锁Q1、Q4的驱动信号,而Q2、Q3的驱动不封锁,仍然保持原状态不变,如此一来在封锁Q1、Q4驱动瞬间A 点电位的变化最大幅值仅仅为1,因此大大减小了开关管上的电压尖峰。 DC V 2/第二:在突加RCD 负载时输出电压的正负半周会出现误判的状况。 以一个实际的工作状况对此加以说明,假设当前处于桥臂输出电压的正半周,但是由于此时突加RCD 负载因此误判为是在电压的负半周,因此会做以下操作:将原来处于开关状态的Q1改为常断;将原来常通的开关管Q2改为开关状态;将原来处于开关状态的开关管Q3改为常通;将原来常断的开关管Q4改为开关状态,而在此转换过程当中,负载电流很大,很容易在开关管上产生电压尖峰。

逆变三电平I型和T型电路的比较分析

逆变三电平I型和T型电路的比较分析 随着太阳能、UPS技术的不断发展和市场的不断扩大,对逆变器效率的要求也越来越被制造商所重视,因此三电平的拓扑结构便应运而生。众所周知,与传统两电平结构相比,三电平结构除了使单个IGBT阻断电压减半之外,还具有谐波小、损耗低、效率高等优势。 目前针对三电平拓扑结构有很多种,最常见的两种拓扑结构为三电平“I”型和三电平“T”型,接下来会对这两种结构从不同方面进行分析。 三电平电路示意图 如图1,2所示的两种三电平电路图,为了区分这两种电路,根据四个开关管在线路图中的的排列方式,我们将前者成为I字型,后者称为T字型。 三电平电路与普通的半桥电路相比,因为具有了中点续流的能力,所以对改善输出纹波,降低损耗都有很好的效果。

图1. 三电平“1“字形电路示意图 图2. 三电平“T“字形电路示意图 两种电路的分析 1.芯片阻断电压不同 三电平I型电路中,4个IGBT管均承受相同的电压,而T型Q1&Q4管承受两倍的电压。比如,若直流母线为600V时,I型4个IGBT管阻断电压为600V/650V, 而T型Q1&Q4管为1200V. 1200V的IGBT芯片比600V/650V芯片有更大的开关损耗及导通损耗,这意味着芯片的发热更大,需要更多的硅芯片。而硅芯片的增加,成本也必然随之增加。 然而在实际上,对于I型电路,当两个开关管的电压串联承受2倍BUS电压时,由于元件本身的差异,两个开关管承受的的电压不可能完全相同,因此,为了保证开关管的安全工作,I型电路中开关管也应按照承受2倍BUS电压去设计。

所以,从实际角度出发,在开关耐压的选择上,I型电路并没有太大优势。 2.元件数量不同 从拓扑结构图中,很容易可以看出T型电路要比I型电路少两个Diode,这对于 减少空间有好处。 3.控制时序不同 三电平I型需先关断外管Q1/Q4,再关断内管Q2/Q3,防止母线电压加在外管上导致 损坏;而T型则无时序上的要求。另外,对于I型拓扑,在驱动设计时需要有4个独 立电源;而对于T型共发射极拓扑,只需要3个独立电源。 I型与T型损耗有所差异,在功率因数接近1时,开关频率增大(>16KHz),三电 平I型(600V)损耗更低,效率更高;而开关频率减少时(<16KHz),三电平T型(1200V)损耗更低,效率更高。所以在设计逆变器系统的时候,应根据不同的开关 频率去选择一种效率高的拓扑结构。 5.换流路径不同 在T型拓扑中,外管与内管之间的转换路径均为一致;而在I型拓扑中,换流路 径有所不同,分为短换流路径与长换流路径,所以用分立模块做三电平I型拓扑时, 必须要注意其杂散电感与电压尖峰的问题。 综上所述,三电平I型与T型互有优势, 通过本文的分析可以看出,T型和I型三 电平电路比较,耐压方面理论上I型电路优于T型电路,然而从实际应用角度分析, 二者相差不大;损耗方面,T型要优于I型;元件数量方面,T型少两个Diode。因此,按照本文的分析,在较小损耗和减小空间方面,T型电路会比较有利;赛米控针 对市场上不同的需求,同时可以给客户提供两种不同拓扑结构的三电平模块。 赛米控相关产品系列 对于三电平I型模块,赛米控推出了SEMITOP、MINISKIIP、SEMITRANS、SKIM 产品系列. 该模块将IGBT技术与较低开关和传导损耗结合,可用于功率等级为 5-80KVA的逆变器。其中SEMITOP、MINISKIIP、SKIM采用了SKIIP技术,无铜 底板的功率模块使芯片到散热器的热阻更低,同时具有结构紧凑、安装方便的优势。 对于三电平T型模块,赛米控推出了基于无铜底板、烧结技术平台的SKIM模块,该模块电流等级为300-600A,可用于大功率的逆变器。对于这款新面世的模块,必 将会在大功率三电平中占有一席之地。 针对日趋扩大的三电平应用领域,赛米控也不断投入研发,掌握最新的三电平技术;并且与多家知名企业与高校共同合作,力求紧跟市场,继续争当功率半导体行业 的引领者。 出自:世纪电源网论坛(未经允许私自转载者,将保留追究其版权责任)

三电平

三电平逆变器中点电压平衡的电压空间矢量控制原 理及算法 刘学超 (华南理工大学电力学院,广东广州510640) 摘要:分析了三电平电压空间矢量调制基本原理,深入研究了影响三电平逆变器中点电压平衡的主要因素,由此提出一种控制箝位二极管电压型三电平逆变器中点电压平衡的电压空间矢量算法。理论分析和仿真实验结果表明,所提出的控制算法能有效平衡三电平逆变器中点电压。 关键词:三电平逆变器;电压空间矢量脉宽调制;中点电压平衡;箝位二 极管 1 引言 近年来,在高压、大功率变换电路中,一种新型的变换器——箝位二极管式电压型三电平逆变器(如图1所示),引起了越来越多的关注。它不仅能应用于大功率高输入电压的逆变场合,而且能应用于如静止无功补偿、电力有源滤波器等电力电子装置中。归纳起来,三电平逆变器主要有 两个显著特点: 1)由多个电平台阶合成的输出电压正弦波形,在相同开关频率条件下,与传统二电平逆变器相比,谐波含量大大减少,改善了输出电压波 形; 2)开关管的电压额定值只为直流母线上电压的一半,使低压开关器件 可以应用于高压变换器中。 但是,三电平逆变器的缺点是控制策略较复杂和出现中点电压不平衡的问题[1],其中,中点电压不平衡是三电平逆变器的一个致命弱点。显然,若逆变器直流母线上并联两电容的中点电压在运行时不稳定,它将引起输出的三电平电压变化,不仅使输出电压波形畸变,谐波增加,而且

使三相输出电流不对称,失去三电平逆变器的优势。然而,对于中点电压不平衡问题,目前尚未有根本的解决方法。其中有代表性的方法一是利用改进硬件电路实现中点电压平衡的方法[2];二是通过改变开关时序或控制矢量电压持续时间的方法实现电压平衡。但都存在电路复杂、控制 效果不理想的问题。 为此,本文基于传统二电平逆变器电压空间矢量控制原理[3],提出基于平衡三电平逆变器中点电压的电压空间矢量控制的思想,从而在不增加硬件电路情况下,根本解决了三电平逆变器中点电压不平衡的问题。 2 三电平电压空间矢量调制及中点电压不平衡原 因 在传统三相两电平逆变器中,电压空间矢量个数为23=8[2]。根据三相两电平逆变器电压空间形成原理,箝位二极管式电压型三电平逆变电路的电压矢量合成图如图2所示,表1是它的每相开关状态表,总共有33=27个合成电压矢量。与三相两电平逆变器不同,三电平逆变器电压矢量可分为长矢量,中矢量,短矢量和零矢量,其中ppp,ooo和nnn是零矢量;还有 12个短矢量;6个中矢量(模长=。 结合电压空间矢量图可以得到三电平逆变器三相电压合成机理:任意时刻的三相电压V a、V b和V c可由三个相邻的电压空间矢量合成,当电压矢量沿着逆时针或顺时针方向旋转时,空间矢量由一个有效状态转移到另一个有效状态,从而产生连续的三相电压。

相关主题
文本预览
相关文档 最新文档