当前位置:文档之家› 开普勒定律的推导及应用

开普勒定律的推导及应用

开普勒定律的推导及应用
开普勒定律的推导及应用

开普勒定律的推导及应用

江苏南京师范大学物科院王勇江苏海安曲塘中学周延怀

随着人类航天技术的飞速发展和我国嫦娥绕月卫星的发射成功,以天体运动为载体的问题将成为今后考查热点。在现行的高中物理教材中主要引用了开普勒三大定律来描述了天体的运动的规律,这三条定律的主要内容如下:

(1)所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆轨道的一个焦点上。

(2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。

(3)所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值。

至于行星绕太阳的轨道为何是椭圆以及中的常量C与那些量相关并无说明。为了更深入的理解天体和人造卫星的运行规律,本文将以椭圆的性质为基础从理论上推导开普勒定律。

一、开普勒第一定律

1.地球运行的特点

(1)由于地球始终绕太阳运动,则太阳对地球的万有引力的力矩始终为零,所以地球在运动过程中角动量守恒。

(2)若把太阳与地球当作一个系统,由于万有引力为保守力且无外力作用在这个系统上,所以系统机械能守恒。

2.地球运行轨迹分析

地球在有心力场中作平面运动且万有引力的作用线始终通过太阳,所以建立如图所示的极坐标系,则P点坐标为(r,θ)。

若太阳质量为M,地球质量为m,极径为r时地球运行的运行速度为v。

当地球的运行速度与极径r垂直时,则地球运行过程中的角动量(1)若取无穷远处为引力势能的零参考点,则引力势能,地球在运行过程中的机械能(2)

(1)式代入(2)式得:(3)

由式(3)得:(4)

由式(4)可知,当地球的运行速度与极径r垂直时,地球运行的极径r有两解,由于初始假设地球的运行速度与极径垂直,所以r为地球处在近日点和远日点距太阳的距离。考

虑到地球的这两个位置在极坐标系中分别相当于和,可把式(4)中

的号改写为更普遍的形式极坐标方程。

则地球的运行轨迹方程为(5)(5)式与圆锥曲线的极坐标方程吻合,其中(p

为决定圆锥曲线的开口),(e为偏心率,决定运行轨迹的形状),所以地球的运行轨迹为圆锥曲线。由于地球绕太阳运动时E<0,则圆锥曲线的偏心率,所以地球绕太阳运行的轨迹为椭圆。

3.人造星体的变轨

由于运载火箭发射能力的局限,人造星体往往不能直接由火箭送入最终运行的空间轨道,若要使人造星体到达预定的轨道,要在地面跟踪测控网的跟踪测控下,选择合适时机向卫星上的发动机发出点火指令使人造星体的速度增加(机械能增加),进而达到改变卫星运行轨

道的目的。如图所示最初人造星体直接由火箭送入近地轨道1,此时,偏

心率e=0,人造星体运行的轨迹为圆;当到达A点时,人造星体发动机点火,此时

当时,偏心率e=0,人造星体将在圆轨道3上运行;当到达B点时人造星发动机再次点火,人造星体将在开口更大的椭圆轨道4上运动,人造星体将离地球越来越远,当地球对它的引力小于其它星体对它的引力时,人造星体将脱离地球的束缚奔向其它星体(如嫦娥一号卫星)。

二、开普勒第二定律

行星绕太阳的轨道为椭圆,若在时刻t行星位于A点,经dt时间后行星位于点B,在

此时间内行星的极径r转过的角度为dθ,则AOB所围的面积(1)(1)式除以dt有(2)

由于角动量(3)

(3)式代入(2)式得

由于L是恒量,所以单位时间内极径所扫过的面积也是恒量。所以地球在近日点运

行的快,在远地点运行的慢。如图人造星体从轨道1变化到轨道3的过程中,若点火前后A、B两点的速度分别为V1.V2.V3.V4,则点火前后速度V1V3;由于人造星体在轨道1。轨道3上做匀速圆周运动,以V1>V4;故V2>V1>V4>V3。

三、开普勒第三定律

行星绕太阳运动椭圆轨道的面积,根据椭圆的性质则椭圆的面积(a为长轴,b为短轴)由于单位时间内极径所扫过的面积

则周期(1)

根据椭圆的性质和开普勒第一定律,半长轴

(2)

(2)式得

(2)式代入(1)式得(3)根据椭圆的性质,椭圆的半短轴,则(4)

式(4)代入(3)式得C,由此式可知绕同一中心天体运行的人造星体轨道半长轴的三次方跟它们的公转周期的二次方的比值由中心天体的质量所决定。

例飞船沿半径为R 的圆周绕地球运动,其周期为T,如图所示如果飞船要返回地面,可在轨道上的某点A将速度降低到适当的数值,从而使飞船沿着地心为焦点的椭圆轨道运行,椭圆与地球表面在B点相切,求飞船由A 点到B 点所需的时间。(已知地球半径为R0)

分析:无论飞船是沿圆轨道运行还是沿椭圆轨道运行,飞船都是绕地球运动,所以运行

时间与轨道之间的关系满足C,故有

解得

则飞船由A点到B 点所需的时间为

参考文献:

[1]程守洙,江之永.普通物理学.高等教育出版社,2003

[2]马文蔚物理学.高等教育出版社,2004

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1. 用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2. 实际问题中的常用角 (侧角和俯角 与目标线在同一铅垂平面内的水平■视线和目标视线的火角,目标视线在水平■视线白勺角叫仰角,目标视线在水平■视线下方的角叫俯角(如图①). (2) 方向角:相对丁某正方向的水平■角,如南偏东30°,北偏西45°,西偏北60等; (3) 方位角 指从正北方向顺时针转到目标方向线的水平■角,如B点的方位角为g如图②). (4) 坡度:坡面与水平■面所成的二面角的度数. 【助学微博】 解三角形应用题的一般步骤 (1) 阅读理解题意,弄活问题的实际背景,明确已知与未知,理活量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2汁艮据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3汁艮据题意选择正弦定理或余弦定理求解.

(4)#三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1) 实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2) 实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有 时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1. (2012江苏金陵中学)已知^ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等丁 - 解析记三角形三边长为a-4, a, a+ 4,则(a + 4)2 = (a-4)2 + a2— 2a(a-4)cos 1 120,解得a= 10,故S= 2 X 10x 6X sin 120 = 15寸3. 答案15 3 2. 若海上有A, B, C三个小岛,测得A, B两岛相距10海里,/ BAC= 60°, / ABC= 75°,则B, C问的距离是__________ 渔里. ................................ BC AB - 解析由正弦正理,知sin 60° = sin 1800-60°-75°.解侍BC= 5V6(海里)? 答案5 6

开普勒定律

度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。3)万有引力1.开普勒第三定律:T2/R3=K(=4π2/GM) {R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G =6.67×10-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)} 4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2 {M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2 {h≈36000km,h:距地球表面的高度,r地:地球的半径}注: (1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。 开普勒定律 目录[隐藏] 开普勒定律的意义 发现 影响 开普勒定律的意义 发现 影响 也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。

公开课教学设计(正余弦定理及其应用)

解三角形教学设计 四川泸县二中吴超 教学目标 1.知识与技能 掌握正、余弦定理,能运用正、余弦定理解三角形,并能够解决与实际问题有关的问题。 2.过程与方法 通过小组讨论,学生展示,熟悉正、余弦定理的应用。 3.情感态度价值观 培养转化与化归的数学思想。 教学重、难点 重点:正、余弦定理的应用 难点: 正、余弦定理的实际问题应用 拟解决的主要问题 这部分的核心内容就是正余弦定理的应用。重点突出三类问题: (1)是围绕利用正、余弦定理解三角形展开的简单应用 (2)是三角函数、三角恒等变换等和解三角形的综合应用 (3)是围绕解三角形在实际问题中的应用展开 教学流程

教学过程 一、知识方法整合 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 = = = 2、三角形面积公式:C S ?AB = = = 3、余弦定理:C ?AB 中2a = 2b = 2c = 4、航海和测量中常涉及如仰角、俯角、方位角等术语 5、思想与能力:代数运算能力,分类整合,方程思想、化归与转化思想等 二、典例探究 例1 [2012·四川卷](小组讨论,熟悉定理公式的应用) 如图,正方形ABCD 的边长为1,延长BA 至E ,使AE=1,连接EC 、ED 则sin∠CED=_______(尝试多法) 解3:等面积法 解4:观察角的关系,两角和正切公式 解5:向量数量积定义 练1:在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( ) A.? ????0,π6 B.??????π6,π C.? ????0,π3 D.???? ??π3,π 解1:由正弦定理a 2≤b 2+c 2-bc ,由余弦定理可知bc ≤b 2+c 2-a 2=2bc cos A ,即1C D E C D E C D =?==1解:中,, 222210EC ED CD EC ED +-∠?∴=cos CED 10∴∠sin CED 021135CD E C E D C ==∠=解:, sin sin CD EC CED EDC =∠∴∠ sin 10CD EDC EC ?∠∴∠=sin CED

开普勒三定律的应用

万有引力及天体运动 一.开普勒行星运动三大定律 1、开普勒第一定律(轨道定律): 所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律): 对于每一个行星而言,太阳和行星的联线在相等的时间扫过相等的面积。 3、开普勒第三定律(周期定律): 所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说确的是: A 、速度最大的点是B 点 B 、速度最小的点是C 点 C 、m 从A 到B 做减速运动 D 、m 从B 到A 做减速运动 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②月—地检验 ③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 地上:忽略地球自转可得: 2)计算重力加速度 地球上空距离地心r=R+h 处 方法: 在质量为M ’,半径为R ’的任意天体表面的重力加速度' 'g 方法: (3)计算天体的质量和密度 利用自身表面的重力加速度: 天上:利用环绕天体的公转: 等等 (注:结合 得到中心天体的密度) (4)双星:两者质量分别为m 1、m 2,两者相距L 特点:距离不变,向心力相等,角速度相等,周期相等。 双星轨道半径之比: 双星的线速度之比: 三、宇宙航行 1、人造卫星的运行规律 2Mm F G r =11226.6710/G N m kg -=??12 2m m F G r =2 R Mm G mg =2' '''' 'R m M G mg =mg R Mm G =2r T m r m r v m r Mm G 222 224πω===33 4 R M πρ?=2 ')(h R Mm G mg +=1 2 2121 m m v v R R ==v Mm 22 24π

海伦公式

海伦公式 我国宋代的数学家秦九韶也提出了“三斜求积术”,它与海伦公式基本一样。假设在平面内,有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长:p=(a+b+c)/2 ——————————————————————————————————————————————注1:"Metrica"(《度量论》)手抄本中用s作为半周长,所以S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。——————————————————————————————————————————————由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 编辑本段证明过程 证明(1) 与海伦在他的著作"Metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√

[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] 证明(2) 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家秦九韶提出了“三斜求积术”。秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以q=1/4{a^2*c^2-[(a

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

海伦公式的推导和应用

海伦公式 海伦公式又译作希伦公式、海龙公式、公式、海伦-秦九韶公式,传说是古代的国王希伦(,也称海龙)二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的着作考证,这条公式其实是所发现,以托希伦二世的名发表(未查证)。我国宋代的数学家也提出了“三斜求积术”,它与海伦公式基本一样。 假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得: S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2 —————————————————————————————————————————————— 注1:Metrica(《度量论》)手抄本中用s作为半周长,所以 S=√[p(p-a)(p-b)(p-c)] 和S=√[s(s-a)(s-b)(s-c)]两种写法都是可以的,但多用p作为半周长。 —————————————————————————————————————————————— 由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。 证明(1): 与海伦在他的着作Metrica(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)] ):2证明( 我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国着名的数学家九韶提出了“三斜求积术”。 秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上

正余弦定理的综合应用及答案

正余弦定理的综合应用 1.【河北省唐山一中2018届二练】在ABC ?中,角,,A B C 的对边分别为,,a b c ,且 ()()3,cos sin sin cos 0b A B c A A C =+-+=. (1)求角B 的大小;(2)若ABC ?的面积为 3 2 ,求sin sin A C +的值. 2.【北京市海淀区2018届高三第一学期期末】如图,在ABC ?中,点D 在AC 边上,且 3AD DC =,7AB =,3 ADB π ∠=,6 C π ∠= . (Ⅰ)求DC 的值; (Ⅱ)求tan ABC ∠的值. 【解决法宝】对解平面图形中边角问题,若在同一个三角形,直接利用正弦定理与余弦定理求解,若图形中条件与结论不在一个三角形内,思路1:要将不同的三角形中的边角关系利用中间量集中到一个三角形内列出在利用正余弦定理列出方程求解;思路2:根据图像分析条件和结论所在的三角形,分析由条件可计算出的边角和由结论需要计算的边角,逐步建立未知与已知的联系. 3.【海南省2018届二模】已知在ABC ?中,a ,b ,c 分别为内角A ,B ,C 的对边,且 3cos sin cos b A a A C +sin cos 0c A A +=. (1)求角A 的大小; (2)若3a =,12 B π = ,求ABC ?的面积. 4.【湖北省天门等三市2018届联考】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos cos 3sin cos C A B A B +=. (Ⅰ)求cos B 的值;(Ⅱ)若1a c +=,求b 的取值范围. 5.【山东省淄博市2018届高三3月模拟】在 中,角 对边分别为 ,已知 . (1)求角的大小;(2)若 ,求 的面积. 6.【福建省南平市2018届第一次质检】在中, 分别为角 的对边,且 . (1)若,求及; (2)若 在线段 上,且 ,求的长. 7.【山东省实验中学2017届高三第一次诊,16】在△ABC 中,a ,b ,c 分别是角A ,B , C 的对边, cos 2cos C a c B b -=,且2a c +=.

正余弦定理的应用举例

正余弦定理的应用举例 正、余弦定理的应用举例 知识梳理 一、解斜三角形应用题的一般步骤: 分析:理解题意,分清已知与未知,画出示意图 建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 二.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题. 三.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决. 典例剖析 题型一距离问题 例1.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲

船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里? 解:如图,连结,由已知, 又,是等边三角形, 由已知,,, 在中,由余弦定理,.. 因此,乙船的速度的大小为.答:乙船每小时航行海里.题型二高度问题 例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30,至点c处测得顶端A的仰角为2,再继续前进10至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。 解法一:由已知可得在AcD中, Ac=Bc=30,AD=Dc=10,ADc=180-4, =。sin4=2sin2cos2 cos2=,得2=30=15,在RtADE中,AE=ADsin60=15 答:所求角为15,建筑物高度为15 解法二:设DE=x,AE=h 在RtAcE中,+h=30在RtADE中,x+h= 两式相减,得x=5,h=15在RtAcE中,tan2== =30,=15

开普勒定律的推导及应用

开普勒定律的推导及应用 江苏南京师范大学物科院王勇江苏海安曲塘中学周延怀 随着人类航天技术的飞速发展和我国嫦娥绕月卫星的发射成功,以天体运动为载体的问题将成为今后考查热点。在现行的高中物理教材中主要引用了开普勒三大定律来描述了天体的运动的规律,这三条定律的主要内容如下: (1)所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆轨道的一个焦点上。 (2)对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 (3)所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值。 至于行星绕太阳的轨道为何是椭圆以及中的常量C与那些量相关并无说明。为了更深入的理解天体和人造卫星的运行规律,本文将以椭圆的性质为基础从理论上推导开普勒定律。 一、开普勒第一定律 1.地球运行的特点 (1)由于地球始终绕太阳运动,则太阳对地球的万有引力的力矩始终为零,所以地球在运动过程中角动量守恒。 (2)若把太阳与地球当作一个系统,由于万有引力为保守力且无外力作用在这个系统上,所以系统机械能守恒。 2.地球运行轨迹分析 地球在有心力场中作平面运动且万有引力的作用线始终通过太阳,所以建立如图所示的极坐标系,则P点坐标为(r,θ)。 若太阳质量为M,地球质量为m,极径为r时地球运行的运行速度为v。

当地球的运行速度与极径r垂直时,则地球运行过程中的角动量(1)若取无穷远处为引力势能的零参考点,则引力势能,地球在运行过程中的机械能(2) (1)式代入(2)式得:(3) 由式(3)得:(4) 由式(4)可知,当地球的运行速度与极径r垂直时,地球运行的极径r有两解,由于初始假设地球的运行速度与极径垂直,所以r为地球处在近日点和远日点距太阳的距离。考 虑到地球的这两个位置在极坐标系中分别相当于和,可把式(4)中 的号改写为更普遍的形式极坐标方程。 则地球的运行轨迹方程为(5)(5)式与圆锥曲线的极坐标方程吻合,其中(p 为决定圆锥曲线的开口),(e为偏心率,决定运行轨迹的形状),所以地球的运行轨迹为圆锥曲线。由于地球绕太阳运动时E<0,则圆锥曲线的偏心率,所以地球绕太阳运行的轨迹为椭圆。 3.人造星体的变轨

正余弦定理的应用举例教案

天津职业技术师范大学 人教A版数学必修5 1.2正弦定理余弦定理 的应用举例 理学院 数学0701 田承恩

一、教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤 (二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维品

质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

正余弦定理综合应用

正余弦定理综合应用 学校: __________ 姓_名: ________ 班_级: _________ 考_号: ____________ 一、解答题 1 . 已 知 的 内 切 圆 面 积 为 , 角 所 对 的 边 分 别 为 , 若 1)求角 ; 2)当 的值最小时,求 的面积 . 2 .设 的内角 , , 所对的边分别为 , , ,且 ( 1)求 的值; 3)若 ,求 面积的最大值 ,求 的值;

1)求; 2)若,求

4 .已知向量,,角,,为的内角,其所对的边分别为,,. 1)当取得最大值时,求角的大小; 2)在(1)成立的条件下,当时,求的取值范围 5.在△ ABC 中,角A,B,C 所对的边分别为a,b,c,且. (1)判断△ ABC 的形状; (2)若,求的取值范围.

6 .如图:在中,,点在线段上,且 .求的长; Ⅱ)若,求△ DBC 的面积最大值. 7 .在中,角的对边分别为, (1)求角的大小; 2)若的外接圆直径为2,求的取值范围

8 .在锐角三角形中,角所对的边分别为,已知 (1)求角的大小; (2)求的取值范围。 42 9.设函数 f x cos 2x 2cos2 x. 3 (1)求 f x 的最大值,并写出使 f x 取最大值时x 的集合; 3 (2)已知ABC 中,角A,B,C 的边分别为a, b, c ,若 f B C 2,b c 2,求 a 的最小

值. 2 10.在ABC 中,角A,B,C 所对的边分别为a,b,c,且ACB 3 . 3 (1)若a, b,c依次成等差数列,且公差为 2 ,求c的值; (2)若 c 3, ABC ,试用表示ABC的周长,并求周长的最大值

万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32GT r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是

人教课标版高中数学必修5《正余弦定理应用举例》教学设计

第一章 解三角形 1.2 正余弦定理应用举例 一、教学目标 1.核心素养 通过学习正余弦定理应用举例,初步形成基本的数学抽象、逻辑推理与运算能力. 2.学习目标 应用正余弦定理解决三角形相应问题、解决实际问题. 3.学习重点 综合运用正余弦定理解三角形问题和实际问题. 4.学习难点 正余弦定理与三角函数知识的综合运用. 二、教学设计 (一)课前设计 1.预习任务 任务 阅读教材P11-P16. 思考:正余弦定理的内容是什么?利用正余弦定理求解实际问题的基本步骤是什么?题中为什么要给出这些已知条件,而不是其他条件? 2.预习自测 1.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A.4 3 B.2 3 C. 3 D.32 答案:B. 2.已知ABC ?中,a 、b 、c 分别为A,B,C 的对边, 30,34,4=∠==A b a ,则B ∠等于( )

A. 30 B. 150 30或 C. 60 D. 60或 120 答案:D. 3.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点测出AC的距离为50m,∠45 CAB=?后,就可以计算出A、B两点 ACB=?,∠105 的距离为( ) A. B. C. m D. 2 答案:A. (二)课堂设计 1.知识回顾 (1)正弦定理和余弦定理

(2)在ABC ?中,已知a 、b 和角A 时,角的情况如下: 2.问题探究 问题探究一 正弦定理与余弦定理 ●活动一 回顾正弦定理 任意三角形中,都有 sin a A =sin b B =sin c C . ●活动二 回顾正弦定理能解决的问题类型 一般地,我们把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形. 利用正弦定理可以解决一些怎样的解三角形问题? (1)已知三角形的两个角(也就知道了第三个角)与一边,求解三角形; (2)已知三角形的任意两边和其中一边的对角,求解三角形. ●活动三 余弦定理及其所能求解的问题类型 利用余弦定理可以求解如下两类解三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 问题探究二 掌握以下几个常用概念 坡度:坡度---沿坡向上的方向与水平方向的夹角. 仰角:视线方向向上时与水平线的夹角.(反之为俯角). 方位角:从指北方向顺时针转到目标方向线的水平转角.

高中物理模块要点回眸11开普勒三定律的理解和应用新人教版必修

第11点开普勒三定律的理解和 应用 开普勒定律不仅适用于行星绕太阳的运动,也适用于卫星绕行星的运动.我们可以从以下三方面应用开普勒定律迅速解决天体运动问题. 1.由开普勒第一定律知所有行星围绕太阳运动时的轨道都是椭圆,不同的行星绕太阳运动时的椭圆轨道是不同的,太阳处在椭圆的一个焦点上,如图1所示.该事实否定了圆形轨道的说法,建立了正确的行星轨道理论,而且准确地给出了太阳的位置. 图1 2.由开普勒第二定律知:当离太阳比较近时,行星运行的速度比较快,而离太阳比较远时,行星运动的速度比较慢. 3.由开普勒第三定律知:所有行星的轨道的半长轴的三次方和公转周期的平方的比值都相等.该定律揭示了周期和轨道半径的关系,其中的比例常数与行星无关,只与中心天体有关. 对点例题1火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等

C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解题指导太阳位于木星运行椭圆轨道的一个焦点上,选项A 错误;由于火星和木星沿各自的椭圆轨道绕太阳运行,火星和木星绕太阳运行速度的大小变化,选项B 错误;根据开普勒行星运动定律可知,火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方,选项C 正确;相同时间内,火星与太阳连线扫过的面积不等于木星与太阳连线扫过的面积,选项D 错误. 答案C 特别提醒本题中的D 项是学生作答中的易错点.对开普勒三定律理解时要注意对象的同一性,不能张冠李戴将该行星和其他行星的相关量混为一谈. 对点例题2飞船沿半径为R 的圆周绕地球运动,其周期为T .如图2所示,飞船要返回地面,可以在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B 点相切.如果地球半径为R 0,求飞船由A 点运动到B 点所需的时间. 图2 解题指导由开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时其半长轴的三次方跟周期平方的比值. 飞船椭圆轨道的半长轴为R +R 02, 设飞船沿椭圆轨道运动的周期为T ′, 则有R 3T 2=(R +R 0)3 8T ′ 2, 因此飞船从A 点运动到B 点所需的时间为 t =T ′2=(R +R 0)T 4R R +R 02R . 答案(R +R 0)T 4R R +R 02R 木星绕太阳运动的周期为地球绕太阳运动周期的12倍,那么,木星绕太阳运动轨道的半长

海伦公式的证明(精选多篇)

经典合同 海伦公式的证明 姓名:XXX 日期:XX年X月X日

海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2-c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2 +b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4* √[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+ b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式 =√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:海伦公式的几种证明与推广 海伦公式的几种证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重 要且优美的公式——海伦公式〔heron's formula〕:假设有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1 第 2 页共 32 页

专题 正余弦定理的应用

正余弦定理的应用 1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b ,cos B =2 3 ,求c 的值; (2)若sin cos 2A B a b =,求sin()2 B π +的值. 4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥 AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线 段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径. 已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长; (2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2 A C a b A +=. (1)求B ; (2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

正余弦定理的应用举例教案

1.2正弦定理余弦定理的应用举例 教材分析 本课是人教A版数学必修5 第一章解三角形中1.2的应用举例中测量长度问题。因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。同学们在学习时可以考虑,题中为什么要给出这些已知条件,而不是其他条件?要注意的是在某种特殊的实际问题下哪些条件可以测量,哪些不能。这节课我们就跟同学们共同研究这个问题。 (一)重点 1.正弦定理、余弦定理各自的公式记忆。 2.解斜三角形问题的实际应用以及全章知识点的总结归纳。 (二)难点 1.根据已知条件如何找出最简单的解题方法。 2.用应用数学的思想解决实际问题。 (三)关键 让学生灵活运用所学正弦定理、余弦定理。并具备解决一些基本实际问题的能力。 二、学情分析 学生已经学习了高中数学大部分内容,已经有了必要的数学知识储备和一定的数学思维能力;作为高中高年级学生,也已经具有了必要的生活经验。因此,可以通过生活中的例子引入如何用正弦定理、余弦定理解决实际问题。让学生自然而然地接受一些固定解法,这样,学生既学习了知识又培养了能力。 三、学习目标 (一)知识与技能 1.熟练掌握正弦定理、余弦定理的公式 2.掌握应用正弦定理、余弦定理解题的基本分析方法和步骤

(二)过程与方法 1.通过应用举例的教学,培养学生的推理能力,优化学生的思维 品质 2.通过教学中的不断设问,引导学生经历探索、解决问题的过程 (三)情感、态度与价值观 让同学找到学习数学的乐趣,让同学们感受到数学在现实中应用的广泛性。 四、教学手段 计算机,ppt,黑板板书。 五、教学过程(设计)

开普勒定律和极坐标在天体运动中的应用

开普勒定律和极坐标在天体运动中的应用 肖雷 有关行星和卫星等天体运动的问题是力学课程中最有趣味的课题之一。可惜许多教科书都把这类问题与牛顿万有引力定律联系起来。在教学中,为了把轨道概念较早地引入力学课程之中,通常不得不把问题局限为圆周轨道,这样往往会使一些学生误以为只存在圆形轨道,或者至少以为只有圆形轨道才是重要的。 我认为把行星和卫星的椭圆形轨道运动问题,建立在开普勒三个定律的基础上,而不是放在牛顿万有引力定律的基础上,这样会更好一些。当然,开普勒定律和牛顿万有引力定律是紧密相关的。但是我认为应当首先在开普勒定律的引导下讨论椭圆运动,这样不仅思路清晰,而且能使问题简化;同时应用其所对应的极坐标方程来解决其中的数学问题,可以避免冗长而繁琐的数学运算。 当然,要应用开普勒定律解决椭圆轨道问题,我们首先得熟悉其所对应的极坐标方程的数学形式: 第一定律:θcos 1e p r += , e <1 (1) 第二定律:c dt d r =θ2 , (2) 第三定律:k T a =23 , (3) 其中e 是离心率,p 是正焦弦,a 是半长轴, T 是椭圆轨道的周期; c 是因各个行星(卫星)而异的常数,k 是对每个行星(卫星)都相同的常数. 此外,轨道上任一点的速度表达式为: )1 2 (2a r k v -=。 (4) 由于某些有关椭圆轨道的问题,实际上纯粹是几何问题,显然可用几何方法求解。例如: 1.已知轨道的某些性质(最远点,最近点,离心率,周期,半长轴,或者在某特定点的速度),求其它性质; 2.由于速度改变,从一轨道换到另一轨道; 3.在行星之间或者在卫星之间对轨道作霍曼(hohmann)半椭圆变换; 4.同步通讯卫星。 对于这些问题,如果我们应用开普勒定律的极坐标表达的数学形式来解就比使用牛顿运动定律的数学表达式要容易的多。

相关主题
文本预览
相关文档 最新文档