当前位置:文档之家› 钢渣活性及膨胀性试验

钢渣活性及膨胀性试验

钢渣活性及膨胀性试验
钢渣活性及膨胀性试验

钢渣活性及膨胀性试验

1目的与适用范围

本方法适用于评价钢渣用作基层和沥青层材料使用时的活性及膨胀性。

注:对钢渣性能评定时宜附加测定游离氧化钙或氧化镁的含量。

2仪具与材料

(1)台秤、磅秤及天平:秤的称量20㎏,感量10g,天平称量2㎏,感量1g。

(2)容量瓶:2000mL,带圆形玻璃皿盖。

(3)加热装置:煤气炉、电炉等。

(4)漏斗:直径50㎜的玻璃漏斗。

(5)烘箱:能控温在105℃±5℃。

(6)标准筛:根据需要选用。

(7)土工击实试验设备一套,包括内径152㎜、高170㎜的金属圆筒,套环高50㎜,直径151㎜和高50㎜的筒内垫块,底座,击实仪等。击实锤的底面直径50㎜,总质

量4.5g。击锤在导管内的总行程为450㎜。

(8)多孔板:直径148㎜,布满2㎜圆孔,黄铜制,用于上方的多孔板中间有百分表触点,供安装百分表测定变形用,也可用多孔吸水板代替。

(9)恒温水浴:能同时放置150㎜试件3个,持续保持水温80℃±3℃6h以上。

(10)水:蒸馏水、纯净水。

(11)比色管:工业用水标准比色管。

(12)其它:滤纸(化学分析用)、铲子、刷子、毛巾等。3试验步骤

3.1试样准备

在钢渣的陈放地从料堆内部1m处取足够数量的钢渣样品,从3处以上取样混合后按分料器法或四分法处理,供试验使用。

注:钢渣试验结果与取样关系很大。如果钢渣已经破碎且在空气中经较长时间陈放,通常可基本上完成膨胀,试验结果不能反映实际集料中存在的未膨胀颗粒的情况。

因此取样必须力求代表钢渣的实际破碎和陈放情况。由于钢渣有多孔与致密之分,需注意其比例接近实际情况。

3.2钢渣遇水后的比色试验按以下步骤进行:

3.2.1配制标准液:将重铬酸钾按0.006g/mL的浓度加入蒸馏水中配制标准比色液,装入100mL比色管中。

3.2.2称取天然状态的钢渣500g,放在烧杯中,加入约1500mL纯净水.至烧杯的标线处,盖上玻璃皿盖。

3.2.3将烧杯放在热源上加热,调整火力,使其约在15min 内沸腾,然后调为微火沸腾状态45min,合计为1h。

3.2.4加热结束后,立即移下烧杯,补充加水至烧杯的标线处,适当搅拌。

3.2.5用漏斗及滤纸过滤,将开始阶段的20mL过滤液废弃,再继续过滤得到300mL过滤液,作为比色液。

3.2.6将比色液100mL装入比色管中,在背后放一张白纸,与标准比色液比较,评定有无颜色异常。此步骤必须在加热结束后20min以内完成。

3.3钢渣膨胀性检测按下列步骤进行:

3.3.1利用工程的实际沥青混合料级配,按照基层材料击实试验方法进行重型击实试验,击实锤重

4.5㎏.落高45㎝,分3层装料,每次击实98次,确定最佳含水率和最大干密度。

3.3.2将自然干燥的钢渣筛分成各个粒级,按工程的实际级配配制不少于3个直径150㎜的重型击实试验用试件的混合料,每个试件约7㎏。按最佳含水率±1%加水充分拌和均匀,在密闭的容器内保存24h扪料。

3.3.3在试模内装入压头,铺滤纸,进行击实成型,击实完成后取下套筒,用直尺刮刀整平试件表面,被刮出的粗集料及所有的细空隙都用细料补齐找平,盖上平板。将试模连同盖板一起仔细倒转,取走底板及压头垫块,再次垫上滤纸、装上多孔底扳,将试模倒置,上面加盖中央有触点的多孔板,擦净试模外部及上下顶面。

3.3.4将试模放进恒温水浴中,试摸应全部浸没水中。

3.3.在多孔板上压4块半圆形的荷载板,每个1.25㎏。共重5㎏。其上装置试件膨胀量测定用的百分表架及百分表,

百分表应准确对准中央触点并保持竖直状态。

3.3.6立即读取百分表的初读数d0。

3.3.7开始加温至80℃±3℃,自达到要求温度后起算连续6h,停止加热,自然冷却,第2天开始加热前读取百分表读数d i。如此每日在相同时间加温及放冷一次,持续进行10日。

3.3.8结束后的第2天读取百分表终读数d10。结束试验,拆除测定装置。

注:试验时3个试件宜在一个水浴中同时进行。

3.4钢渣沥青混凝土的膨胀量按以下方法进行测定:

3.4.1按使用钢渣的沥青混合料的实际配合比制作标准的马歇尔试件,数量不少于3个,用卡尺在直径方向仔细测定3个断面,在高度方向测定4处,计算试件体积V1。

3.4.2将试件在60℃±1℃的恒温水浴中浸泡养生72h。

3.4.3取出试件冷却至室温,观察有无裂缝或鼓包,立即按相同方法测量试件体积V2。

4计算

4.1钢渣膨胀量按式(T0348—1)计算。

C 1=100100125

d d -? (T0348-1) 式中:C 1——钢渣膨胀量(%);

d 0——百分表的初读数(0.01㎜);

d 10——结束后的第2天读取的百分表终读数(0.01㎜)。

4.2钢渣沥青混凝土膨胀量按式(T0348-2)计算

C 2=211

100V V V -? (T0348-2) 式中:C 2——钢渣沥青混凝土膨胀量(%);

V 1——浸泡养生前试件体积(㎝3);

V 2——浸泡养生后试件体积(㎝3)。

5报告

5.1钢渣遇水后的比色试验应记录比色变化情况。

5.2钢渣膨胀量平行试验3个试件,取其平均值作为试验结果。

5.3钢渣沥青混凝土膨胀量取3个试件的平均值,作为试验结果。报告应说明钢渣沥青混凝土试件有无裂缝及鼓包

等情况。

条文说明

较长时期以来,钢渣作为拌制沥青混合料的集料一直没有得到认知和使用。究其原因,主要是因为炼钢过程中需要使用部分生石灰,这部分生石灰在未能充分钢渣化的情况下将成为游离生石灰。这样的钢渣如果大块堆放,没有事先破碎让其在空气中有相当长时间的存放和吸水熟化。活性氧化钙遇水后反应生成氢氧化钙:CaO+H2O→Ca(OH)2,体积膨胀约2倍,在沥青路面将产生根大的膨胀力,导致路面发生鼓包损坏。一般情况下,转炉钢渣的游离氧化钙含量可能达到3%,而电炉钢渣的游离氧化钙只有0.3%,要小得多。但是在欧洲共同体标准EN1744-1:1998中,没有要求测定游离氧化钙的含量,却要求测定氧化镁的含量,这一点是值得注意的。各单位在使用钢渣时,需对氧化钙和氧化镬的含量进行测定(方法可参照有是试验规程),以积累资料,进行研究。其实钢渣在许多国家是作为优质集料来使用的,它的抗破碎能力(如压碎值、洛杉矶磨耗值)都很高。近年来我国有

些钢厂已经开始重视钢渣的合理应用,以有效利用废物,减轻公害,检验钢渣能否使用,国外一般是通过检测钢渣中的氧化钙或氧化镁含量或者其膨胀量,也有的直接测定沥青混凝土的膨胀性。我国《公路沥青路面施工技术规范》的配合比设计检验中一直要求时钢渣沥青混凝土进行活性检验.其膨胀量不得太于1%。EN11744-1:1998要求膨胀量不大于3.5%,但要求按EN 196-2:1994测定氧化镁含量,168h时氧化镁含量大于5%时,改用试验时间24h,要求不大于或等于5%。

另外,炼钢用的石灰等原料中经常含有微量的硫磺,它极易与钙结合成硫化钙CaS,含量在1%左右硫化钙在遇水后能生成高价硫离子,成为与温泉水相似的黄色不稳定物质,只有在空气中逐渐氧化才会变成中性,所以利用钢渣遇水时的颜色可以概略地判断其新鲜程度。

最终评价钢渣能否在沥青混合料中使用还要看是否满足水稳定性检验的要求,达不到这些要求的钢渣不得使用。

在日本《铺装试验法便览》中有几个与钢渣有关的试验

钢渣活性及膨胀性试验

钢渣活性及膨胀性试验 1目的与适用范围 本方法适用于评价钢渣用作基层和沥青层材料使用时的活性及膨胀性。 注:对钢渣性能评定时宜附加测定游离氧化钙或氧化镁的含量。 2仪具与材料 (1)台秤、磅秤及天平:秤的称量20㎏,感量10g,天平称量2㎏,感量1g。 (2)容量瓶:2000mL,带圆形玻璃皿盖。 (3)加热装置:煤气炉、电炉等。 (4)漏斗:直径50㎜的玻璃漏斗。 (5)烘箱:能控温在105℃±5℃。 (6)标准筛:根据需要选用。 (7)土工击实试验设备一套,包括内径152㎜、高170㎜的金属圆筒,套环高50㎜,直径151㎜和高50㎜的筒内垫块,底座,击实仪等。击实锤的底面直径50㎜,总质

量4.5g。击锤在导管内的总行程为450㎜。 (8)多孔板:直径148㎜,布满2㎜圆孔,黄铜制,用于上方的多孔板中间有百分表触点,供安装百分表测定变形用,也可用多孔吸水板代替。 (9)恒温水浴:能同时放置150㎜试件3个,持续保持水温80℃±3℃6h以上。 (10)水:蒸馏水、纯净水。 (11)比色管:工业用水标准比色管。 (12)其它:滤纸(化学分析用)、铲子、刷子、毛巾等。3试验步骤 3.1试样准备 在钢渣的陈放地从料堆内部1m处取足够数量的钢渣样品,从3处以上取样混合后按分料器法或四分法处理,供试验使用。 注:钢渣试验结果与取样关系很大。如果钢渣已经破碎且在空气中经较长时间陈放,通常可基本上完成膨胀,试验结果不能反映实际集料中存在的未膨胀颗粒的情况。

因此取样必须力求代表钢渣的实际破碎和陈放情况。由于钢渣有多孔与致密之分,需注意其比例接近实际情况。 3.2钢渣遇水后的比色试验按以下步骤进行: 3.2.1配制标准液:将重铬酸钾按0.006g/mL的浓度加入蒸馏水中配制标准比色液,装入100mL比色管中。 3.2.2称取天然状态的钢渣500g,放在烧杯中,加入约1500mL纯净水.至烧杯的标线处,盖上玻璃皿盖。 3.2.3将烧杯放在热源上加热,调整火力,使其约在15min 内沸腾,然后调为微火沸腾状态45min,合计为1h。 3.2.4加热结束后,立即移下烧杯,补充加水至烧杯的标线处,适当搅拌。 3.2.5用漏斗及滤纸过滤,将开始阶段的20mL过滤液废弃,再继续过滤得到300mL过滤液,作为比色液。 3.2.6将比色液100mL装入比色管中,在背后放一张白纸,与标准比色液比较,评定有无颜色异常。此步骤必须在加热结束后20min以内完成。 3.3钢渣膨胀性检测按下列步骤进行:

钢渣处理工艺规程

成渝钒钛科技有限公司钢渣热闷处理生产线工艺规程(试用)编制人:王庆 初审人: 审核人: 批准人: 2012 年10 月

目录 第一章转炉钢渣热闷处理工艺规程 (1) 1 目的 (1) 2 用途 (1) 3 适用范围 (1) 4 钢渣热闷工艺操作规程 (1) 4.1前言 (1) 4.2生产工艺流程图 (2) 4.3主要工艺参数 (2) 4.4热态钢渣和热闷装置的技术要求 (3) 4.5 热闷前准备工作 (3) 4.6 热闷装置垫底和翻渣 (4) 4.7醒渣 (4) 4.8 均热 (4) 4.9 热闷喷水 (5) 4.10 热闷 (6) 4.11 排汽阀调节 (7) 4.12 出渣 (7) 4.13 给排水 (7) 4.14 水质处理 (8) 第二章中控室工艺规程 (10) 1 目的 (10) 2 适用范围 (10) 3 实施步骤 (10) 3.1开机前准备: (10) 3.2正常作业(闷渣操作、PLC自动化操作参数待最终调试后

确定) (10) 3.3正常作业(筛分、磁选、输送、储存操作) (11) 3.4安全作业 (11) 第三章钢渣筛分磁选生产线工艺流程 (13) 1 工艺流程 (13) 备注: (14)

第一章转炉钢渣热闷处理工艺规程 1 目的 生产工艺达到规范化、制度化和标准化管理,以确保安全顺利生产和钢渣热闷处理后达到理想质量要求以及在管理上受控,使钢渣热闷在处理线上处理后产品稳定、提高,特制定本规程。 2 用途 本工艺规程是保证和组织钢渣处理顺利以及处理效果的关键,是保证产品质量和安全顺利生产,也可作为质量和技术规程制订的主要依据、在生产作业时必须遵守的工艺法规。 3 适用范围 本工艺规程采用GB/T19000-2000标准中的术语和定义。 本工艺规程适用于成渝钒钛科技有限公司三利分厂钢渣热闷及加工处理生产线。 4 钢渣热闷工艺操作规程 4.1前言 本规程适用于高温转炉钢渣直接翻入热闷装置处理生产工艺。该工艺过程是将热融1500℃左右的钢渣倾翻在热闷装置内,通过自动化喷水系统对钢渣进行喷水处理,利用钢渣自身余热产生大量饱和蒸汽,使钢渣中f-CaO和f-MgO快速消解导致钢渣裂解粉化,进而再对处理后的钢渣进行筛分、磁选、提纯,实现充分回收金属,降低尾渣中铁含量,实现100%资源再利用。

材料力学实验指导书(矩形截面梁纯弯曲正应力的电测实验)

矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验。 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG-80型纯弯曲正应力试验台 2.静态电阻应变仪 四、试样制备及主要技术指标 1、矩形截面梁试样 材料:20号钢,E=208×109Pa; 跨度:L=600mm,a=200mm,L1=200mm; 横截面尺寸:高度h=28mm,宽度b=10mm。

2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理 如图1所示,CD 段为纯弯曲段,其弯矩为a 2 1 F M = , 则m N M ?=6.20,m N M ?=?20。根据弯曲理论,梁横截面上各点的正应力增量为: z I y M ?= ?理σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩 形截面, 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 εσ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的 距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位臵上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值理σ?进行比较。 六、实验步骤 1.开电源,使应变仪预热。

钢渣回收铁的试验研究

万方数据

万方数据

万方数据

钢渣回收铁的试验研究 作者:张朝晖, 鲁慧慧, 巨建涛, 谢建宏, ZHANG Zhao-hui, LU Hui-hui, JU Jian-tao,XIE Jian-hong 作者单位:西安建筑科技大学冶金工程学院,陕西,西安,710055 刊名: 中国矿业 英文刊名:CHINA MINING MAGAZINE 年,卷(期):2010,19(6) 被引用次数:1次 参考文献(6条) 1.武运生临钢钢铁渣资源化综合利用现状与发展方向[期刊论文]-中国冶金 2006(12) 2.丁明非金属矿物加工工程 2003 3.朱友益;王化军;张强钢渣综合利用试验研究 1997(01) 4.韩永孝浅谈钢渣的综合利用[期刊论文]-再生资源研究 2007(06) 5.谭策衡;刘闯热泼渣技术及其应用 2001(01) 6.姜从盛;丁庆军;王发洲;李春钢渣的理化性能及其综合利用发展趋势[期刊论文]-国外建材科技 2002(03) 本文读者也读过(10条) 1.魏莹.陆栋.李兆锋.李丙明.WEI Ying.LU Dong.LI Zhao-feng.LI Bing-ming转炉钢渣磁选综合利用试验研究[期刊论文]-硅酸盐通报2009,28(1) 2.章瑞平.王艳彦本钢钢渣磁选粉深加工及综合利用[会议论文]-2006 3.魏莹.陆栋.李丙明.李兆锋.WEI Ying.LU Dong.LI Bing-ming.LI Zhao-feng转炉钢渣磁选综合利用试验研究[期刊论文]-矿冶工程2009,29(1) 4.曾晶.李辽沙.苏世怀.陈广言.叶平.周云.董元篪.Zeng Jing.Li Liaosha.Su Shihuai.Chen Guangyan.Ye Ping. Zhou Yun.Dong Yuanchi转炉钢渣的弱磁选研究[期刊论文]-中国资源综合利用2006,24(9) 5.于克旭.周征.宋宝莹.Yu Kexu.Zhou Zheng.Song Baoying钢渣磁选产品选别工艺设计及生产实践[期刊论文]-金属矿山2010(1) 6.钱强.QIAN Qiang攀钢钢渣、铁渣中金属铁资源的回收[期刊论文]-矿产保护与利用2007(4) 7.王淑秋.罗琳.李成必.吴熙群用选矿方法回收钢渣中的铁[期刊论文]-有色金属(选矿部分)2000(4) 8.谷艳慧.GU Yan-hui钢渣处置工艺的清洁生产研究与实施[期刊论文]-环境科学与管理2006,31(4) 9.王益人钢渣多级磁选综合利用实践[期刊论文]-炼钢2002,18(6) 10.王方东钢渣处置工艺的清洁生产[期刊论文]-节能与环保2006(3) 引证文献(1条) 1.陆永军.业超昆钢钢渣磁选工艺设计及生产实践[期刊论文]-云南冶金 2012(2) 本文链接:https://www.doczj.com/doc/0f3240065.html,/Periodical_zgky201006021.aspx

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

纯弯曲正应力分布规律实验

实验三纯弯曲正应力分布规律实验 一、实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律并与理论值进行比较; 2.验证纯弯曲梁的正应力计算公式; 3.掌握运用电阻应变仪测量应变的方法。 二、实验仪器和设备 1.多功能组合实验装置一台或弯曲梁试验装置; 2.TS3860型静态数字应变仪一台; 3.纯弯曲实验梁一根; 4.温度补偿块一块; 5.游标卡尺 3-1 多功能组合实验装置 3-2弯曲梁试验装置 1—弯曲梁 2—铸铁架 3—支架 4—加载杆 5—加载螺杆系统 6—载荷传感器 7和8—组成电子秤 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=200GN/m2,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:

x M y I σ= (3-2) 式中:M 为弯矩;I x 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力ΔP 时,梁的四个受力点处分别增加作用力ΔP /2,如图3-3所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了7片应变片(见图3-3)(对多功能组合装置:b =18.3mm ;h =38mm ;c =133.5mm ),各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的下表面沿横向粘贴了应变片8# 。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式σ=E ε,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 若由实验测得应变片7#和8#的应变ε7,和ε8满足 87||εμε≈ 则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。 图3-3弯曲梁布片图 四、实验步骤 1.检查或测量(弯曲梁试验装置)矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离c ,及各应变片到中性层的距离y i 。 2.检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。然后把梁上的应变片按序号接在应变仪上的各不同通道的接线柱A 、B 上,公共温度补偿片接在接线柱B 、C 上。相应电桥的接线柱B 需用短接片连接起来,而各接线柱C 之间不必用短接片连接,因其内部本来就是相通的。因为采用半桥接线法,故应变仪应处于半桥测量状态,应变仪的操作步骤见应变仪的使用说明书。 3.根据梁的材料、尺寸和受力形式,估计实验时的初始载荷P 0(一般按P 0=0.1σS 确定)、最大载荷P max (一般按P max ≤0.7σS 确定)和分级载荷ΔP (一般按加载4~6级考虑)。

转炉钢渣处理的工艺方法解析

转炉钢渣处理的工艺方法 冶金13-A1 高善超 120133201133 摘要:介绍了钢渣的组成成分,简述了目前国内钢渣的主要处理工艺,对其中最为主流的热泼法、滚筒法、热闷法等钢渣处理工艺的工作原理及其优缺点进行简要评述。转炉渣中的f-CaO是影响转炉渣安定性的主要因素,钢渣中的f-CaO遇水会进行如下化学反应:f-CaO+H2O→Ca(OH)2,会使转炉渣体积膨胀98%左右,导致道路、建材制品或建筑物的开裂而破坏。如果能够降低转炉渣中f-CaO的含量,那么对钢渣的利用具有很大的指导意义。 游离氧化钙与二氧化碳酸化反应生成CaCO3,以消解游离氧化钙,使钢渣中氧化钙降低至3%以下,达到国家规定,从而可以在各个工程中得到良好的应用。 高炉渣中含SiO2一般是32%~42%,可见高炉渣可以视为一种含SiO2物料,具有潜在消解转炉钢渣中f-CaO 的能力,如果实现高炉渣与转炉渣熔融态下同步处理,这无疑拓宽了冶金渣资源化处理的有效途径。本文对以上两种钢渣中游离氧化钙的处理方法进行了论述。 关键词:高炉渣;转炉钢渣;游离氧化钙;二氧化碳;石英砂;高温反应;消解率 0引言 钢渣是生产钢铁的过程中,由于造渣材料、冶炼材料、冶炼过程中掉落的炉体材料、修补炉体的补炉料和各种金属杂质所混合成的高温固溶体,是炼钢过程中所产生的附属产品,需要再次加工方可应用【1】。 钢渣在欧美等发达国家可以广泛的利用,说明了钢渣具有非常好的应用前景,对钢渣的处理、利用、开发已经成为我们国家钢铁企业的重要发展方向。由于钢渣中存在游离氧化钙这种物质,其含量在钢渣中约占0~10%,游离氧化钙遇水后发生反应生成Ca(OH)2,这种反应会使钢渣体积发生膨胀,膨胀后钢渣的体积约会增长一倍,这种情况制约了钢渣的使用方向,使其很难在建材与道路工程中加以使用。由于我国正处于高速发展中,各项基础设施建设需要建设,其中高速公路的发展快速,如果可以将处理后的钢渣应用其中,代替其他岩土材料,可以降低建设成本,降低其他材料的消耗,有效的处理了堆积巨大的废弃钢渣,达到实际的经济效益【1-2】。因此对钢渣进行合理的处理并应用已经成为我国钢铁企业重要的发展方向之一。

激发转炉钢渣制备高活性辅助胶凝材料探讨(doc 12页)

激发转炉钢渣制备高活性辅助胶凝材料探讨(doc 12页)

激发转炉钢渣制备高活性辅助胶凝材料的研究 0引言 目前,我国排放的钢渣70%以上都是转炉钢渣,而转炉钢渣的化学成分及矿物组成与硅酸盐水泥熟料接近,因而从理论上分析,钢渣在水泥和混凝土中应用是有潜力的。但是由于转炉钢渣的活性较低,其作为混合材料在水泥中的利用受到了限制。对粉磨后钢渣的颗粒粒径分布与水泥强度之间的关系进行研究后认为,应尽量提高钢渣粉l0.0-30.2μm范围内的颗粒含量,减少>30.2μm的颗粒含量。另有研究表明:对钢渣进行预粉磨处理后可以显著提高钢渣的活性,随着钢渣比表面积的增加,钢渣的活性增加;此外,钢渣的活性也受到钢渣的细度、颗粒形貌等因素的影响闻。笔者利用物理激发和化学激发两种方式对转炉钢渣的活性进行激发,对掺33%钢渣胶凝材料的水化产物种类和形貌、硬化浆体孔结构进行观察表征,揭示激发剂对钢渣的作用机理以及大掺量钢渣在复合胶凝材料早期水化过程中的作用机理,从而为提高钢渣作为辅助性胶凝材料在水泥中的掺量提供理论支持,达到节能减排的目的。 1试验材料及试验方法 1.1原材料

钢渣比表面积按GB/T8074--2008测定;水泥标准稠度用水量、凝结时间、安定性按GB/Tl346~2001测定;水泥胶砂强度按GB/T17671—1999测定;粒度分布采用JL-1166激光粒度分析仪测定。 SEM分析采用日本日立S2500型扫描电镜,将待测样品上喷镀铂导电层,观察水化断面的水化产物及内部结构形貌。 压汞法测试孔结构采用美国产Poremaster—GT6.0压汞仪。测试孔结构的样品制备步骤为:试块敲成2.5-5.Omm碎块并去除外表面,用丙酮溶液浸泡,在80℃干燥箱中烘干后进行测试。 XRD分析采用德国布鲁克公司的D8一ADVANCE型X射线衍射仪。 1.2.3活性指数 钢渣活性指数按下式计算: 式中: A ——活性指数,%; 28 R——掺钢渣水泥的28d抗压强度,MPa; ——水泥S的28d抗压强度,MPa。 R 2 试验结果与讨论 2.1钢渣粉XRD分析 钢渣粉的XRD图谱见图l。

我厂钢渣处理项目方案汇报

1总论 1.1项目名称 张店钢铁总厂钢渣处理项目可行性研究报告。 1.2设计依据 以张店钢铁总厂领导坚持企业可持续发展的科学发展观,清洁生产,发展循环经济,建立生态化的绿色钢铁企业的理念为依据。 1.3设计指导思想 新设备立足于国产化,并充分利用我厂老区旧设备,达到优质、高效、节能、环保等综合效果。 1.4建设地点 本着节约用地原则,充分利用边角地,本项目拟在我厂新区东南角建设。 1.5项目建设的必要性 我国“十一五”规划纲要指出,必须加快转变经济增长方式,把节约资源和保护环境作为基本国策,发展循环经济,保护生态环境,加快建设资源节约型和环境友好性社会,促进经济发展与人口、资源、环境相协调,走新型工业化道路,坚持节约发展、清洁发展、安全发展,实现可持续发展。 加强固体废弃物资源的循环利用以及废弃物的再资源化,是钢铁企业实现可持续发展的重要一环。如日本钢铁工业钢渣利用率已达99.8%。

我厂钢渣现在主要运往湖田石矿加工处理,回收废钢再运回炼钢厂,来回运费支出较大。湖田石矿回收的废钢未分级处理,渣粉含量较高。 1.6项目建设的有利条件 1.6.1 供水条件 由新区现有供水管网提供。 1.6.2 供电条件 由新区现有供电设施供电。 1.6.3 排水条件 本拟建项目自有沉淀池、蓄水池,可实现污水零排放,循环利用。 1.7设计范围 本工程主要建设内容为:总图运输、钢渣处理生产线、物流运输等。 2 市场分析 我国铁矿石资源不足,人均铁矿资源占有量仅为世界人均占有量的42%,很不适应钢铁工业发展的需要。我国铁矿石进口量已增长到6亿多吨,使铁矿石对外依存度上升到63.9%。从再生资源循环利用情况看,我国铁钢比高,再生钢的比例仅20%,比国外先进水平低50个百分点。因此,废钢利用前景广阔。 3 钢渣处理工艺

武钢钢渣粉在水泥中应用的实验室研究

武钢钢渣粉在水泥中应用的实验室研究 李灿华 (武汉钢铁集团公司冶金渣有限责任公司,湖北武汉430082) [摘要]在实验室研究了武钢钢渣粉作为水泥掺合料用于普通硅酸盐水泥、复合硅酸盐水泥和钢渣矿渣水泥的应用情况,提出了最适宜掺量以及有关配方。研究了钢渣粉掺量对水泥安定性和水化热的影响,并探讨了钢渣活性,为武钢磨细钢渣粉在水泥生产中的应用提供了技术依据。 [关键词]钢渣粉;强度;安定性;水化热 Experiment Study on the Steel-slag Powder of WISCO Applied to Cement Li Canhua (Metallurgical Slag Co. Ltd., of WISCO,Wuhan430082) Abstract:This paper has researched the application of WISCO steel slag fine powder which used as a kind of blending material for cement in the making of Portland cement, compound Portland cement and iron-steel slag cement, and put forward the best ratio. The paper has also discussed the effect of the steel slag fine powder to the stability and hydrating heat of cement, the activity of the steel slag, and provided technological foundation for the use of steel slag fine powder in the cement production. Key words: steel slag fine powder;strength;invariability;hydrating heat 武钢的钢渣经过前期的预处理和粉磨,比表面积达到400~500m2/kg,与水泥的细度相 当。由于武钢钢渣的化学成分和矿物组成也接近于水泥熟料,因此可以作为水泥的混合材料,制备较高强度的水泥。采用水泥熟料、粒化高炉矿渣粉、磨细钢渣粉,在钢渣粉掺量从10%到45%的大范围内,经过近百组配比试验,得到了比较好的规律性结果。由此阐明了武钢磨细钢渣粉在水泥中的行为和对水泥性能的影响,提出了适合于高强度水泥的磨细钢渣的性能和成分要求以及钢渣和矿渣之间的合理匹配。通过本项研究,筛选出一批掺有适量钢渣的525#和425#普通硅酸盐水泥、复合硅酸盐水泥、钢渣矿渣水泥的配方及其制备工艺条件。这一研究成果为武钢磨细钢渣粉在水泥生产中的应用提供了技术依据。从而对实现钢铁企业钢渣零排放、促进企业可持续发展、保护环境、为建筑工程提供优质建材都有一定意义。1实验室试验 将各种原料分别预先磨细,然后,按照GB175-1999、GB12958-1991、GB13590-1992规定的比例配合、混合,制成水泥。按照GB177-1985、GB1346-2001规定的方法测定掺有磨细钢渣粉的水泥强度、用压蒸法测定掺有磨细钢渣粉的水泥样品的安定性,测定掺钢渣粉 对水泥水化放热量的影响。 1.1原料 试验所用原料的性能参数见表1。

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03J W024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b =9mm ;梁高h=30mm ;跨度l =600mm;AC 、BD:弯矩a=200m m。测点距轴z 距离: 21h y ==15mm;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm;-=-=2 5h y 15mm;E=210Gpa 。 抗弯曲截面模量W Z =b h2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录:

(3) 取各测点ε?值并计算各点应力: 1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10 - 6 ; 1σ?=E 1ε?=3.36MPa;2σ?=E 2ε?=1.47MP a;3σ?=0 ; 4σ?=E 4ε?=1.68MPa;5σ?=E 5ε?=3.15MPa ; 根据ΔM W=ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W/W Z =3.70MPa;2σ?=ΔMWh/4(J Z)=1.85M Pa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa;5σ?=ΔMW /W Z=3.70MPa; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。

钢渣处理工艺

一、钢渣生产线简介: 钢渣处理生产线是指对钢渣进行处理的生产线,主要是从钢渣中提取钢粒、铁块的成套生产线,高科机械在此对钢渣处理生产线和铬铁渣处理工艺流程作简单介绍,以供参考! 从上图中可以看出,大块钢渣质地紧密,黑色灰质中含有金属光泽的物质,而左下图为提选出的细粒铁粉,右下图为同时分选出的纯铁块,也就是业内人士俗称的粒子钢。钢渣的的利用价值在于钢渣中含有一定量的钢粒和铁粉,也就是回收钢粒和铁粉是利用钢渣的主要途径。那么钢粒和铁粉如何回收呢?巩义市高科机械厂接下来讲解一下钢渣处理工艺流程,供相关人士参考。 二、钢渣处理工艺流程

一般情况下,对于钢渣的处理加工分为两个步骤进行。 步骤一:钢渣的破碎。 钢厂生产的钢渣都呈规则不均匀的块状,钢粒、铁粉和渣子都混合在一起。必须先通过破碎、研磨,把钢渣打碎,才能够分选。由于钢渣多成块状,且硬度较大,采用破碎比大、耐用的颚式破碎机对钢渣进行粗碎,粗碎过后的钢渣如果大小能够达到10mm以下,那么可以直接送入球磨机内进行研磨;否则需要将粗碎后的钢渣送入细粒颚式破碎机进行第二道破碎。 步骤二:球磨机的磨矿。 仅仅通过破碎机无法将钢渣彻底打碎,还需要球磨机。破碎后的达到10mm以下粒度的钢渣直接送入球磨机内磨矿,经过充分研磨将钢渣、铁粉、渣子之间的连接体结构打碎,从而进行下一步分选。我厂生产的球磨机的尾端加有筛笼,这样当物料从球磨机内出来后,筛笼直接将颗粒状的钢粒和细粒的铁粉、渣子分开,省去了振动筛,减少了客户的投资成本。 步骤三:钢粒(粒子钢)和铁粉的提取。 由于钢粒和铁粉都具有磁性,因此分选、提取钢粒和铁粉的设备就是磁选机。我厂生产的球磨机尾端有筛笼装置,筛出来的钢粒可以直接采用皮带式磁选机(腾空磁选机)进

钢渣的处理方式

钢渣综合利用方法和处理工艺的介绍 钢铁工业是国民经济的基础产业,在国家经济快速发展的形势下,钢铁工业也呈现出跳跃式发展的态势,钢产量近几年不断提高,钢渣作为炼钢工艺流程的衍生物随着钢产量的提高年产量不断递增。 据最新资料统计,2004年我国钢渣的产生量为3819万t,钢渣利用率仅为10%左右,该数据显示钢渣利用率很低,距离钢铁企业固体废弃物“零”排放的目标尚远。 积极开发和应用先进有效的处理技术和资源化利用新技术,提高其利用率和附加值,是钢铁企业发展循环经济,实现可持续发展的重要课题之一。 钢渣利用途径和制约钢渣利用率的因素 钢渣的利用途径大致可分为内循环和外循环,内循环指钢渣在钢铁企业内部利用,作为烧结矿的原料和炼钢的返回料。钢渣的外循环主要是指用于建筑建材行业。 1 钢渣的内循环利用 钢渣返烧结主要是利用钢渣中的残钢、氧化铁、氧化镁、氧化钙、氧化锰等有益成分,而且可以作为烧结矿的增强剂,因为它本身是熟料,且含有一定数量的铁酸钙,对烧结矿的强度有一定的改善作用,另外转炉渣中的钙、镁均以固溶体形式存在,代替溶剂后,可降低溶剂(石灰石、白云石、菱镁石)消耗,使烧结过程碳酸盐分解热减少,降低烧结固体燃料消耗。 钢渣在钢铁企业内部循环历来受到重视和普遍采用,配加转炉渣的烧结矿可改善高炉的流动性,增加铁的还原产量。但是配矿工艺对返烧结有影响,过度使用会造成磷等有害元素的富集;配加转炉渣的烧结矿品位、碱度有所降低。 研究表明,当高炉炉料使用100%自熔性球团矿时,5%转炉渣作为溶剂加入会引起高炉运行不畅,原因是明显影响球团矿的软熔特性,增大软熔温度间隔,使炉渣粘性有增大趋势。 另外钢渣的成分波动较大,烧结配矿时要求钢渣各种氧化物成分波动≤±2%,粒度要求一般小于3mm,钢渣在成分上很难满足要求,对钢渣破碎和筛分的要求也高。

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

弯曲正应力实验报告

一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、TS3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为: x M y I σ= 式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P ?时,梁的四个受力点处分别增加作用力/2P ?,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实 =E ε实 式中E 是梁所用材料的弹性模量。

图3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0P (一般按00.1s P σ=确定)、最大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理

纯弯曲梁的正应力实验

纯弯曲梁的正应力实验 一、实验目的: 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力公式 二、实验设备及工具: 1.材料力学多功能试验台中的纯弯曲梁实验装置 2.数字测力仪、电阻应变仪 三、实验原理及方法: 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:z M y I σ?= 为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。 采用增量法加载,每增加等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量: σ实i =E △ε实i 将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。 四、原始数据:

五、实验步骤: 1. 打开应变仪、测力仪电源开关 2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。 3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。按清零键,使测力计显示零。 4.应变仪调零。按下“自动平衡”键,使应变仪显示为零。 5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。用应变仪右下角的通道切换键来显示第5测点的读数。以后,加力每次500N,到3000N为止。 6.读完3000N应变读数后,卸下载荷,关闭电源。 六、实验结果及处理:

1.各点实验应力值计算 根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值: σ实i=E△εPi×10-6 2.各点理论应力值计算 载荷增量△P = 500N 弯矩增量△M = △P/2×L P 应力理论值计算(验证的就是它) 3.绘出实验应力值和理论应力值的分布图 以横坐标表示各测点的应力σ 实和σ 理 ,以纵坐标表示各测点距梁中性层的位置。 将各点用直线连接,实测用实线,理论用虚线。 σ y 4.实验值与理论值比较,验证纯弯曲梁的正应力公式

钢渣处理

钢渣处理技术介绍 一、新兴干法钢渣回收利用技术介绍 目前国内钢渣二次处理工艺有: 1.传统干法加工工艺:目前国内大部分钢铁厂所采用的钢渣处理方式多为简单的破碎磁选工艺,所采用的设备为颚式破碎机1~2台或圆锥破碎机1台+带式除铁器若干或干式磁选机1~2台。工序繁多,渣、铁分离不彻底,回收废钢品位低(TFe含量约40%),不利于炼钢使用;尾渣MFe含量高(约6%),造成资源大量浪费,经济效益差。 低品位渣钢对炼钢生产的影响如下: a、钢渣中硫磷等有害元素回到钢水中并不断富集,影响钢水质量; b、因杂质多,造成渣量增大,喷溅严重; c、冶炼过程中因不能准确确定金属液的重量而影响钢水化学成分的准确控制,浇注时,因钢液重量不足,容易造成短尺废品; d、钢渣中的主要成分SiO2会降低碱度,改变熔渣的组成,这对脱磷及提高炉衬的使用寿命不利。 此工艺一般小型钢铁厂应用较多。 2. 水磨湿选法: 投资大,占地多、小粒度产品品位高,不适合大块钢渣处理,处理大块渣需与其它粗选法配合,尾泥须浓缩、沉淀、脱水、烘干处理才可利用,既污染环境又增加占地、投资,经济效益差。此工艺的致命缺点是: a、尾渣泥处理成本高。目前尾泥处理使用自然沉淀法和机械法。自然沉淀法需要建设大规模的沉淀池系统,沉淀时间长,效果差;机械法以湘潭钢铁为

代表,使用斜板沉淀器和压滤机及配套水池、泵、管网系统处理尾渣泥浆。无论哪种方式,都大幅提高了投资及运营成本。 b、脱水后的尾渣含水量也较大,且经细磨水洗后活性丧失,已不能用于钢渣粉的生产,基本丧失利用价值。且经水洗选出的废钢易生锈,铁锈主要成分是Fe(OH)2,在炉内分解会增加钢种的氢含量,影响钢材质量。 c、尾渣泥沉淀池系统需占用大量土地,且由于尾泥无利用价值只能扔掉,需占用大量土地,污染环境。 国内使用此工艺的钢铁厂较多,代表钢厂为湘潭钢铁厂。 如何利用简洁高效的工艺装备处理钢渣,生产优质废钢、铁精粉及容易利用的干尾渣,是实现钢渣高附加值利用的技术关键。 为克服传统干法工艺和水洗球磨机处理工艺的缺陷,新兴河北工程技术有限公司借鉴日本、韩国先进钢渣处理工艺,消化吸收,开发出全新的钢渣处理新工艺。此工艺采用钢渣专用棒磨机对钢渣进行破碎,通过湿度、粒度、给料量的综合控制及其它手段,实现对渣、钢的彻底剥离。且产品粒度比较均匀,过粉碎矿粒少,产品粒度在3mm左右。配之以特殊结构的可变磁场干式磁选机将金属全部回收。 本工艺处理后的钢渣所有产品质量好,可利用途径广泛。所得废钢品位~90%,完全可满足炼钢使用要求;所得铁精粉品位>65%,完全可满足烧结使用要求;所得尾渣磁性铁含量<1%,且为干尾渣,可制砖、生产微粉、作为集料等,用途广泛,可利用价值高。 本技术在新疆特钢和济源钢铁厂实际应用,回收效果良好。

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

相关主题
文本预览
相关文档 最新文档