当前位置:文档之家› 汽轮机原则性热力系统资料

汽轮机原则性热力系统资料

汽轮机原则性热力系统资料
汽轮机原则性热力系统资料

汽轮机原则性热力系统

根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。

第一节主蒸汽及再热蒸汽系统

锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。

一、主蒸汽系统

主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。

主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。

它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。

带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。

主蒸汽管道上还接出轴封备用及启动供汽管道。

主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。

主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。

冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

在再热器入口的两根支管上各装一个喷水减温装置,当事故时,喷水减温以防止再热器超温。减温水来自给水泵中间抽头。

由于汽轮机高压旁路排汽接入再热蒸汽冷段上,为防止高压旁路排汽在运行期间倒流入汽轮机,故在高压缸出口装设一逆止阀。

冷再热蒸汽管道内的积水为暖管、冲转、停机时的蒸汽凝结水。此外事故喷水减温器的减温水系统故障时,也会有大量未雾化的水进入冷再热蒸汽管道。2号高压加热器管束破裂时也可能有给水进入冷再热蒸汽管道。为防止2号高加的给水倒流入汽轮机,冷再热蒸汽管道靠近汽轮机处设置了逆止阀,并设有疏水点。

从锅炉再热器两个出口接出两根再热蒸汽管道汇合成一根主管后通往汽轮机中压缸,在进入中压缸前分为两路通往高中压缸中部左右两侧的再热联合汽阀。

再热联合汽阀的作用是当汽轮机跳闸时,快速切断从锅炉再热器到中压缸的热再热蒸汽,以防止汽轮机超速。在热再热蒸汽管道还装有4只安全阀,并设计了通畅的疏水系统。

第二节旁路系统

汽轮机旁路系统是热力系统的一个重要组成部分。它在机组启动、停机和事故情况下起调节及保护作用。中间再热式汽轮机一般都装有旁路系统。旁路系统是指高参数的蒸汽不进入汽轮机的通流部分做功,而是经过该汽轮机并联的减温减压器,降压降温后,进入低一级参数的蒸汽管道或凝汽器的连接系统。本机组的旁路系统如图参见图3-1。

一、旁路系统的作用

1.加快启动速度、改善启动条件

大容量单元再热机组普遍采用滑参数启动方式,为适应这种启动方式,应在整个启动过程中不断地调整汽温、汽压和蒸汽流量,以满足汽轮机启动过程中不同阶段(暖管、冲转、暖机(升速、带负荷)的要求。如果单纯调整锅炉燃烧或调整汽压是很难适应上述要求的,因此一般都要设置旁路系统来配合解决这一问题。在机组热态启动时也可以用来提高主蒸汽或再热蒸汽汽温,从而加快了启动速度,改善启动条件。

2.保护锅炉再热器

机组在启、停和甩负荷时,再热器内无蒸汽或中断了蒸汽,此时可经旁路把新蒸汽减温减压后送人再热器,使再热器不至于因干烧而损坏。

3.回收工质与消除噪声

机组在启、停和甩负荷过程中,有时需要维持汽轮机空转,由于机、炉蒸汽量不匹配,锅炉最低负荷一般为额定蒸发量的30%左右,而对大容量汽轮机而言,汽轮机维持空转的空载汽耗量一般为额定汽耗量的7%~10%。因此需要将多余的蒸汽及时排掉。如果排人大气,不但损失了工质和热量,而且制造排汽噪声和热污染,设置旁路系统则可以达到既回收工质又保护环境的目的。

此外,当汽轮机组快速减负荷或甩负荷时,利用旁路系统可以防止锅炉超压,减少锅炉安全阀动作的次数。

二、旁路系统的型式及功能

1.旁路系统的型式

本机组配置了一套德国西门子公司制造的汽轮机旁路系统,该旁路为30%MCR 高低压串联旁路系统。旁路热力系统原理示意图如图3-2所示,每台机组配置1套高压旁路装置及2套低压旁路装置。旁路系统参数见表3-1。

图3-2 旁路系统原理图

高压旁路:锅炉出口蒸汽,绕过汽机高压缸,经过减压减温进入再热器冷段。在此过程中,通过调节旁路门开度,来控制锅炉出口汽压和再热器冷段蒸汽温度。

低压旁路:再热器出口蒸汽,绕过中低压缸,经过减压减温器进入凝汽器。可用来控制再热器出口汽压及进入凝汽器的汽温。

2.旁路系统的功能

(1)使锅炉具备独立运行条件:当发电机负荷减小或解列只担负厂用电负荷,或当汽机王汽门关闭汽机停运时,旁路系统能在几秒钟内完全打开,使锅炉逐渐地调整负荷,并保持在最低燃煤负荷下稳定运行而不必停炉,同时在故障消除后可快速恢复发电,减少停机时间,有利于系统稳定。

表3-1 旁路系统设备参数 阀门 介质参数名称 单位

极热态启动 VWO 工况 强度设计参数 高 压 入口蒸汽压力 MPa.a

10 16.67 17.6 入口蒸汽温度 ℃

525 538 546

阀门介质参数名称单位极热态启动VWO工况强度设计参数

旁路阀入口蒸汽流量Q1 t/h 220 610

出口蒸汽压力MPa.a 1.12 3.965 4.545 出口蒸汽温度℃~253.5 326.8 332.74

高压喷水减温阀入口减温水压力MPa.g ~17.34 ~20.43 28 入口减温水温度℃135.1 178.5 200 计算流量Q2 t/h 45.66 96.95

入口减温水最低压力MPa.g ~7.6 ~12.0

入口减温水最低温度℃~110 ~110

低压旁路阀入口蒸汽压力MPa.a 1 3.569 4.148 入口蒸汽温度℃510 538 546 入口蒸汽流量Q3 t/h 2 x 132.83 2 x 353.48

出口蒸汽压力MPa.a 0.80 0.8

出口蒸汽温度℃180 180

出口流量t/h 2 x 167.84 2 x 451.38

低压喷水减温阀入口减温水压力MPa.g 3.43 3.43 4.6 入口减温水温度℃31.5 31.5 49.5 计算流量Q4 t/h 2 x 35.01 2 x 97.9

(2)实现机组滑参数启动:机组采用滑参数启动时,先以低参数蒸汽冲转汽轮机,然后在启动过程中随着汽轮机的暖机和带负荷的要求,不断提高锅炉的汽压,汽温和蒸汽流量,使锅炉产生的蒸汽参数与汽机金属温度相适应。采用旁路系统既可满足上述要求又可改善起动条件,尤其在机组热态启动时,能控制锅炉汽温,减小由于温差引起汽机转子的热应力,从而缩短启动时间,延长汽机使用寿命。

(3)在汽机跳闸锅炉带最小稳定负荷运行时,保护锅炉再热器不致过热烧坏:在正常运行工况下,汽机接纳锅炉产生的蒸汽,高压缸的排汽通过再热器加热至额定温度,在这一过程中,再热器得以冷却。而在汽轮机跳闸时,汽机不接纳锅炉产生的蒸汽,高压缸也没有蒸汽排出,再热器未能冷却,加了旁路系统后就可以使蒸汽构成新通流回路,使再热器能得到足够的冷却。

(4)高压旁路系统能起到协助机组可靠运行的作用,亦可避免锅炉侧安全门频繁起座。

(5)机组负荷变化时.旁路系统具有调节蒸汽流量的作用,并满足汽机滑压运行的要求。

(6)旁路系统在完成自身的功能同时,考虑了接受协调控制系统和DEH系统的信一号和监督,并向协调控制系统,DEH系统和BMS系统提供信号仁包括模拟信号和投入/切除信号)。

3.旁路系统的控制

(1)高压旁路的控制原理

高压旁路站的降压部分包括了一个蒸汽转换阀和一个安装于其上的电动执行机构。减温水通过喷水阀被送到蒸汽转换阀,然后使蒸汽得到冷却。喷水阀也安装了一个电动执行机构。两个阀的执行机构均由快速执行方式开启阀门。

蒸汽转换阀的执行机构是由一个单独的电机提供快速动作的,此时喷水阀的双速变极电动机将与之相适应。

高压旁路站安装在汽轮机高压级的旁路管线上,并在锅炉启动、减负荷及故障情况下,将蒸汽旁通到再热器。对于不同的故障情况,旁路阀的动作速度及其开度是不同的,这要由内部程序决定。

在操作台上,设有选择“定压和滑压”以及手动按钮。

锅炉启动时,高旁阀的初始位置应是全关的,当压力增加到大约0.2MPa时,高旁阀开始打开,并保持现压力。高旁阀的开度应能校正,一旦设定值定了,开度也就定了。

压力设定值的增加速率实际上取决于产生的蒸汽量。在全部蒸汽量都被汽机吸收的情况下,在选择滑压或是定压运行前,高旁站的压力设定值应高于汽机压力大约0.6MPa,这是通过一个可调的P(大约0. 4MPa)来完成。

1)当在操作台上选择:“滑压”方式时,压力设定值形成如下,参见图3-3。

当存贮器模件(65)通过手操(66)切到滑压操作方式时,传感器(1)测得的蒸汽压力通过大值选择器(53)和基准点(19)作为设定点主模件(20)的输入。在基准点(19),通过调整器(21)使实际压力增加大约0.2MPa。在接点(22)断开时,在设定值主模件(20)的输入处测得的蒸汽压力将比实际压力高出0.2Mpa。

设定值主模件(20)总有让输出信号跟踪输入信号的趋势,只有当正向限幅器(23)也是正值时,模件在正方向才能做到这一点。只有当负值限幅器(24)也是负值时,才能在负向做到这一点。例如在锅炉冷态的情况下:

在没有蒸汽的情况下,传感器(25)的测量值为0,此时调整器(26)的定值约为15%,而小值选择器(27)的输出,接点(37)的基准点以及限幅器(24)的输入都是负的。

为使设定值主模件(20)的输出信号能在负的方向依据实际压力值(1)跟踪缓慢冷却的锅炉,因此增加(21)值。

经过小值选择器(28)和模拟量存贮器(29),将设定值加到基准点(30),该设定值比实际压力值(l)高出0. 2MPao在锅炉冷却期间这套控制将使高压旁路关闭,并且,大值选择器(55)的输出信号总是比定值主模件(20)的输出信号高。

在锅炉点火以后,蒸汽压力开始逐渐上升,一旦传感器(1)的最大测量信号超过。.2M Pa,基准点(30)的输出就从负变为。,然后高旁装置就由压力控制器(3)打开。

因此,电子位置测量位置(6)的输出信号将随之改变。只有当此信号和可调压力信号的和,通过放大器(62),比调节器(31)值高(例如40%)时;正向输入限幅器(23)通过大值选择器(32),放大器(33)和小值选择器(34)获得一个正信号。设定值将随之增加。压力增加的最大值在调节器(35)上选择。

图3-3 高压旁路控制原理图

切换开关(36)和(37)以及调节器(38)和(39),在手动时用作快速平衡时,“与”门(40)在汽机并网并带满负荷时才有输出。

“与”信号使接点(22)和(41)断开。

通过接点(22)设定值的差异将增加到0. 6MPao在高旁关闭时,接点(41)释放,主控设定值增加,主汽机入口压力高0. 6MPa,允许的最大压力值由调整器(42)设定。

在锅炉启动期间和达到放大器(56),调整器(57),设定值主模件(58),大值选择器(55)设定的滑压运行条件后,设定值主模件(20)将通过继电器dl切换到跟踪。

如果大值选择器(55)比小值选择器(28)先起主导作用,那么予调节滑压特性就达到了。继电器d1被存贮器模件(63)励磁。

为了使设定值主模件(20)的输出总是高于滑压运行条件。将通过调节器(64)给设定值主模件(20)的输入加一个值,从而达到给实际设定值加一个值的目的。

模拟量存贮器能在自动情况下跟踪,而在手动时经过操作台(43)操作。

在手动操作情况下,压力设定值能经过操作台(13)进行调节。调节的值能从指示器上看到。

2)当在操作台上选择“定压”运行方式时,压力设定值形成如下:

通过操作台(66)和存贮器模件(63)将在原状态基础上被激活。继电器dl将失磁。

通过接触器(67),调节器(68)上的设定值被切换为大值选择器(55)的输人。现在就保证了大值选择器(55)的输出总是高于小值选择器(28)的两个输入值。在定压操作方式中,通过调节器(42)压力设定值升高的限值只决于设定值控制器(20)。

3)压力控制

实际压力值是在新蒸汽管道上适当地点用测量传感器(1)测量。最大测量信一号从大值选择器(53)获得并与压力设定值(2)相比较。实际压力和压力设定值之间的差送到压力控制器(3),它的脉冲输出信号经过动力箱(4)去驱动蒸汽转换阀(7)上的控制马达(5)。

蒸汽转换阀(7)的位置由电子位置传感器(6)测量并在控制台上指示出来。

“手动”和“自动”方式用操作台(8)选择。在“手动”方式,蒸汽转换阀(7)的位置可以通过手动操作台(8)上的按钮控制。阀门位置和控制偏差由双刻度指示器指示。

4)温度控制

减温减压后的蒸汽温度是在高旁后的适当地点用传感器(10)测量的,并与操作台手动设置的设定值相比较。

差值送到温度控制器(12),它的脉冲输出信号通过动力转换开关(13)驱动喷水阀(15)上的控制马达(14)0阀门电动头(14)通过喷水阀(15)改变冷却水量,直到蒸汽温度达到要求。电子位置发送器,操作台(17)和双刻度指示器(18)完成和压力控制器同样的功能。

在蒸汽转换阀关闭的情况下,冷却水阀也正好关闭。

5)高速驱动

在甩负荷或故瘴时,为了防止出现超压,已制定了蒸汽转换阀和喷水阀高速打开的预防措施。此种措施采用了以下依据:a.用积分器(50)反馈来求取发电机有功功率的微分。一旦负斜率超过限值监视器(50)设定的值,高旁阀和喷水阀将通过高速驱动器立即打开。b.当负的压力调节差值超过限值监视器(52)的设定值时,控制信一号也将送到高速驱动器。c.用户也可以

经过接点给出脉冲,触发高速驱动器。

(2)低压旁路的控制原理

低压旁路门安装在汽机低压段的管道上,此旁路装置允许蒸汽在规定的运行状态之下,比如启动期间和甩负荷时,中间再热器管路向凝汽器流通。

低压旁路装置的减压部分包括有一个配有电动头的蒸汽转换阀。蒸汽冷却是通过减温水喷入蒸汽转换阀实现的,减温水通过喷水阀喷射,此阀也配有电动头。两个阀门电动头都有快动方式。快动是指两个阀门快开和快关蒸汽转换阀,而对于喷水阀只能是快开。蒸汽转换阀的快速驱动单独用一个马达,而喷水阀是用多极变速马达,控制图见3-4。

1)压力控制

实际压力值在中间再热器管道上的适当的地点,用变送器(1)测量的,并与大值选择器(2)的输出比较。大值选择器(2)的输出值是主调设定值,它主要来自汽机速度级压力(3),最小压力设定值由调整器(26)和根据压力对负荷设定的调整器(27)和乘法器(28)设置。

设定值这样调整,在负荷正常的操作期间,压力设定值比实际存在的压力值高,这样情况下低旁阀将保持关。

实际压力值和主调设定值之差送到限幅器(6)和(7),同时也通过小值选择器(31)送到压力控制器(4)和限幅监视器(5)。

压力调整器(的的输出信号控制动力转换开关(8),转换开关(8)控制蒸汽转换阀(l0)的电动头。

在压力偏差很大的情况下,快动马达(12)由限值监视器(5)通过动力转换开关(11)控制在开方向。同时,快速驱动喷水阀(13)由限值监视器(5)通过动力转换开关(21)启动。蒸汽转换阀的位置用电子位置传感器(14)测量,并在操作台上用双刻度指示仪(15)指示。压力调节器(4)的控制偏差也由指示器(15)指示。“手动”和“自动”方式可由控制台(16)选择。

2)喷水控制

蒸汽转换阀(10)的位置作为喷水调节器(17)的调节基准。阀门位置用电子位置发送器(14) 测量。经乘法器(32)等过程后,与喷水阀实际位置(18)相比较。差值送到喷水阀调节器(17),它的输出信号经过动力换向开关(19),以正常速度去驱动喷水阀(13)0喷水调节器(17)的释放是由限值监视器(6)和(7)及其以后的存储器(20)引起的。操作台上组合片(22)和双刻度指示表(23)完成与上述汽压部分相同的功能。

3)凝汽器保护

为了保护凝汽器,以防止压力和温度超过规定,采取了快速关闭蒸汽转换阀的预防措施。经过三个对应的压力真空监视器(24)、(25)、(42),把它们安排成三中取一,控制和管理凝汽器的压力。除了监视凝汽器的压力之外,还有低旁阀后的温度需要测量,测点设在阀后较长一段距离处,用温度计(43)测量并向限值监视器(99)发出信号,当达到温度极限值时,低旁阀门将关闭。

快速马达和控制马达在达到终端位置前一直是同时一起工作的。快速马达的停止是靠“阀门关位置”行程开关来实现,控制马达的停止是靠“阀门关位置”力矩开关来断开。

4)蒸汽流量限制

再热器压力在正常负载运行时比空载时高。设计时以空载压力作为低旁阀的计算压力,

如果低旁阀处于打开位置,在运行压力增加时,过大的蒸汽流量将通过低旁阀。为避免此阀开过限值,采用下述办法:

图3-4 低压旁路控制原理图

随着中间再热器热管路压力增加,在超过予定值(29)后,低旁阀门的开度将逐渐地减小,开度的减小可由乘法模件(30)连续地设定。调节器(4)经过小值选择器(3l)得到相应的控制偏差。

张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR 专科生毕业设计开题报告 2011 年 09 月 24 日

摘要 节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法—— 常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统 目录 N300MW汽轮机组热力系统分析- TMCR (1) 专科生毕业设计开题报告 (1) 摘要 (4) 关键词 (4) 第一章绪论 (9) 1.1 毕业设计的目的 (9) 1.2国外研究综述 (9) 第二章 300MW汽轮机组的结构与性能 (11) 2.1汽轮机工作的基本原理 (11) 第三章热力系统的设计 (14) 3.1主、再热蒸汽系统 (14) 3.1.1主蒸汽系统 (15) 3.1.2再热蒸汽系统 (15) 3.2主给水系统 (16) 3.2.1除氧器 (16) 3.2.2高压加热器 (16) 3.2.3其他 (17) 3.3凝结水系统 (17) 3.3.1凝结水用户 (17) 3.3.2凝结水泵及轴封加热器 (18) 3.4抽汽及加热器疏水系统 (18) 3.5轴封系统 (19) 3.6高压抗燃油系统 (20) 3.6.1磁性过滤器 (20) 3.6.2自循环滤油系统 (21) 3.7润滑油系统 (21) 3.8本体疏水系统 (21) 3.9发电机水冷系统 (22)

原则性热力系统计算说明书-热电联产计算

具有工业及采暖抽汽供热式汽轮机的热电厂原则性热力系统计算 热电厂原则性热力系统附图所示,求在计算的供热工况和汽轮机耗汽量0 D '下的发电量和全厂各项热经济指标。 已知: 1、 汽轮机、锅炉主要特征 (1) 汽轮机 机组型式 前苏联 ∏T —135/165-12.75/1.27型 新汽参数 0p =12.75 M a p (130ata), 0t =565℃ 终参数 c p =3.4×310- M a p 抽汽 七级抽汽,其中第3、6、7为调节抽汽,第3级为工业抽汽。第6、7级为采暖抽汽 功率 额定功率135MW ,最大功率165MW (2) 锅炉 型式 自然循环汽包炉 参数 b p =13.83 M a p , b t =570℃ 锅炉效率 b η=0.92 2、 供热抽汽及供热系统 第3级工业抽汽调压范围为0.785~1.27 M a p (8~13ata)。直接向热用户供汽,回水率50%, 回至补充水除氧气MD 。 第6、7级采暖汽调压范围分别为0.0588~0.45 M a p (0.6~2.5ata), 0.0392~0.11M a p (0.4~1.2ata)。 经由基载热网加热器(BH1、BH2)和热水锅炉(WB )通过水网热用户供暖。在凝汽器内装有部分管束,用以预热采暖热网返回水。网水设计送水温度d sn t =150℃。 3、回热抽汽及回热系统 七级回热抽汽分别供三个高压加热器、一个前置式定压给水除氧器HD 和四个低压加热器用汽。另外还专门设置了大气式补水除氧器MD ,以及保证MD 正常运行设立的补水预热器SW 。 在计算工况下各级抽汽压力、抽汽温度如表所示。 给水温度234℃,给水泵出口压力17.5 M a p 。给水在给水泵中理想泵功a pu w =186kJ/kg ,

600MW凝汽式汽轮机组的热力计算

超临界压力600MW 中间再热凝汽式汽轮机在额定工况下的热经济指标计 机组型号:N600-24.2/566/566 汽轮机型式:超临界、单轴、三缸(高中压合缸)、四排汽、一次中间再热 凝汽式 蒸汽初参数:MPa p 2.240=,5660=t ℃;MPa p 51546.00=?, 再热蒸汽参数:冷段压力MPa p in rh 053.4=,冷段温度5.303=in rh t ℃;热段压 力MPa p out rh 648.3=,热段温度0.566=out rh t ℃;MPa p rh 4053 .0=?, 排汽压力:kPa p c 4.5= (0.0054MPa ) 抽汽及轴封参数见表1。给水泵出口压力MPa p pu 376.30=,凝结水泵出压 力为MPa 84.1。机械效率、发电机效率分别取为99.0=m η,988.0=g η。 汽动给水泵用汽系数pu α为0.05177 表1 N600-24.2/566/566型三缸四排汽汽轮机组回热抽汽及轴封参数

解: 1.整理原始资料 (1)根据已知参数p 、t 在s h -图上画出汽轮机蒸汽膨胀过程线,得到新 汽焓等。0.33960=h kg kJ ,82.2970=in rh h kg kJ ,2425.3598=out rh h kg kJ , 9.62782.29702425.3598=-=rh q kg kJ 。 (2)根据水蒸汽表查的各加热器出口水焓wj h 及有关疏水焓'j h 或d wj h ,将机 组回热系统计算点参数列于表2。

图1 超临界压力600MW三缸四排汽凝汽式机组蒸汽膨胀过程线

600MW汽轮机汽水热力计算

第三章 热力分析 3.1汽轮机主要参数 汽轮机类型:600-24.2/566/566 蒸汽初参数 ;024.2p MPa =, 0566t =.0℃ 再热蒸汽参数:冷段压力 4.33in rh p MPa =,冷段温度314.9in rh t =℃: 热段压力 3.90out rh p MPa =,热段温度566.0out rh t =℃。 排气压力:0.00490c p MPa = 。 抽汽及轴封参数见表3-1和表3-2。机械效率、发电机效率分别取为0.99m η=、 0.988g η=。 表3-1 项目 单位 各 段 回 热 抽 汽 参 数 加热器编号 — H1 H2 H3 H4 H5 H6 H7 H8 抽汽压力 j p MPa 5.62 4.33 2.31 1.16 0.438 0.128 0.0619 0.0237 抽汽温度j t ℃ 349.2 314.9 483.9 379.6 261.3 139.8 86.8 63.8 表3-2 项 目 单 位 1sg α 2sg α 3sg α 来 源 高压杆漏汽 低压缸后轴封 漏汽 高中压缸之间漏汽 轴封汽量sg α 0.0006339 0.001038 0.00007958 轴封汽比焓sg h kJ/kg 3396.0 2753.7 2993.7 去 处 H8 SG H2

原则性热力系统图3-1如下: 图 3-1 3.2热平衡法 热平衡式一般有两种写法:一是吸热量=放热量×h η,h η为加热器的效率;另一种方法是流入热量=流出热量。为了在同一系统计算中采用相同的标准,应采用统一的,h η故热平衡式的写法,在同一热力系统计算中也采用同一个方法。 拟定热平衡式时,最好根据需要与简便的原则,选择最合适的热平衡范围。热平衡范围可以是一个加热器或数个加热器,乃至全部加热器,或包括一个水流混合点与加热器组合的整体。 3.2.1 整理原始资料

汽轮机组热力系统..

第二节汽轮机组热力系统 汽轮机组热力系统主要是由新蒸汽管道及其疏水系统、汽轮机本体疏水系统、汽封系统、主凝结水系统、回热加热系统、真空抽气系统、循环水系统等组成。 一、新蒸汽管道及其疏水系统 由锅炉到汽轮机的全部新蒸汽管道,称为发电厂的新蒸汽管道,其中从隔离汽门到汽轮机的这一段管道成为汽轮机的进汽管道。在汽轮机的进汽管道上通常还连接有供给汽动油泵、抽气器和汽轮机端部轴封等处新蒸汽的管道,汽轮机的进汽管道和这些分支管道以及它们的疏水管构成了汽轮机的新蒸汽管道及其疏水系统。3)在机组启动和低负荷运行时,为了保证除氧器的用汽,必须装设有饱和蒸汽或新蒸汽经减压后供除氧器用的备用汽源。 5)在机组启动、停止和正常运行中,要及时地迅速地把新蒸汽管道及其分支管路中的疏水排走,否则将会引起用汽设备和管道发生故障。这些疏水是: ①隔离汽门前、后的疏水和汽轮机进汽管道疏水。这两处疏水在机组启动暖管和停机时,都是排向地沟的,正常运行中经疏水器可疏至疏水扩容器或疏水箱。 ②汽动油泵用汽排汽管路的凝结水。由于废汽是排入大气的,它的凝结水接触了大气,水质较差,且在机组启、停时才用,运行时间不长,故一般都排入地沟。 ③汽轮机本体疏水。我们通常把汽轮机高压缸疏水、抽汽口疏水、低压缸疏水、抽汽管路上逆止门前后疏水以及轴封管路疏水等,统称为汽轮机本体疏水。这些疏水,由于压力的不同,而引向不同的容器中。高压疏水一般都是汇集在疏水膨胀箱内,在疏水膨胀箱内进行扩容,扩容后的蒸汽由导汽管送至凝汽器的喉部,而凝结水则由注水器(水力喷射器)送入凝汽器的热水井中。低压疏水可直接排入凝汽器。 6)一般中、低压汽轮机的自动主汽门前必须装设汽水分离器。汽水分离器的作用是分离蒸汽中所含的水分,提高进入汽轮机的蒸汽品质。21-1.5型机组的汽水分离器是与隔离汽门装置在一起的,N3-24型机组的汽水分离器是和自动主汽门装置在一起的。 二、凝结水管道系统 蒸汽器热水井中的凝结水,由凝结水泵升压,经过抽气器的冷却器、轴封加热器、低压加热器,然后进入除氧器,其间的所有设备和管道组成了凝结水系统。 凝结水系统的任务是不间断地把凝汽器内的凝结水排出和使主抽气器能够正常地工作,从而保证凝汽器所必须的真空,并尽量收回凝结水,以减少工质损失。 2)汽轮机组在启动和低负荷运行时,为了保证有足够的凝结水量通过抽器冷却器,以保证抽气器的冷却和维持凝汽器热水井水位,在抽气器后的主凝结水管道上装设了一根在循环管,使一部分凝结水可以在凝汽器到抽气器这一段管路内循环。再循环水量的多少,由再循环管上的再循环门来调节。 3)汽轮机在第一次启动及大修后启动时,凝汽器内还无水,这时首先应通过专设的补充水管向凝汽器充水,一般电厂都补充化学软水。机组启动运转正常后,应化验凝结水水质是否合格,若不合格则应通过放水管将凝结水

热力发电厂课程设计说明书(国产600MW凝汽式机组全厂原则性热力系统设计计算)

国产600MW 凝汽式机组全厂原则性热力系统设计计算 1 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性。如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据。 2 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算。 计算任务: ㈠ 根据给定的热力系统数据,在h - s 图上绘出蒸汽的汽态膨胀线 ㈡ 计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢ 计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、 绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率) ㈣ 按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图 3 已知数据: 汽轮机型式及参数

锅炉型式及参数 锅炉型式英国三井2027-17.3/541/541 额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17.3MPa 额定再热蒸汽压力 3.734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18.44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98.5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4 计算过程汇总: ㈠原始资料整理:

330MW汽轮机主要热力系统

2. 热力系统 2.1 330MW汽轮机本体抽汽及疏水系统 2.1.1 抽汽系统的作用 汽轮机有七级非调节抽汽,一、二、三、四级抽汽分别供四台低压加热器,五级抽汽供汽至除氧器及辅助蒸汽用汽系统,六、七级抽汽供两台高压加热器及一台外置式蒸汽冷却器(六级抽汽经蒸汽冷却器至六号高加)。 抽汽系统具有以下作用: a)加热给水、凝结水以提高循环热效率。 b)提高给水、凝结水温度,降低给水和锅炉管壁之间金属的温度差,减少热冲击。 c)在除氧器内通过加热除氧,除去给水中的氧气和其它不凝结气体。 d)提供辅助蒸汽汽源。 2.1.2 抽汽系统介绍 一段抽汽是从低压缸第4级后引出,穿经凝汽器至#1低压加热器的抽汽管道; 二段抽汽是从低压缸第3级后引出,穿经凝汽器至#2低压加热器的抽汽管道; 三段抽汽是从低压缸第2级后引出,穿经凝汽器至#3低压加热器的抽汽管道; 四段抽汽是从中压缸排汽口引出,至#4低压加热器的抽汽管道; 二、三、四级抽汽管道各装设一个电动隔离阀和一个气动逆止阀。气动逆止阀布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 五段抽汽是从中压缸第9级后引出,至五级抽汽总管,然后再由总管上引出两路,分别接至除氧器和辅助蒸汽系统; 在五段抽汽至除氧器管道上装设一个电动隔离阀和两个串联的气动逆止阀。装设两个逆止阀是因为除氧器还接有其他汽源,在机组启动、低负荷运行、甩负荷或停机时,其它汽源的蒸汽有可能窜入五段抽汽管道,造成汽机超速的危险性较大。串联装设两个气动逆止阀可起到双重保护作用。

五段抽汽至辅助蒸汽联箱管道上装设一个电动隔离阀和一个气动逆止阀,气动逆止阀亦布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 正常运行时,除氧器加热蒸汽来自于五段抽汽。辅助蒸汽系统来汽作为启动和备用加热蒸汽。 六段抽汽是从中压缸第5级后引出,先经#6高加外置式蒸汽冷却器(副#6高加)冷却后再至#6高压加热器;六级抽汽管道上各装设一个电动闸阀和两个气动逆止阀。 七段抽汽是从再热冷段引出一路至#7高压加热器的抽汽管道,装设一个电动闸阀和一个气动逆止阀,电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 电动隔离阀和气动逆止阀的布置位置一般尽量靠近汽机抽汽口,以减少在汽机甩负荷时阀前抽汽管道上贮存的蒸汽能量,有利于防止汽机超速。 本系统四台低加、两台高加及六号高加外置式蒸汽冷却器均为立式加热器。七台立式加热器从扩建端至固定端按编号从1号至7号再至蒸汽冷却器顺列布置。七台加热器均布置在A—B框架内,其水室中心线距B排柱中心线6.9米。 除氧器及给水箱布置在运转层12.00米层。 汽轮机各抽汽管道连接储有大量饱和水的各级加热器和除氧器。汽轮机一旦跳闸,其内部压力将衰减,各加热器和除氧器内饱和水将闪蒸,使蒸汽返回汽轮机;此外,五级抽汽管道支管上还接有备用汽源——辅助蒸汽,遇到工况变化或误操作,外来蒸汽将通过五级抽汽管道进入汽轮机;还有,各抽汽管道内滞留的蒸汽也可能因汽轮机内部压力降低返回汽轮机;各种返回汽轮机的蒸汽有可能造成汽轮机超速。 为防止上述蒸汽的返回,除一级抽汽外,其它各级抽汽管道上均串联安装有电动隔离阀和气动逆止阀。一旦汽机跳闸,气动逆止阀和电动隔离阀都关闭。 由于汽轮机上有许多抽汽口,而有可能有水的地方离各抽汽口又很近,各抽汽管道上还接有储水容器——高、低压加热器和除氧器,汽轮机负荷突然变化、给水或凝结水管束破裂以及其他设备故障,误操作等因素,可组合

汽轮机火用分析方法的热力系统计算

汽轮机火用分析方法的热力系统计算 前言 在把整个汽轮机装置系统划分成若干个单元的过程中,任何一个单元由于某些因素而引起的微弱变化,都会影响到其它单元。这种引起某单元变化的因素叫做“扰动”。也就是说,某单元局部参量的微小变化(即扰动),会引起整个系统的“反弹”,但是它不会引起系统所有参数的“反弹”。就汽轮机装置系统而言,系统产生的任何变化,都可归结为扰动后本级或邻近级抽汽量的变化,从而引起汽轮机装置系统及各单元的火用损变化。因此,在对电厂热力系统进行经济性分析时,仅计算出某一工况下各单元火用损失分布还是不够的,还应计算出当某局部参量变化时整个热力系统火用效率变化情况。 1、火用分析方法 与热力系统的能量分析法一样,可以把热力系统中的回热加热器分为疏水放流式和汇集式两类(参见图1和图2),并把热力系统的参数整理为3类:其一是蒸汽在加热器中的放热火用,用q’表示;其二是疏水在加热器中的放热火用,用y 表示;其三是给水在加热器中的火用升,以r’表示。其计算方法与能量分析法类似。

对疏水式加热器: 对疏水汇集式加热器: 式中,e f、e dj、e sj分别为j级抽汽比火用、加热器疏水比火用和加热器出口水比火用。1.1 抽汽有效火用降的引入 对于抽汽回热系统,某级回热抽汽减少或某小流量进入某加热器“排挤”抽汽量,诸如此类原因使某级加热器抽汽产生变化(一般是抽汽量减少),如果认为此变化很小而不致引起加热器及热力系统参数变化,那么便可基于等效焓降理论引入放热火用效率来求取某段抽汽量变化时对整个系统火用效率的影响。 为便于分析,定义抽汽的有效火用降,在抽汽减少的情况下表示1kg排挤抽汽做功的增加值;在抽汽量增加时,则表示做功的减少值;用符号Ej来表示。当从靠近凝汽器侧开始,研究各级抽汽有效火用降时,Ej的计算是从排挤l kg抽汽的火用降(e j-e c)ηej中减去某些固定

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

汽轮机课程设计说明书..

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

N25-3.5435汽轮机通流部分热力计算

第一节25MW汽轮机热力计算 一、设计基本参数选择 1. 汽轮机类型 机组型号: N25-3.5/435。 机组形式:单压、单缸单轴凝器式汽轮机。 2. 基本参数 额定功率:P el=25MW; 新蒸汽压力P0=3.5MPa,新蒸汽温度t0=435℃; 凝汽器压力P c=5.1kPa; 汽轮机转速n=3000r/min。 3. 其他参数 给水泵出口压力P fp=6.3MPa; 凝结水泵出口压力P cp=1.2MPa; 机械效率ηm=0.99 发电机效率ηg=0.965 加热器效率ηh=0.98 4. 相对内效率的估计 根据已有同类机组相关运行数据选择汽轮机的相对内效率,ηri=83% 5. 损失的估算 主汽阀和调节汽阀节流压力损失:ΔP0=0.05P0=0.175Mpa。 排气阻力损失:ΔP c=0.04P c=0.000204MPa=0.204kPa。 二、汽轮机热力过程线的拟定 (1)在h-s图上,根据新蒸汽压力P0=3.5MPa和新蒸汽温度t0=435℃,可确定汽轮机进气状态点0(主汽阀前),并查得该点的比焓值h0=3303.61kJ/kg,比熵s0=6.9593kJ/kg (kg·℃),比体积v0= 0.0897758m3/kg。 (2)在h-s图上,根据初压P0=3.5MPa及主汽阀和调节汽阀节流压力损失ΔP0=0.175Mpa 可以确定调节级前压力p0’= P0-ΔP0=3.325MPa,然后根据p0’与h0的交点可以确定调节级级前状态点1,并查得该点的温度t’0=433.88℃,比熵s’0= 6.9820kJ/kg(kg·℃),比体积v’0= 0.0945239m3/kg。 (3)在h-s图上,根据凝汽器压力P c=0.0051MPa和排气阻力损失ΔP c=0.000204MPa,可以确定排气压力p c’=P c+ΔP c=0.005304MPa。 (4)在h-s图上,根据凝汽器压力P c=0.0051MPa和s0=6.9593kJ/kg(kg·℃)可以确定气缸理想出口状态点2t,并查得该点比焓值h ct=2124.02kJ/kg,温度t ct=33.23℃,比体积v ct=22.6694183 m3/kg,干度x ct=0.8194。由此可以的带汽轮机理想比焓降 1179.59kJ/kg,进而可以确定汽轮机实际比焓降

汽轮机原则性热力系统资料

汽轮机原则性热力系统 根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。 第一节主蒸汽及再热蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。 一、主蒸汽系统 主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。 主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。 它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。 带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。 主蒸汽管道上还接出轴封备用及启动供汽管道。 主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。 主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。 冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

600MW凝汽式机组原则性热力计算

国产600MV凝汽式机组全厂原则性热力系统计算 (一)计算任务 1.最大计算功率下的汽轮机进汽量D,回热系统各汽水流量D j; 2?计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、绝对电效率、 管道效率、全厂热耗率、全厂标准煤耗率、全厂热效率); 3?按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量绘制成表格,绘制回热系统计算点汽水参数表格,并进行功率校核。 (二)计算类型:定功率计算 (三)系统简介 国产600MW凝汽式机组,机组为亚临界压力、一次中间再热、单轴、反动式、四缸四排汽机组。汽轮机高、中、低压转子均为有中心孔的整锻转子。汽轮机配HG-2008/18-YM2型 亚临界压力强制循环汽包炉。采用一级连续排污系统,扩容器分离出得扩容蒸汽送入除氧器。 该系统共有八级抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、 八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。八级回热加热器(除 氧器除外)均装设了疏水冷却器,以充分利用本级疏水热量来加热本级主凝结水。三级高压 加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为-1.7 C、0C、0C, 从而提高了系统的热经济性。四台低压加热器上端差均为 2.8 C,八级加热器下端差(除氧 器除外)均为5.5 Co 汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧 器。然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到273.3 C,进入锅 炉。 三台高加疏水逐级自流至除氧器;四台低加疏水逐级自流至凝汽器。凝汽器为双压式凝汽器,汽轮机排汽压力0.0049MPa ,凝汽器压力下饱和水焓h'c=136.2 ( kJ/kg)与单压凝汽器相比,双压凝汽器由于按冷却水温度低、高分出了两个不同的汽室压力,因此它具有更低些的凝汽器平均压力,汽轮机的理想比焓降增大。 给水泵汽轮机(以下简称小汽机)的汽源为中压缸排汽(第4级抽汽),无回热加热, 其排汽亦进入凝汽器。热力系统的汽水损失计有:全厂汽水损失、锅炉排污量(因排污率较 小,未设排污利用系统)。 轴封漏气量D sg =2%D 0全部送入轴封加热器来加热主凝结水,化学补充水量直接送入凝 汽器。 (四)全厂原则性热力系统图如图4-2所示。

凝汽式机组原则性热力计算

国产600MW凝汽式机组全厂原则性热力系统计算(一)计算任务 1.最大计算功率下的汽轮机进汽量D0,回热系统各汽水流量D j; 2.计算机组和全厂的热经济性指标(机组汽耗量、机组热耗量、机组热耗率、绝对电效率、管道效率、全厂热耗率、全厂标准煤耗率、全厂热效率); 3.按《火力发电厂热力系统设计制图规定》绘出全厂原则性热力系统图,并将所计算的全部汽水流量绘制成表格,绘制回热系统计算点汽水参数表格,并进行功率校核。 (二)计算类型:定功率计算 (三)系统简介 国产600MW凝汽式机组,机组为亚临界压力、一次中间再热、单轴、反动式、四缸四排汽机组。汽轮机高、中、低压转子均为有中心孔的整锻转子。汽轮机配HG-2008/18-YM2型亚临界压力强制循环汽包炉。采用一级连续排污系统,扩容器分离出得扩容蒸汽送入除氧器。 该系统共有八级抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽汽分别供四台低压加热器,第四级抽汽作为除氧器的加热汽源。八级回热加热器(除氧器除外)均装设了疏水冷却器,以充分利用本级疏水热量来加热本级主凝结水。三级高压加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为-1.7℃、0℃、0℃,从而提高了系统的热经济性。四台低压加热器上端差均为2.8℃,八级加热器下端差(除氧器除外)均为5.5℃。 汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到273.3℃,进入锅炉。 三台高加疏水逐级自流至除氧器;四台低加疏水逐级自流至凝汽器。凝汽器为双压式凝汽器,汽轮机排汽压力0.0049MPa ,凝汽器压力下饱和水焓h’c=136.2 ( kJ/kg)与单压凝汽器相比,双压凝汽器由于按冷却水温度低、高分出了两个不同的汽室压力,因此它具有更低些的凝汽器平均压力,汽轮机的理想比焓降增大。 给水泵汽轮机(以下简称小汽机)的汽源为中压缸排汽(第4级抽汽),无回热加热,其排汽亦进入凝汽器。热力系统的汽水损失计有:全厂汽水损失、锅炉排污量(因排污率较小,未设排污利用系统)。 轴封漏气量D sg=2%D0全部送入轴封加热器来加热主凝结水,化学补充水量直接送入凝汽器。 (四)全厂原则性热力系统图如图4-2所示。

汽轮机600MW汽轮机原则性热力系统设计计算

600MW汽轮机原则性热力系统设计计算 目录 毕业设计............... 错误!未定义书签。内容摘要 (3) 1.本设计得内容有以下几方面: (3) 2.关键词 (3) 一.热力系统 (4) 二.实际机组回热原则性热力系统 (4) 三.汽轮机原则性热力系统 (4) 1.计算目的及基本公式 (5) 1.1计算目的 (5) 1.2计算的基本方式 (6) 2.计算方法和步骤 (7) 3.设计内容 (7) 3.1整理原始资料 (9) 3.2计算回热抽气系数与凝气系数 (9) 回热循环 (10) 3.2.1混合式加热器及其系统的特点 (10) 3.2.2表面式加热器的特点: (11) 3.2.3表面式加热器的端差θ及热经济性 (11) 3.2.4抽气管道压降Δp j及热经济性 (12) 3.2.5蒸汽冷却器及其热经济性 (12)

3.2.6表面式加热器的疏水方式及热经济性 (13) 3.2.7设置疏水冷却段的意义及热经济性指标 (14) 3.2.8除氧器 (18) 3.2.9除氧器的运行及其热经济性分析 (19) 3.2.10除氧器的汽源连接方式及其热经济性 (19) 3.3新汽量D0计算及功率校核 (23) 3.4热经济性的指标计算 (26) 3.5各汽水流量绝对值计算 (27) 致谢 (32) 参考文献 (33)

600MW汽轮机原则性热力系统设计计算 内容摘要 1.本设计得内容有以下几方面: 1)简述热力系统的相关概念; 2)回热循环的的有关内容(其中涉及到混合式加热器、表面式加热器的特点,并对其具有代表性的加热器作以细致描述。表面式加热器的端差、设置疏水冷却段、蒸汽冷却段、疏水方式及热经济性、除氧器的运行及其热经济性分析、除氧器的汽源连接方式及其热经济性) 3)原则性热力系统的一般计算方法 2.关键词 除氧器、高压加热器、低压加热器

【精品】热力发电厂课程设计说明书国产600MW凝汽式机组全厂原则性热力系统设计计算

国产600MW 凝汽式机组全厂原则性热力系统设计计算 课程设计的目的及意义: 电厂原则性热力系统计算的主要目的就是要确定在不同负荷工况下各部分汽水流量及参数、发电量、供热量及全厂的热经济性指标,由此可衡量热力设备的完善性,热力系统的合理性,运行的安全性和全厂的经济性.如根据最大负荷工况计算的结果,可作为发电厂设计时选择锅炉、热力辅助设备、各种汽水管道及附件的依据. 课程设计的题目及任务: 设计题目:国产600MW 凝汽式机组全厂原则性热力系统设计计算. 计算任务: ㈠根据给定的热力系统数据,在h —s 图上绘出蒸汽的汽态膨胀线 ㈡计算额定功率下的汽轮机进汽量0D ,热力系统各汽水流量j D ㈢计算机组和全厂的热经济性指标(机组进汽量、机组热耗量、机组汽耗率、机组热耗率、绝对电效率、全厂标准煤耗量、全厂标准煤耗率、全厂热耗率、全厂热效率)

㈣按《火力发电厂热力系统设计制图规定》绘制出全厂原则性热力系统图3已知数据: 汽轮机型式及参数 机组型式:亚临界、一次中间再热、四缸四排汽、单轴、凝汽式汽轮机; 回热加热系统参数

锅炉型式及参数 锅炉型式英国三井2027—17。3/541/541 额定蒸发量Db:2027t/h 额定过热蒸汽压力P b17。3MPa 额定再热蒸汽压力3。734MPa 额定过热蒸汽温度541℃ 额定再热蒸汽温度541℃ 汽包压力:P du18。44MP 锅炉热效率92.5% 汽轮机进汽节流损失4% 中压缸进汽节流损失2% 轴封加热器压力P T98kPa 疏水比焓415kJ/kg 汽轮机机械效率98。5% 发电机效率99% 补充水温度20℃ 厂用电率0.07 4计算过程汇总: ㈠原始资料整理:

热电厂热力系统计算

热电厂热力系统计算

————————————————————————————————作者: ————————————————————————————————日期:

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 项目单位 采暖期非采暖期 最大平均最小最大平均最小 用户热负荷工业t/h 175 142 108 126 92 75采暖t/h 177 72 430 0 0 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.700.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985(3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

汽轮机热力性能数据

资料编号:57.Q151-01 N135-13.24/535/535 135MW中间再热凝汽式空冷 汽轮机热力性能数据 产品编号:Q151 中华人民共和国 上海汽轮机有限公司发布

资料编号:57.Q151-01 COMPILING DEPT.: 编制部门: COMPILED BY: 编制: CHECKED BY: 校对: REVIEWED BY: 审核: APPROVED BY: 审定: STANDARDIZED BY: 标准化审查: COUNTERSIGN: 会签: RATIFIED BY: 批准:

资料编号:57.Q151-01 目次 1 说明 2 主要热力数据汇总 2.1 基本特性 2.2 配汽机构 2.3 主要工况热力特性汇总 2.4 通流部分数据 2.5 各级温度、压力及功率 2.6 各抽汽口口径及流速 3 汽封漏气量及蒸汽室漏气量 3.1 汽封计算 3.2 蒸汽室及中压进口漏汽量 4 汽轮机特性曲线 4.1 调节级后及各抽汽点压力曲线 4.2 调节级后及各抽汽点温度曲线 4.3 各加热器出口给水温度曲线 4.4 进汽量与汽耗、热耗及功率的关系曲线 4.5 高中压缸汽封漏汽量及低压缸汽封供汽量曲线 4.6 调节级后压力和汽轮机功率曲线 4.7 汽轮机内效率曲线 5 热平衡图 5.1 额定工况(THA) 5.2 铭牌工况(TRL) 5.3 最大连续功率工况(TMCR) 5.4 阀门全开工况(VWO) 5.5 75%THA工况 5.6 50%THA工况 5.7 40%THA工况 5.8 30%THA工况 5.9 高加全部停用工况

资料编号:57.Q151-01 1 说明 本机组是上海汽轮机有限公司采用美国西屋公司的先进技术和积木块的设计方法,设计制造的额定功率为135MW,是超高压、一次再热、双缸双排汽、直接空冷凝汽式汽轮机。机组型号为N135-13.24/535/535 1.1 主要技术参数 额定功率135MW 主汽门前蒸汽额定压力13.24MPa(a) 主汽门前蒸汽额定温度535℃ 再热汽门蒸汽额定温度535℃ 工作转速3000r/min 旋转方向从汽轮机端向发电机端看为顺时针 额定平均背压15kPa 夏季平均背压35kPa 额定工况给水温度241.1 ℃ 回热级数二高、三低、一除氧 给水泵驱动方式电动机 额定工况蒸汽流量422.285 t/h 额定工况下净热耗8706.5 kJ/kW.h (2079.5 kcal/kW.h) 低压末级叶片高度435mm

6000kW汽轮机设计说明书

课程设计计算说明书 设计题目: 6000kW冲动式汽轮机设计 班级:能动A95(能动92) 姓名:祁晓晖 学号: 09031041 指导教师:李亮 2013 年 1 月 8 日 西安交通大学

目录 引言 (1) 1 汽轮机设计任务书 (2) 1.1原始数据 (2) 1.2 设计任务 (2) 2热力设计及计算 (2) 2.1 当前汽轮机设计的方向 (2) 2.2 本设计中遵循的几个原则 (3) 2.2.1安全可靠 (3) 2.2.2经济性 (3) 2.2.3降低制造成本 (4) 2.3热力设计及计算 (4) 2.3.1热力系统计算 (4) 3 体会 (18)

引言 为了对某一过程进行有效的控制,必须清楚过程的目标和控制的要求,汽轮机课程设计的目的在设计任务书上得到了详细的规定,但有些目的是不能用直观的几何图形来表示的,而是需要在设计过程中不断复习,积极思考,总结来完成。 本设计涉及的主要课程有《透平机械原理》、《汽轮机装置》、《透平工艺制造学》以及有关的基本知识,课程设计的任务和要求: 1.首先必须认真地完成设计任务书上的各项要求,这包括根据所给参数要求和设计要求完成: 1)热力系统设计和计算; 2)热力设计和计算; 3)图纸; 4)设计说明书。 2.专业知识的总结和再学习,在此之前,我们分别学习了有关透平各方面的知识,这种学习室在一定方面和范围内进行的,比如我们在学习《原理》时,仅仅是就系统中汽机部分进行分析和研究,事实上,工作原理、热系统、强度问题调节及制造之间是相互作用和相互影响的,通过课程设计这一环节,使我们在一定程度上能够把诸多方面的专业知识综合起来,融会贯通,使学员队专业知识获得较为全面的整体认识。 3.对汽机设计过程的认识,也许你已经对喷嘴的计算、焓降的分配各种方法有了清楚的认识,但是在汽机整机中焓降的分配与平均直径、损失、叶高、效率等因素之间在多大程度上互相作用和影响,以及如何通过调整某个因素达到设计要求。这一点在完成课程设计之前是很难有一个清楚认识的,再者作为将要从事透平设计工作的同学来说课程设计无疑是一次生动的模拟训练。 4.学习解决问题的方法,在汽轮机设计过程中,必然会产生不少问题,通过解决这些问题,使自己的知识深化,同时也引起我们的思考“在我的设计中,所遇到的最棘手的问题是什么?”怎样解决这些问题,“设计中还有哪些问题考虑的不充分,怎么进一步改进”,进而可以思考一下,在这种类型的透平中设计的主要问题是什么,要提高效率,应该如何着手,通过我们主动的思考,加深对设计过程的认识。 5.基本技能的训练,课程设计所涉及的内容还是比较广泛的,通过这一环节,使学员获得了如何使用设计资料、有关工具、图表以及如何表达和说明设计结果的基本训练,对于工科学生而言,这无疑是必要的。

相关主题
文本预览
相关文档 最新文档