当前位置:文档之家› 解一元二次方程练习题(韦达定理)

解一元二次方程练习题(韦达定理)

解一元二次方程练习题(韦达定理)
解一元二次方程练习题(韦达定理)

实用标准文档

解一元二次方程练习题(配方法)

1.用适当的数填空:

①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2;

③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2

2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2

-ax+1可变为(2x-b )2

的形式,则ab=_______.

4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2

=b 的形式为______,?所以方程的根为_______.

5.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( )

A .(a-2)2+1

B .(a+2)2-1

C .(a+2)2+1

D .(a-2)2-1 7.把方程x+3=4x 配方,得( )

A .(x-2)2=7

B .(x+2)2=21

C .(x-2)2=1

D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( )

A .2

B .-2

C .

D .

9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( )

A .总不小于2

B .总不小于7

C .可为任何实数

D .可能为负数 10.用配方法解下列方程:

(1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)

4

1 x 2

-x-4=0

7、01842=+--x x 8、0222=-+n mx x 9、()00222>=--m m mx x

11.用配方法求解下列问题

(1)求2x 2-7x+2的最小值 ; (2)求-3x 2+5x+1的最大值。

一.填空题:

1.关于x 的方程mx 2-3x= x 2-mx+2是一元二次方程,则m___________.

2.方程4x(x-1)=2(x+2)+8化成一般形式是______________,二次项系数是____,一次项系数是_____,常数项是____.

3.方程x 2=1的解为______________.

4.方程3 x 2=27的解为______________; x 2+6x+____=(x+____)2; a 2±____+4

1

=(a ±____ )2 5.关于x 的一元二次方程(m+3) x 2+4x+ m 2- 9=0有一个解为0 , 则m=______. 二.选择题:

6.在下列各式中

①x 2

+3=x; ②2 x 2

- 3x=2x(x- 1) – 1 ; ③3 x 2

- 4x – 5 ; ④x 2

=- x

1+2 是一元二次方程的共有( )

A 0个

B 1个

C 2个

D 3个 8.一元二次方程的一般形式是( )

A x 2+bx+c=0

B a x 2+c=0 (a ≠0 )

C a x 2+bx+c=0

D a x 2+bx+c=0 (a ≠0) 9.方程3 x 2

+27=0的解是( )

A x=±3

B x= -3

C 无实数根

D 以上都不对 10.方程6 x 2- 5=0的一次项系数是( ) A 6 B 5 C -5 D 0

11.将方程x 2- 4x- 1=0的左边变成平方的形式是( )

A (x- 2)2

=1 B (x- 4)2

=1 C (x- 2)2

=5 D (x- 1)2

=4

三.。将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项

五. 用配方法或公式法解下列方程.:

(10) x 2

-6x+9 =0 (1)x 2

+ 2x + 3=0 (2)x 2

+ 6x -5=0 (3) x 2

-4x+ 3=0

(4) x 2

-2x -1 =0 (5) 2x 2

+3x+1=0 (6) 3x 2

+2x -1 =0

(7) 5x 2-3x+2 =0 (8) 7x 2-4x -3 =0 (9) -x 2-x+12 =0

韦达定理:对于一元二次方程2

0(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么

1212,b c

x x x x a a

+=-=

说明:(1)定理成立的条件0?≥ (2)注意公式重12b

x x a

+=-的负号与b 的符号的区别 根系关系的三大用处 (1)计算对称式的值

例 若12,x x 是方程2

220070x x +-=的两个根,试求下列各式的值:

(1) 22

12x x +; (2)

12

11x x +; (3) 12(5)(5)x x --;

(4) 12||x x -.

解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-

(1) 2222

121212()2(2)2(2007)4018x x x x x x +=+-=---=

(2)

1212121122

20072007

x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=-

(4) 12||x x -=

===说明:利用根与系数的关系求值,要熟练掌握以下等式变形:

222121212()2x x x x x x +=+-,

121212

11x x x x x x ++=,22

121212()()4x x x x x x -=+-,

12||x x -=2212121212()x x x x x x x x +=+,

33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.

【课堂练习】

1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22

的值为_________

2.已知x 1,x 2是方程2x 2

-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,

(x 1-x 2)2

3.已知方程2x 2

-3x+k=0的两根之差为212

,则k= ;

4.若方程x 2

+(a 2

-2)x -3=0的两根是1和-3,则a= ;

5.若关于x 的方程x 2+2(m -1)x+4m 2

=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;

6. 设x 1,x 2是方程2x 2

-6x+3=0的两个根,求下列各式的值: (1)x 12x 2+x 1x 22

(2) 1x 1 -1x 2

7.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值:

2221x 1

x 1+

(2)构造新方程

理论:以两个数为根的一元二次方程是。

例 解方程组 x+y=5

xy=6 解:显然,x ,y 是方程z 2

-5z+6=0 ① 的两根 由方程①解得 z 1=2,z 2=3 ∴原方程组的解为 x 1=2,y 1=3

x 2=3,y 2=2 显然,此法比代入法要简单得多。 (3)定性判断字母系数的取值范围

例 一个三角形的两边长是方程的两根,第三边长为2,求k 的取值范围。

解:设此三角形的三边长分别为a 、b 、c ,且a 、b 为的两根,则c=2

由题意知

△=k 2

-4×2×2≥0,k ≥4或k ≤-4

为所求。

【典型例题】

例1 已知关于x 的方程2

2

1(1)104

x k x k -++

+=,根据下列条件,分别求出k 的值. (1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.

分析:(1) 由韦达定理即可求之;(2) 有两种可能,一是120x x =>,二是12x x -=,所以要分类讨论. 解:(1) ∵方程两实根的积为5

∴ 2

22121[(1)]4(1)034

,41215

4

k k k k x x k ??=-+-+≥???≥=±?

?=+=?? 所以,当4k =时,方程两实根的积为5. (2) 由12||x x =得知: ①当10x ≥时,12x x =,所以方程有两相等实数根,故3

02

k ?=?=

; ②当10x <时,12120101x x x x k k -=?+=?+=?=-,由于

3

02

k ?>?>

,故1k =-不合题意,舍去.

综上可得,3

2

k =

时,方程的两实根12,x x 满足12||x x =. 说明:根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的字母应满足0?≥.

例2 已知12,x x 是一元二次方程2

4410kx kx k -++=的两个实数根.

(1) 是否存在实数k ,使12123

(2)(2)2

x x x x --=-

成立?若存在,求出k 的值;若不存在,请您说明理由.

(2) 求使

12

21

2x x x x +-的值为整数的实数k 的整数值. 解:(1) 假设存在实数k ,使12123

(2)(2)2

x x x x --=-成立.

∵ 一元二次方程2

4410kx kx k -++=的两个实数根

∴ 2

40

0(4)44(1)160

k k k k k k ≠??

又12,x x 是一元二次方程2

4410kx kx k -++=的两个实数根

∴ 1212114x x k x x k +=???+=??

∴ 222

121212121212(2)(2)2()52()9x x x x x x x x x x x x --=+-=+-

939

425

k k k +=-

=-?=,但0k <.

∴不存在实数k ,使12123

(2)(2)2

x x x x --=-成立.

(2) ∵ 222121212211212()44

224411

x x x x x x k x x x x x x k k +++-=-=-=-=-

++

∴ 要使其值是整数,只需1k +能被4整除,故11,2,4k +=±±±,注意到0k <,

要使

12

21

2x x x x +-的值为整数的实数k 的整数值为2,3,5---. 说明:(1) 存在性问题的题型,通常是先假设存在,然后推导其值,若能求出,则说明存在,否则即不存在.

(2) 本题综合性较强,要学会对

4

1

k +为整数的分析方法.

一元二次方程根与系数的关系练习题

A 组

1.一元二次方程2

(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )

A .2k >

B .2,1k k <≠且

C .2k <

D .2,1k k >≠且

2.若12,x x 是方程2

2630x x -+=的两个根,则

12

11

x x +的值为( ) A .2

B .2-

C .

12

D .

92

3.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程

22(21)30x m x m +-++=的根,则m 等于(

)

A .3-

B .5

C .53-或

D .53-或

4.若t 是一元二次方程2

0 (0)ax bx c a ++=≠的根,则判别式2

4b ac ?=-和完全平方式2

(2)M at b =+的

关系是( )

A .M ?=

B .M ?>

C .M ?<

D .大小关系不能确定

5.若实数a b ≠,且,a b 满足2

2

850,850a a b b -+=-+=,则代数式11

11

b a a b --+--的值为( )

A .20-

B .2

C .220-或

D .220或

6.如果方程2

()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______

7.已知一个直角三角形的两条直角边的长恰是方程2

2870x x -+=的两个根,则这个直角三角形的斜边长是 _______ .

8.若方程2

2(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .

9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程2

0x qx p ++=的两实根,则p =

_____ ,q = _____ .

10.已知实数,,a b c 满足2

6,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ .

11.对于二次三项式2

1036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.

12.若0n >,关于x 的方程2

1(2)04x m n x mn --+=有两个相等的的正实数根,求m

n

的值.

13.已知关于x 的一元二次方程2

(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足

121112

x x +=-,求m 的值.

14.已知关于x 的方程2

2

1(1)104

x k x k -+++=的两根是一个矩形两边的长. (1) k 取何值时,方程存在两个正实数根?

(2)

k 的值.

B 组

1.已知关于x 的方程2

(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1) 求k 的取值范围; (2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.

2.已知关于x 的方程2

30x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程

22(3)640k x kmx m m -+-+-=有实数根.

3.若12,x x 是关于x 的方程2

2

(21)10x k x k -+++=的两个实数根,且12,x x 都大于1.

(1) 求实数k 的取值范围;

(2) 若

121

2

x x =,求k 的值.

一元二次方程试题

一、选择题

1、一元二次方程2

210x x --=的根的情况为( )B A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根

D.没有实数根

2、若关于z 的一元二次方程02.

2=+-m x x 没有实数根,则实数m 的取值范围是( )C A .m-1 C .m>l D .m<-1

3、一元二次方程x 2

+x +2=0的根的情况是( )C A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根 D .有两个相等的实数根 4、用配方法解方程2

420x x -+=,下列配方正确的是( )A A .2

(2)2x -=

B .2

(2)2x +=

C .2

(2)2x -=-

D .2

(2)6x -=

5、已知函数2

y ax bx c =++的图象如图(7)所示,那么关于x 的方程

220ax bx c +++=的根的情况是( )D

A .无实数根

B .有两个相等实数根

C .有两个异号实数根

D .有两个同号不等实数根

6、关于x 的方程2

0x px q ++=的两根同为负数,则( )A A .0p >且q >0 B .0p >且q <0 C .0p <且q >0 D .0p <且q <0

7、若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )C

(A )-1或

34 (B )-1 (C )3

4

(D )不存在

图(7)

8、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )D

(A )x 2

+4=0 (B )4x 2

-4x +1=0 (C )x 2

+x +3=0 (D )x 2

+2x -1=0 9、某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )B A :200(1+a%)2

=148 B :200(1-a%)2

=148 C :200(1-2a%)=148 D :200(1-a 2

%)=148 10、下列方程中有实数根的是( )C

(A )x 2

+2x +3=0 (B )x 2

+1=0 (C )x 2

+3x +1=0 (D )

1

11

x x x =

-- 11、已知关于x 的一元二次方程2

2x m x -= 有两个不相等的实数根,则m 的取值范围是( ) A A . m >-1 B . m <-2 C .m ≥0 D .m <0

12、如果2是一元二次方程x 2

=c 的一个根,那么常数c 是( )。C

A 、2

B 、-2

C 、4

D 、-4

二、填空题

1、已知一元二次方程01322

=--x x 的两根为1x 、2x ,则=+21x x 2

3 2、方程()412

=-x 的解为 。31=x ,12-=x

3、阅读材料:设一元二次方程2

0ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:

12b x x a +=-,12c

x x a

=.根据该材料填空:

已知1x ,2x 是方程2

630x x ++=的两实数根,则

21

12

x x x x +的值为______ 10 4、关于x 的一元二次方程x 2

+bx +c =0的两个实数根分别为1和2,则b =______;c =______. -3,2 5、方程2

20x x -=的解是 .1x =0,2x =2 6、已知方程2

30x x k -+=有两个相等的实数根,则k = 94

7、方程x 2

+2x=0的解为 1x =0,2x =-2

8、已知方程()0332

=+-+x a x 在实数范围内恒有解,并且恰有一个解大于1小于2,则的取值范围

是 .

2

1

1-<<-a 或323-=a

9、已知x 是一元二次方程x 2

+3x -1=0的实数根,那么代数式

235(2)362

x x x x x -÷+---的值为____1

3

10、已知1x =-是关于x 的方程2

2

20x ax a +-=的一个根,则a =_______.

11、若关于x 的一元二次方程2

20x x k +-=没有实数根,则k 的取值范围是 .

a

12、写出一个两实数根符号相反的一元二次方程:__________________。

13、已知2-2

40x x c -+=的一个根,则方程的另一个根是 . 2+三、解答题

1、解方程:2

410x x +-=.

2、解方程:x 2

+3=3(x +1).

3、已知x =1是一元二次方程2

400ax bx +-=的一个解,且a b ≠,求22

22a b a b

--的值.

4、已知关于x 的一元二次方程x 2

+4x +m -1=0。

(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根;

(2)设α、β是(1)中你所得到的方程的两个实数根,求α2+β2

+αβ的值。

5、据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高

到60%,求每年的增长率。(≈1.41)

解:设我省每年产出的农作物秸杆总量为a ,合理利用量的增长率是x ,由题意得:

30%a (1+x )2=60%a ,即(1+x )2

=2…………5分 ∴x 1≈0.41,x 2≈-2.41(不合题意舍去)。……7分 ∴x ≈0.41。

即我省每年秸秆合理利用量的增长率约为41%。………8分

6、黄金周长假推动了旅游经济的发展.下图是根据国家旅游局提供的近年来历次黄金周旅游收入变化图.

(1)根据图中提供的信息.请你写出两条结论;

(2)根据图中数据,求2002年至2004年的“十一”黄金周全国旅游收入平均每年增长的百分率(精确到0.1) 解:(1)①历年春节旅游收入低于“五一”和“十一”旅游收入;

②黄金周旅游收入呈上升趋势。┉┉

(2)设平均每年增长的百分率为x ,则300(1+x )2

=400,

解得:1x =-12x =-1,

所以,x =-10.155,

答:平均每年增长的百分率为15.5%。

7、已知x 1,x 2 是关于x 的方程(x -2)(x -m )=(p -2)(p -m )的两个实数根.

(1)求x 1,x 2 的值;

(2)若x 1,x 2 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.

解:(1) 原方程变为:x 2

-(m + 2)x + 2m = p 2

-(m + 2)p + 2m ,

∴ x 2

-p 2

-(m + 2)x +(m + 2)p = 0, (x -p )(x + p )-(m + 2)(x -p )= 0, 即 (x -p )(x + p -m -2)= 0, ∴ x 1 = p , x 2 = m + 2-p . (2)∵ 直角三角形的面积为

)2(212121p m p x x -+==p m p )2(2

1

212++- =)]4)2(()22(

)2([212

22+-+++--m m p m p =8

)2()22(212

2+++--m m p ,

∴ 当2

2+=m p 且m >-2时,以x 1,x 2为两直角边长的直角三角形的面积最大,最大面积为

8)2(2+m 或2

2

1p .

韦达定理的运用

一元二次方程跟与系数关系(韦达定理)的应用 一 教材分析 本节教学内容为“韦达定理的应用”,此内容是学生学习“一元二次方的根与系数的关系”中解决一些简单问题的重要方法。韦达定理联系了方程根与系数的关系,是学生在解决应用问题中的重要工具,具有广泛的应用价值,根据教材内容,由学生已知的认知结构及原由的知识水平,制定如下教学目标: 二 教学目标 1、巩固上一节学习的韦达定理,并熟练掌握韦达定理的应用。 2、提高学生综合应用能力 三 教学重难点 重点:运用韦达定理解决方程中的问题 难点:如何运用韦达定理 四 教学过程 (一 ) 回顾旧知,探索新知 上节课我们学习了韦达定理,我们回忆一下什么是韦达定理? 如果)0(02 ≠=++a c bx ax 的两个根是21,x x 那么a c x x a b x x =?- =+2121, {老师:由韦达定理我们可知,韦达定理表示方程的根与系数的关系,如果在方 程中遇到需要求解根的情况,我们是否能用韦达定理来解决呢?今天我们将来探讨这个问题。) (二) 举例分析 例 已知方程0652 =-+kx x 的一根是2,求它的另一根及k 的值。 请同学们分析解题方法: 思路:应用解方程的方法,带入法 解法一:把X=2代入方程求的K=-7 把K=-7代入方程:06752 =--x x 运用求根公式公式解得5 3,221- ==∴x x 提问:同学们还有没有其它方法呢? 启发学生,我们已知方程一根,求另一根,我们否能用韦达定理建立一个关系,求解方程。

解法二:设方程的两根为21,x x ,则21,2x x =是未知数 用韦达定理建立关系式 5 3 ,5622 2-=∴-=x x 7 ,5 3 ,27 ,5 2212-=-==∴-=∴-=+k x x k k x 对比分析,第二种方法更加简单 总结:在解方程的根时,利用韦达定理会使求解过程更为简单,且不用解方程,直接求某 些代数式的值 例2 不解方程,求一元二次方程2x 2+3x -1=0两根的 (1)平方和;(2)倒数和 方法小结: (1)运用韦达定理求某些代数式的值,关键是将所求的代数式恒等变形为用2121,x x x x ?+的代数式表示。 (2)格式、步骤要求规范: ①将方程的两根设为。 ②求出2121,x x x x ?+的值 。 ③将所求代数式用2121,x x x x ?+的代数式表示 。 ④ 将2121,x x x x ?+的值代人并求值。 三 综合运用 巩固新知 1、求一个一元二次方程,使它的两根分别是 解 : 2、设 2 1,x x 是方程03422 =-+x x 的两根,利用根与系数的关系,求下列各式的值。

韦达定理经典例题复习课程

一元二次方程根与系数的关系培优训练 例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。 例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。 (1)是否存在实数k ,使23)2)(2(2121- =--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使 21221-+x x x x 的值为整数的实数k 的整数值。 例3.已知关于x 的一元二次方程 有两个相等的实数根。求证:(1)方程 有两个不相等的实数根; (2)设方程 的两个实数根为 ,若 ,则 .

例4.在等腰三角形ABC 中,∠A、∠B、∠C的对边分别为a、b、c,已知a=3,b和c是关于x的方程的两个实数根,求△ABC的周长. 例5.在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。这个方程的根应该是什么? 例6.已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。

练习:1.先阅读下列第(1)题的解法,再解答第(2)题. (1)若α、β是方程x2-3x-5=0的两个实数根,求α2+2β2-3β的值; 解:∵α、β是方程x2-3x-5=0的两个实根, ∴α2-3α-5=0,β2-3β-5=0,且α+β=3. ∴α2=3α+5,β2=3β+5 ∴α2+2β2-3β=3α+5+2(3β+5)-3β=3α+3β+15=3(α+β)+15=24. (2)已知x 1、x 2 是方程x2+x-7=0的两个实数根,不解方程求的值. 2.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β, 若s=1 α + 1 β ,求s的取值范围。 3.如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-1)2+(β-1)2的最小值是多少? 4.已知关于x的方程x2-(2a-1)x+4(a-1)=0的两个根是斜边长为5的直角三角形的两条直角边的长,求这个直角三角形的面积。

一元二次方程应用题经典题型汇总含答案

z一元二次方程应用题经典题型汇总 一、增长率问题 例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答这两个月的平均增长率是10%. 说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答需要进货100件,每件商品应定价25元. 说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

例3王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答第一次存款的年利率约是2.04%. 说明这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗? 解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m. 则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0. 解这个方程,得x1=-1.8(舍去),x2=1. 所以x+1.4+0.1=1+1.4+0.1=2.5. 答渠道的上口宽2.5m,渠深1m. 说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

一元二次方程的解法与韦达定理练习题

一元二次方程的解法与韦达定理 【知识提要】1.一元二次方程你知道有哪些常用解法 2.还记得如何用配方法解方程吗配方时需要注意些什么 3.韦达定理是什么你能推导吗使用韦达定理的前提条件是什么 【典型例题】 例1 (1)一元二次方程的一般形式是____ ___.其解为1x =_ ______,2x =__ _____. (2)将方程x x 2)1(2=+化成一般形式为___ _______.其二次项是__________, 一次项是__________,常数项是_________. — 例2 用配方法解下列方程 (1)0152=-+x x (2)01422=+-x x (3)0364 12=+-x x 例3 用公式法解下列各方程 (1)01252=-+x x (2)061362=++y y (3)7962=++x x ! 例4 用因式分解法解下列方程 (1)022=+x x (2)22)12()1(-=+x x (3)4122=+-x x 例5 用适当方法解方程: 《 (1)x x 322=+ (2)232+=x x (3)02)3(2 =-+y (4) )2(3)2)(1(2+=++x x x x (5))3(215)3(2 +-=+x x (6)01242=-+x x (7)0)12(532=++x x {

根与系数关系式 一、填空题与选择题: 1、一元二次方程0132=--x x 与032=--x x 的所有实数根的和等于____. 2、已知关于x 的方程0142=-+-k x x 的两根之差等于6,那么=k ______ 3、已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( ) A 、、3 C 、6 D 、9 , 4、已知三角形两边长分别为2和9,第三边的长为二次方程048142=+-x x 的一根, 则这个三角形的周长为 ( ) 或19 二、解答题: 5、设21,x x 是一元二次方程01522=+-x x 的两个根,利用根与系数的关系,求下列各式的值: (1))3)(3(21--x x ; (2)2221)1()1(+++x x - (3))31)(31(1221x x x x ++ 6、已知关于x 的方程04)2(222=++-+m x m x 有两个实数根,并且这两个实数根的平方和比它们的积大21,求m 的值. 《

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

一元二次方程应用题(含答案)整理版

一元二次方程应用题 1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元? 解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元, 依题意x≤10 ∴(44-x)(20+5x)=1600 展开后化简得:x2-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍) 即每件降价4元 2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列? 解:设增加x (8+x)(12+x)=96+69 x=3 增加了3行3列 3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式 解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元. 依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70) (2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元. ∴销售单价最高时获总利最多,且多获利26500元. 4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒? 解:设边长x 则(19-2x)(15-2x)=77 4x^2-68x+208=0 x^2-17x+52=0

韦达定理(根与系数的关系)全面练习题及答案

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

一元二次方程应用题精选含答案

一元二次方程应用题精选 一、数字问题 1、有两个连续整数,它们的平方和为25,求这两个数。 2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数. 二、销售利润问题 3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增 加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求: (1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)要使商场平均每天赢利最多,请你帮助设计方案. 4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家 电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? 5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?

三、平均变化率问题增长率 (1)原产量+增产量=实际产量. (2)单位时间增产量=原产量×增长率. (3)实际产量=原产量×(1+增长率). 6. 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少? 7. 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几? 四、形积问题 8、有一块长方形的铝皮,长24cm、宽18cm,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高. 9、如图,在一块长为32m,宽为20m长方形的土地上修筑两条同样宽度的道路,余下部分作为耕地要使耕地的面积是540m2,求小路宽的宽度.

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理 一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。 韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。 【例题求解】 【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。 思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么 b a a b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2 思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1)恰当组合;(2)根据根的定义降次;(3)构造对称式。 【例3】 已知关于x 的方程:04)2(2 2 =---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。 (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。 思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。 【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

用因式分解法解一元二次方程练习题

用因式分解法解一元二次方程 一.公因式: (一)1.解方程 x2-5x=0 x(x-1)=0 3x2=6x x2-5x=7x t(t+3)=28 x2=7x x2+12x=0(1+2)x2-(1-2)x=0 (3-y)2+y2=9 (二)1.解方程 4x(x+3)+3(x+3)=0 3x(x+1)+4(x+1)=0 (2x+1)2+3(2x+1)=0 x(x-5)=5-x (2t+3)2=3(2t+3) 二、平方差,解方程: (x+5)(x-5)=0 x2-25=0 4x2-1=0 (x-2)2=256 0 1 92x 三、十字交叉,解方程: 4x2-4x+1=0 (x+3)(x+2)=0 x2-5x+6=0 x2-2x-3=0 x2-4x-21=0 (x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0 5x2-(52+1)x+10=0 四、完全平方,解方程: x2-6x+9=04X2-4X+1=0 (Y-1)2+2(Y-1)+1=0 五、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长? 六、解关于x的方程(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0 七、6.已知x2+3xy-4y2=0(y≠0),试求 y x y x 的值 八、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值. 九、已知x2+3x+5的值为9,试求3x2+9x-2的值 十、一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.

2021年韦达定理经典例题

一元二次方程根与系数的关系 培优训练 欧阳光明(2021.03.07) 例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的 m 的取值范围;若不能同号,请说明理由。 例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。 (1)是否存在实数k ,使23)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使21221-+x x x x 的值为整数的实数k 的整数值。 例3.已知关于x 的一元二次方程 有两个相等的实数根。求证:(1)方程 有两个不相等的实数根; (2)设方程 的两个实数根为 ,若 ,则 . 例4.在等腰三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知a=3,b 和c 是关于x 的方程 的两个实数根,求△ABC 的周长.

例5.在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。这个方程的根应该是什么? 例6.已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。 练习:1.先阅读下列第(1)题的解法,再解答第(2)题. (1)若α、β是方程x2-3x-5=0的两个实数根,求α2+2β2-3β的值; 解:∵α、β是方程x2-3x-5=0的两个实根, ∴α2-3α-5=0,β2-3β-5=0,且α+β=3. ∴α2=3α+5,β2=3β+5 ∴α2+2β2-3β=3α+5+2(3β+5)- 3β=3α+3β+15=3(α+β)+15=24. (2)已知x1、x2是方程x2+x-7=0的两个实数根,不解方程求 的值. 2.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两 实数根为α,β,若s=1 α + 1 β ,求s的取值范围。 3.如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-1)2+(β-1)2的最小值是多少? 4.已知关于x的方程x2-(2a-1)x+4(a-1)=0的两个根是斜边长为5的直角三角形的两条直角边的长,求这个直角三角形的面 积。

解一元二次方程练习题汇编

一元二次方程练习题 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2 (21)3x +=; (3)2 (61)250x --=. (4)2 81(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2)21 (31)644 x +=; (3)2 6(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ 4. 填空 (1)28x x ++( )=(x + )2 . (2)22 3x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2 . 5. 用适当的数(式)填空: 23x x -+ (x =- 2); 2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程

1).210x x +-= 2).23610x x +-= 3).21 (1)2(1)02 x x ---+= 7. 方程22 103 x x - +=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. 12. 用适当的方法解方程 (1)2 3(1)12x +=; (2)2 410y y ++=; (3)2884x x -=; (4)2 310y y ++=. 13. 已知关于x 的一元二次方程2 2 (21)10m x m x +-+=有两个不相等的实数根,则m 的取值范围是 .

韦达定理练习

韦达定理练习 1、已知关于x的一元二次方程x+x+1=0有两个不相等的实数根,则k的取值范围是 5、已知x 1、x2是方程x+6x+3=0的两个实数根,则 6、如果关于x的一元二次方程x﹣6x+c=0没有实根,那么c 的取值范围是 _________ 、 7、已知关于x的一元二次方程x+2x﹣m=0有两个相等的实数根,则m的值是 8、方程x﹣2x﹣1=0的两个实数根分别为x1,x2,则= _________ 、 9、已知α,β是一元二次方程x﹣4x﹣3=0的两实数根,则代数式= _________ 、 10、已知x=2是方程x+mx﹣2=0的一个解,则方程的另一个解为 11、用指定的方法解方程 22﹣25=0 x+4x﹣5=0 [1**********]的值等于 ﹣10+25=04)2x﹣7x+3=0 12、+3+2=0 13、已知关于x的一元二次方程x+2x+m=0、

当m=3时,判断方程的根的情况; 当m=﹣3时,求方程的根、 14、当实数k为何值时,关于x的方程x﹣4x+3﹣k=0有两个相等的实数根?并求出这两个相等的实数根、 15、阅读材料:如果x1,x2是一元二次方程ax+bx+c=0的两根,那么有x1+x2=﹣,x1x2=、这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x+6x﹣3=0的两根,求222222x1+x2的值、解法可以这样:∵x1+x2=6,x1x2=﹣3则x1+x2=﹣2x1x2﹣2×= 42、 请你根据以上解法解答下题:已知x1,x2是方程x﹣4x+2=0的两根,求: 的值; 222222222的值、 16、已知x1,x2是方程3x+2x﹣1=0的两根,求x1+x2的值、 17、已知关于x的一元二次方程x+kx﹣1=0, 求证:方程有两个不相等的实数根; 设方程的两根分别为x1,x2,且满足x1+x2=x1?x2,求k的值、 18、已知x 1、x2是一元二次方程2x﹣2x+1﹣3m=0的两个实数根,且x

最新一元二次方程应用题精选(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元? 解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元, 依题意x≤10 ∴(44-x)(20+5x)=1600 展开后化简得:x2-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍) 即每件降价4元 要找准关系式 2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列? 解:设增加x (8+x)(12+x)=96+69 x=3 增加了3行3列 3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价 解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元. 依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70) (2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元. ∴销售单价最高时获总利最多,且多获利26500元.

解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2 =b 的形式为_______,?所以方程的根为_________. 5.若x 2 +6x+m 2 是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2 -5x=2. (2)x 2 +8x=9 (3)x 2 +12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

韦达定理精华练习题

一、韦达定理 如果一元二次方程)0(02≠=++a c bx ax 的两个根是21,x x , 那么a c x x a b x x =?- =+2121, 二、练习 1、若方程2x +(2 a -2)x -3=0的两根是1和-3,则实数a = __________ 2、设21,x x 是方程22x -6x +3=0的两根,则2221x x +的值是( ) (A )15 (B )12 (C )6 (D )3 3、不解方程,求一元二次方程2x 2+3x -1=0两根的(1)平方和;(2)倒数和。 4、设21,x x 是方程03422 =-+x x 的两根,利用根及系数的关系,求下列各式的值。 (1) ()()1121++x x (2) ()221x x - (3) 2 112x x x x + 5、求一个一元二次方程,使它的两根分别是25,310- 。 6、以方程2x +2x -3=0的两个根的和及积为两根的一元二次方程是( ) (A ) 2y +5y -6 = 0 (B )2y +5y +6 = 0 (C )2y -5y +6 = 0 (D )2y -5y -6 = 0 7、已知方程0652=-+kx x 的一根是2,求它的另一根及k 的值。 8、已知关于x 的方程102x -(m+3)x + m -7= 0 ①若有一个根为0,则m=_________ ,这时,方程的另一个根是_________ ; ②若两根之和为53- ,则m=_________ ,这时方程的两个根分别为_____,_____。 8、已知方程032=+-m x x 的两根差的平方是17,求m 的值。 9、已知关于x 的二次方程x 2-2(a -2)x+a 2-5=0有实数根,且两根之积等于两根之和的2倍,求a 的值。 10、如果α和β是方程2x2+3x -1=0的两个根,利用根及系数关系,求作一个一元二次方程,使它的两个根分别等于βα1+ 和αβ1+。 巩固练习:

韦达定理中考真题精练

★中考真题精练 1.(2014·玉林)、是关于的一元二次方程的两个实数根,是否存在实数使成立?则正确的结论是(A) A.时成立B.时成立 C.或2时成立D.不存在 2.(2014·呼和浩特)已知函数的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程的两根、判断正确的是(C) A.,B., C.,D.与的符号都不能确定 3.(2015·泸州)设、是一元二次方程的两实数根,则的值为27. 4.(2015·江西)已知一元二次方程的两根是m,n,则= 25. 5.(2014·德州)方程的两个实数根、满足,则k的值为1. 6.(2014·济宁)若一元二次方程的两个根分别是与,则= 4 . 7.已知关于x的一元二次方程. (1)求证:无论m取何值,原方程总有两个不相等的实数根; (2)若、是原方程的两根,且,求m的值. (1)证明:△== =. 无论m取何值,,即. ∴无论m取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得,, ∴= =,而, ∴,即, ∴或. 8.已知关于x的方程有两个实数根、. (1)求k的取值范围; (2)若,求k的值. 解:(1)由已知,得,即 ,∴. (2)∵,∴,∴. 而,, ∴,即, ∴或.而,∴. 9.请阅读下列材料: 问题:已知方程,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y,则,∴.

把代入已知方程,得,化简,得. 故所求方程为. 这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为:; (2)己知关于x的一元二次方程有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y,则,∴. 把代入已知方程,得,∴所求方程为; (2)设所求方程的根为y,则(), ∴() 把代入方程,得,∴. 若,有,∴方程有一个根为0,不符合题意,∴. ∴所求方程为(). 10.(2014?孝感)已知关于x的方程有两个不相等的实数根、. (1)求k的取值范围; (2)试说明,; (3)若抛物线与x轴交于A、B两点,点A、点B到原点的距离分别为OA、OB,且 ,求k的值. 解:(1)由题意,得,即 ,解得. (2)∵,∴, 而,∴,. (3)由题意,不妨设A(,0),B(,0). ∴OA+OB=, . ∵,∴, 解得或.而,∴.

一元二次方程应用题

实际问题与一元二次方程(3) 教学目标: 1、会列一元二次方程解应用题; 2、进一步掌握解应用题的步骤和关键; 3、通过一题多解使学生体会列方程的实 质,培养灵活处理问题的能力. 教学重点:列方程解应用题. 教学难点:会用含未知数的代数式表示题目里的中间量(简称关 系式);会根据所设的不同意义的未知数,列出相应的方程。 教学过程: 一、复习引入 1、上一节,我们学习了解决“平均增长(下降)率问题”,现在,我们要学习解决“面积、体积问题。 2.直角三角形的面积公式是什么??一般三角形的面积公式呢? 3.正方形的面积公式是什么呢?长方形的面积公式又是什么? 4.梯形的面积公式是什么? 5.菱形的面积公式是什么? 6.平行四边形的面积公式是什么? 7.圆的面积公式是什么? 二、探究: 要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何 设计四周边衬的宽度? 解法一: 分析:这本书的长宽之比是9:7,依题知正中央的矩形两 边之比也为9:7 设正中央的矩形两边分别为9xcm ,7xcm 依题意得 解得 故上下边衬的宽度为: 2331=x ),(2332舍去不合题意-=x 21274379??=?x x 8.143275422339272927≈-=?-=-x

左右边衬的宽度为: 解法二: 分析:这本书的长宽之比是9:7,正中央的矩形两边之比也为9:7,由此判断上下边衬与左右边衬的宽度之比也为9:7 设上下边衬的宽为9xcm ,左右边衬宽为7xcm 依题意得 解方程得 (以下同学们自己完成) 三、例题讲解: 用20cm 长的铁丝能否折成面积为30cm 2的矩形,若能够,求它的长 与宽;若不能,请说明理由. 解:设这个矩形的长为x cm,则宽为 cm, 即 x 2-10x+30=0 这里a=1,b=-10,c=30 ∴此方程无解. ∴用20cm 长的铁丝不能折成面积为30cm 2的矩形. 四、学生练习: 1.如图是宽为20米,长为32米的矩形耕地,要修筑同样宽的三条道路(两条纵向,一条横向,且互相垂直),把耕地分成六块大小相等的试验地,要使试验地的面积为570平方米,问:道路宽为多少米? 2.如图,长方形ABCD,AB=15m,BC=20m, 四周外围环绕着宽度相等 4.14 3214222337212721≈-=?-=-x 212743)1421)(1827(??=--x x 4336±=x )220(x -30)220(=-x x 0 203014242)10(<-=??-=-∴-ac b

相关主题
文本预览
相关文档 最新文档