当前位置:文档之家› 《高一数学必修1》函数的概念、定义域、值域练习题(含答案)(最新整理)

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)(最新整理)

《高一数学必修1》函数的概念、定义域、值域练习题(含答案)(最新整理)
《高一数学必修1》函数的概念、定义域、值域练习题(含答案)(最新整理)

2 函数的概念、定义域、值域练习题

班级:高一(3)班

姓名: 得分:

一、选择题(4 分×9=36 分)

1. 集合 A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从 A 到 B 的函数是(

)

A .f (x )→y 1 x

B .f (x )→y

1 2 x

C .f (x )→y =

D .f (x )→y =

= = x 2

3

3

2. 函数 y = 1-x 2+

x 2-1的定义域是( )

A .[-1,1]

B .(-∞,-1]∪[1,+∞)

C .[0,1]

D .{-1,1}

3. 已知 f (x )的定义域为[-2,2],则 f (x 2-1)的定义域为(

)

A .[-1, 3]

B .[0, 3]

C .[- 3, 3]

D .[-4,4]

4. 若函数 y =f (3x -1)的定义域是[1,3],则 y =f (x )的定义域是( )

A .[1,3]

B .[2,4]

C .[2,8]

D .[3,9]

5. 函数 y =f (x )的图象与直线 x =a 的交点个数有(

)

A .必有一个

B .一个或两个

C .至多一个

D .可能两个以上

1

6. 函数 f (x )=

ax 2+4ax +3

的定义域为 R ,则实数 a 的取值范围是( )

3 3 3

A .{a |a ∈R }

B .{a |0≤a ≤ }

C .{a |a > }

D .{a |0≤a < }

4 4 4

7. 某汽车运输公司购买了一批豪华大客车投入运营.据市

场分析,每辆客车营运的利润 y 与营运年数 x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.

A .4

B .5

C .6

D .7

8.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=

1-x 2 x

2 (x ≠0),那么f (1

)

等于(

)

A .15

B .1

C .3

D .30 9.函数 f (x )= 2x -1,x ∈{1,2,3},则 f (x )的值域是( )

A .[0,+∞)

B .[1,+∞)

C .{1,3, 5}

D .R

二、填空题

x

(4 分)10.某种茶杯,每个2.5 元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=,其定义域为.

(5 分)11.函数y=三、解答题

(5 分×3=15 分)x+1+

1

的定义域是(用区间表示)

.2-x

12.求下列函数的定义域.

1 1

(1)y=x+;(2)y=;(3)y=x2+x+1+(x-1)0.

x2-4 |x|-2

(10 分×2=20 分)

13.(1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.

(2)已知f(x)=3x+4 的值域为{y|-2≤y≤4},求此函数的定义域.

(10 分×2=20 分)

14.(1)已知f(x)的定义域为[ 1,2 ] ,求f (2x-1)的定义域;

(2)已知 f (2x-1)的定义域为[ 1,2 ],求f(x)的定义域;

1.2.1 函数的概念答案

( ) [解析] 令 g (x )=1-2x = 得,x = ,∴f =f g 4 = =15,故选 A.

一、选择题 1.[答案] C

8

[解析] 对于选项 C ,当 x =4 时,y = >2 不合题意.故选 C.

3

2.[答案] D

[解析] 使函数 y = 3.[答案] C

1-x 2+ x 2-1有意义应满足Error!,∴x 2=1,∴x =±1. [解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即 x 2≤3,∴- 4.[答案] C

3≤x ≤ 3. [解析] 由于 y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。 5.[答案] C

[解析] 当 a 在 f (x )定义域内时,有一个交点,否则无交点. 6.[答案] D

[解析] 由已知得 ax 2+4ax +3=0 无解当 a =0 时 3=0,无解;

3 当 a ≠0 时,Δ<0 即 16a 2-12a <0,∴0<a < ,

4

3

综上得,0≤a < ,故选 D.

4 7.[答案] D

[解析] 由图得 y =-(x -6)2+11解, y ≥0 得 6- 11≤x ≤6+

11,∴营运利润时间为 2

11.

又∵6<2 11<7,故选 D.

8.[答案] A

1 1 (1) (

(1

))

1

1-

4 2

( )

2 4

9.[答案] C 二、填空题

10. y =2.5x ,x ∈N *,定义域为 N * 11. [-1,2)∪(2,+∞)

[解析] 使函数有意义应满足:Error!∴x ≥-1 且 x ≠2,用区间表示为[—1,2)∪(2,+

1 2 4 2

|x |-2

∞).

三、解答题

1

12.[解析] (1)要使函数 y =x + 2-

有意义,应满足 x 2-4≠0,∴x ≠±

2, x 4

∴定义域为{x ∈R |x ≠±2}.

1

(2)函数 y =

有意义时,|x |-2>0,∴x >2 或 x <-2.

∴定义域为{x ∈R |x >2 或 x <-2}. 1 3

(3)∵x 2+x +1=(x + )2+ >0,

2 4

∴要使此函数有意义,只须 x -1≠0,∴x ≠1,∴定义域为{x ∈R |x ≠1}. 13.[解析] (1)当 x 分别取 0,1,2,3 时,y 值依次为-3,-1,1,3,

∴f (x )的值域为{-3,-1,1,3}.

(2)∵-2≤y ≤4,∴-2≤3x +4≤4,即Error!,∴Error!, ∴-2≤x ≤0,即函数的定义域为{x |-2≤x ≤0}.

14.解析:对于抽象函数的定义域,必须在透彻理解函数 f (x )的定义域的概念的基础上,灵活运用.

(1)∵f (x )的定义域为 [ 1 , 2 ].

∴1 ≤ x ≤ 2

∴ 1≤2x -1≤2

3

∴1≤x ≤ 3

2

∴f (2x —1)的定义域为 [ 1 , ].

2

(2)设 t =2x —1, ∵f (2x —1) 的定义域为 [ 1,2 ] . ∴1 ≤ x ≤ 2 , ∴1≤2x —1≤3

即:1≤t ≤3, ∴f (x )的定义域为[ 1,3 ] .

“”

“”

At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!

函数定义域值域求法十一种

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。 解:要使函数有意义,则必须满足 x 2 2x 15 0 ① 11 或 x>5。 3且x 11} {x |x 5}。 1 例2求函数y ' 定义域。 *16 x 2 解:要使函数有意义,则必须满足 sinx 0 ① 16 x 2 0 ② 由①解得2k x 2k ,k Z ③ 由②解得 4x4 ④ 由③和④求公共部分,得 4 x 或 0 x 故函数的定义域为(4, ] (0,] 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知f(x)的定义域,求f [g(x)]的定义域。 (2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。 例3已知f(x)的定义域为[—2, 2],求f (x 2 3 x 3,故函数的定义域是{x | x (2)已知f [g(x)]的定义域,求f(x)的定义域。 其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求 g(x)的值域,即所求f(x)的定义域。 例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。 解:因为 1 x 2,2 2x 4,3 2x 1 5。 即函数f(x)的定义域是{x 13 x 5}。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为 R ,求 参数的范围问题通常是转化为恒成立问题来解决。 例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。 分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项 例1求函数y ,x 2 2x 15 |x 3| 8 的定义域。 |x 3| 8 0 ② 由①解得 x 3或x 5。 由②解得 x 5或x 11 解:令 2 x 2 1 2 ,得 1 x 2 3,即 0 x 2 3,因此0 | x | 3,从而 1)的定义域。 3}。 ③和④求交集得x 3且x 故所求函数的定义域为 {x |x

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

高中数学必修一幂函数及其性质

幂函数及其性质专题 一、幂函数的定义 一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数.如 112 3 4 ,,y x y x y x - ===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 二、函数的图像和性质 (1)y x = (2)12 y x = (3)2y x = (4)1y x -= (5)3y x = 用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出: 3.幂函数性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 三.两类基本函数的归纳比较: ① 定义 对数函数的定义:一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 幂函数的定义:一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x 是自变量,α是常数. ②性质 对数函数的性质:定义域:(0,+∞);值域:R ;

过点(1,0),即当x =1,y =0; 在(0,+∞)上是增函数;在(0,+∞)是上减函数 幂函数的性质:所有的幂函数在(0,+∞)都有定义, 图象都过点(1,1)x >0时,幂函数的图象都通过原点, 在[0,+∞]上,y x =、2y x =、3 y x =、1 2 y x =是增函数, 在(0,+∞)上, 1y x -=是减函数。 【例题选讲】 例1.已知函数()() 2 53 1m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数; 简解:(1)2m =或1m =-(2)1m =-(3)45m =- (4)2 5 m =-(5)1m =- 变式训练:已知函数()()2 223 m m f x m m x --=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲 线。 简解:2 20230 m m m m ?+>??-->??解得:()(),13,m ∈-∞-+∞ 例2.比较大小: (1)1122 ,1.7 (2)33 ( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.5 30.5,3,log 0.5 例3.已知幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值. 解:∵幂函数223 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点, ∴2 230m m --≤,∴13m -≤≤; ∵m Z ∈,∴2 (23)m m Z --∈,又函数图象关于原点对称, ∴2 23m m --是奇数,∴0m =或2m =. 例4、设函数f (x )=x 3, (1)求它的反函数; (2)分别求出f - 1(x )=f (x ),f - 1(x )>f (x ),f - 1(x )<f (x )的实数x 的范围. 解析:(1)由y =x 3两边同时开三次方得x =3y ,∴f - 1(x )=x 3 1 . (2)∵函数f (x )=x 3和f -1 (x )=x 3 1 的图象都经过点(0,0)和(1,1).

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高一人教版必修一 数学函数定义域、值域、解析式题型

高一函数定义域、值域、解析式题型 一、 具体函数的定义域问题 1 求下列函数的定义域 (1 )1 y = (2 )y = (2)(3) 若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m <<(B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 二、 抽象函数的定义问题 (一)已知函数()f x 的定义域,求函数[()]f g x 的定义域 2. 已知函数()f x 的定义域为[0,1],求函数2(2)f x 的定义域。 (二)已知函数[()]f g x 的定义域,求函数()f x 的定义域 3. 已知函数(21)f x +的定义域为[1,2],求函数()f x 的定义域。 (三)已知函数[()]f g x 的定义域,求函数[()]f h x 的定义域 4. 已知函数2(1)f x -的定义域为(2,5),求函数1()f x 的定义域。 5.已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

(一) 配凑法 5 .已知22113(1)x f x x x ++=+,求()f x 的解析式。 (二) 换元法 6.已知(12f x +=+()f x 的解析式。 (三) 特殊值法 7 .已知对一切,x y R ∈,关系式()()(21)f x y f x x y y -=--+且(0)1f =,求()f x 。 待定系数法 8.已知()f x 是二次函数,且2(1)(1)244f x f x x x ++-=-+,求()f x 。 (四) 转化法 9. 设()f x 是定义在(,)-∞+∞上的函数,对一切x R ∈,均有()(2)0f x f x ++=,当11x -≤≤时,()21f x x =-,求当13x <≤时,函数()f x 的解析式。 (五) 消去法 11.已知函数()f x 21()()x f x x -=,求()f x (六) 分段求解法 12. 已知函数2,()21,()1,0x x o f x x g x x ?≥=-=?-

二次函数定义域与值域习题(强烈推荐)

高中数学专题训练二次函数与幂函数 一、选择题 1.“a=1”是“函数f(x)=x2-2ax+3在区间[1,+∞)上为增函数”的( ) A.充分不必要条件B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是( ) 3.函数y=xα(x≥1)的图象如图所示,α满足条件( ) A.α<-1 B.-1<α<0 C.0<α<1 D.α>1 4.若函数f(x)=ax2+bx+c满足f(4)=f(1),那么( ) A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 5.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( ) A.[1,+∞) B.[0,2] C.[1,2] D.(-∞,2] 6.(2010·安徽卷)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是( ) 7.已知f(x)=ax2+2ax+4(0f(x2) B.f(x1)

D.f(x1)与f(x2)的大小不能确定 二、填空题 8.已知y=(cos x-a)2-1,当cos x=-1时y取最大值,当cos x=a时,y取最小值,则a的范围是________. 9.抛物线y=8x2-(m-1)x+m-7的顶点在x轴上,则m=________. 10.设函数f1(x)=x 1 2 ,f2(x)=x-1,f3(x)=x2,则f1(f2(f3(2010)))= ________. 11.在函数f(x)=ax2+bx+c中,若a,b,c成等比数列且f(0)=-4,则f(x)有最________值(填“大”或“小”),且该值为________. 12.已知幂函数f(x)=x 1-α 3 在(-∞,0)上是增函数,在(0,+∞)上是 减函数,那么最小的正整数a=________. 13.方程x2-mx+1=0的两根为α,β,且α>0,1<β<2,则实数m的取值范围是________. 三、解答题 14.已知函数f(x)=2 x -x m,且f(4)=- 7 2 . (1)求m的值; (2)判断f(x)在(0,+∞)上的单调性,并给予证明. 15.已知对于任意实数x,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求函数g(a)=(a+1)(|a-1|+2)的值域.

函数定义域值域求法(全十一种)

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ???>-≥②①0 x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤ ≤-。

函数定义域值域求法总结

、函数定义域、值域求法总结

————————————————————————————————作者:————————————————————————————————日期:

函数定义域、值域求法总结 1、函数的定义域是指自变量“x ”的取值集合。 2、在同一对应法则作用下,括号内整体的取值范围相同。 一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。 一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x 和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。 定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。 ()的定义域 求的定义域已知练习)2(],9,3[log :313-x f x f 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 ():f (x),f[g(x)]题型一已知的定义域求的定义域 ()():f g x ,f (x)????题型二已知的定义域求的定义域 ()[]():f g x ,f h(x)????题型三已知的定义域求的定义域()[]()[] )x (h f x f x g f →→

(2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式2 1 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ???≠-≥+0201x x ? ???≠-≥2 1 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②214 3)(2-+--=x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-= x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3- ]

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

必修一 函数的定义域及值域

个性化学科优化学案 辅导科目 数学 就读年级 学生 教师 徐亚 课 题 函数的概念 授课时间 2015年11月28 备课时间 2015年11月25日 教 学 目 标 1、理解函数的概念,明确确定函数的三个要素,会用区间表示函数的定义域和值域;掌握求函数定义域的基本原则。 2、了解函数的三种表示方法,并能选择合适的方法表示函数。 重、难 考 点 求函数的值域问题时要明确两点,一是值域的概念,二是函数的定义域和对应关系是确定函数的依据。 教学容 鹰击长空—基础不丢 1.定义:设A 、B 是两个非空集合,如果按照某种对应关系f ,使对于集合A 中的 一个数x ,在集 合B 中 确定的数f(x)和它对应,那么就称:f A B →为集合A 到集合的一个 ,记作: 2.函数的三要素 、 、 3.函数的表示法:解析法(函数的主要表示法),列表法,图象法; 4. 同一函数: 相同,值域 ,对应法则 . 1.区间的概念和记号 在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号. 设a,b ∈R ,且a

幂函数知识点及典型题

幂函数 知识点 一、幂函数的定义 一般地,形如y x α =(R x ∈)的函数称为幂孙函数,其中x 是自变量,α是常数.如1 12 3 4 ,,y x y x y x -===等 都是幂函数 二、幂函数的图像 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±± 的图像和性质,列表如下. ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22 a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点. 三、幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 四、解题方法总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =α x ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象 限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 典型题 类型一、求函数解析式 例1.已知幂函数2 223 (1)m m y m m x --=--,当(0)x ∈+, ∞时为减函数,则幂函数y =__________. 类型二、比较幂函数值大小 例2.比较下列各组数的大小. (1)4 3 3.14 -与43 π - (2)35 (- 与35 (- (3)比较0.5 0.8 ,0.5 0.9,0.5 0.9 -的大小 类型三、求参数的范围

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

数学必修一定义域值域知识点总结

数学必修一定义域值域知识点总结 数学必修一定义域知识点 定义 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 常见题型 1,已知f(x)的定义域,求f(g(x))的定义域. 例1,已知f(x)的定义域为(-1,1),求f(2x-1)的定义域. 略解:由-1<2x-1<1有0<1 ∴f(2x-1)的定义域为(0,1) 2,已知f(g(x))的定义域,求f(x)的定义域. 例2,已知f(2x-1)的定义域为(0,1),求f(x)的定义域。 解:已知0<1,设t=2x-1 ∴x=(t+1)/2 ∴0<(t+1)/2<1 ∴-1<1 ∴f(x)的定义域为(-1,1) 注意比较例1与例2,加深理解定义域为x的取值范围的含义。 3,已知f(g(x))的定义域,求f(h(x))的定义域.

例3,已知f(2x-1)的定义域为(0,1),求f(x-1)的定义域。 略解:如例2,先求出f(x)的定义域为(-1,1),然后如例1有-1<1,即0<2 ∴f(x-1)的定义域为(0,2) 指使函数有意义的一切实数所组成的集合。 其主要根据: ①分式的分母不能为零 ②偶次方根的被开方数不小于零 ③对数函数的真数必须大于零 ④指数函数和对数函数的底数必须大于零且不等于1 例4,已知f(x)=1/x+√(x+1),求f(x)的定义域。 略解:x≠0且x+1≧0, ∴f(x)的定义域为[-1,0)∪(0,+∞) 注意:答案一般用区间表示。 例5,已知f(x)=lg(-x2+x+2),求f(x)的定义域。 略解:由-x2+x+2>0有x2-x-2<0 即-1<2 ∴f(x)的定义域为(-1,2) 函数应用题的函数的定义域要根据实际情况求解。 例6,某工厂统计资料显示,产品次品率p与日产量 x(件)(x∈N,1≦x<99)的关系符合如下规律: 又知每生产一件正品盈利100元,每生产一件次品损失100元. 求该厂日盈利额T(元)关于日产量x(件)的函数;

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

高中数学:幂函数的概念、图象和性质

高中数学:幂函数的概念、图象和性质 1、幂函数的概念 一般地,函数叫做幂函数,其中是自变量,是常数;其定义域是使有意义的值的集合。 例1、已知幂函数,且当时为减函数。求幂函数的解析式。 分析:正确理解幂函数的概念、幂函数的图象与性质。求幂函数的解析式,一般用待定系数法,弄明白幂函数的定义是解题的关键。 解答:由于为幂函数, 所以,解得,或。 当时,,在上为减函数; 当时,,在上为常函数,不合题意,舍去。 故所求幂函数的解析式为。 2、幂函数的图象和性质 图象: 定

义域值域奇 偶性奇偶奇 非奇非 偶 奇 单 调性上增 上减, 上增 上增上增 , 上分别减 定 点 , (1)所有的幂函数在上都有定义,并且图象都过点; (2)如果,则幂函数的图象过点和,并且在区间上是增函数; (3)如果,则幂函数的图象过点,并在区间上是减函数。在第一象限内,当从趋向于原点时,图象在轴右方无限地逼近轴,当趋于时,图象在轴上方无限地逼近轴; (4)当为奇数时,幂函数为奇函数;当为偶数时,幂函数为偶函数。 例2、比较,,的大小。 分析:先利用幂函数的增减性比较与的大小,再根据幂函数的图象比较与的大小。 解答: 而在上单调递增,且, 。故。

例3、若函数在区间上是递减函数,求实数m的取值范围。 分析:本题考查简单幂函数的性质以及函数图象的平移问题。 函数是一个比较常用的幂函数,它也叫做反比例函数,其定义域是,是一个奇函数,对称中心为(0,0),在和 上都是递减函数。一般地,形如的函数都可以通过对 的图象进行变换而得到,所以这些函数的性质都可以借助的性质来得到。 解答:由于,所以函数的图象是由幂 函数的图象先向右平移2个单位,再向上平移3个单位得到的,所以其图象如图所示。 其单调递减区间是和,而函数在区间上是递减函数,所以应有。 例4、若点在幂函数的图象上,点在幂函数的图象 上,定义,试求函数的最大值及其单调区间。分析:首先根据幂函数的定义求出,然后在同一坐标系下画出函数和的图象,得出的函数图象,最后根据图象求出最大值和单调区间。

求解函数定义域,值域,解析式讲义(精华版)

求解函数定义域、值域、解析式 【课堂笔记】 知识点一 定义域、值域的定义 在函数)(x f y =中,x 叫做自变量,x 的取值范围的集合A 叫作函数的定义域;与x 的值相对应的值y 叫作函数值,函数值的集合})({A x x f ∈叫作函数的值域。 下面我们就以求简单函数的定义域做一讲解。 (1)当函数是以解析式的形式给出的时候,其定义域是使函数解析式有意义的自变量的取值的集合。 (2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义。 注意:(1)求函数的定义域,一般是转化为解不等式或不等式组的问题,要注意逻辑连接词的恰当使用。 (2)定义域是一个集合,其结果可用集合或区间来表示。 (3)若函数)(x f 是整式型函数,则定义域为全体实数。 (4)若函数)(x f 是分式型函数,则定义域为使分母不为零的实数构成的集合。 (5)若函数)(x f 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 (6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 (7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有 意义的公共部分的集合。 (8)复合函数的定义域问题: ①若已知)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域可由不等式b x g a ≤≤)(解出; ②若已知))((x g f 的定义域为],[b a ,则函数)(x f 的定义域,即为当],[b a x ∈时函数)(x g 的值域。 【例1】求下列函数的定义域 (1)1+= x y (2)x y -= 21 (3)0)1(21-+-= x x y 【例2】 求下列函数的定义域 (1)x y ++ = 11 11; (2)1 42 --= x x y ;

数学定义域和值域

函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 经典例题透析 类型一、函数概念 1.下列各组函数是否表示同一个函数? (1) (2) (3) (4) 小结1:相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备) 2.求下列函数的定义域(用区间表示). (1);(2);(3). 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 3.值域: (先考虑其定义域) 实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有: 1.直接法:由常见函数的值域或不等式性质求出; 2.分离常数法:可将其分离出一个常数; 3.观察法:利用函数的图象的"最高点"和"最低点",观察求得函数的值域;

4.判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些"分式"函数等;此外,使用此方法要特别注意自变量的取值范围; 5.换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域. 例题详见备课本 5. 换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。 ∵0e x > ∴01y 1y >-+ 解得:1y 1<<- 故所求函数的值域为)1,1(- 例3. 求函数1x x y -+=的值域。 解:令t 1x =-,)0t (≥ 则1t x 2+= ∵ 43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知 当0t =时,1y m i n = 当0t →时,+∞→y 故函数的值域为),1[+∞

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

相关主题
文本预览
相关文档 最新文档