当前位置:文档之家› 舰载机着舰训练

舰载机着舰训练

舰载机着舰训练
舰载机着舰训练

舰载机有固定翼飞机和旋翼飞机,这里要谈到的舰载机着舰是指固定翼飞机。大家知道,舰载飞机的起降主要以航空母舰为基地,那么它就需要适应航母这个海上“移动的陆地”。在此,拟通过对舰载飞机着舰过程与陆基飞机着陆过程的分析比较,一窥舰载机着舰的突出特点,以及整个着舰过程对各种主要相关结构、装置、设施的特殊要求。

“移动的陆地”

说到舰载机,我们不妨先简单谈淡航空母舰。航空母舰出勤时,是一个海上六自由度运动的平台,它不仅在海平面上作平面运动,而且在海浪的作用下还会产生纵向和横向的摇动以及升沉运动。航母上的大气紊流情况也比较复杂,除了陆地机场通常存在的大气紊流以外,由于航母庞大的舰体以及自身的运动还会在舰首产生上洗气流,并在舰尾处形成较强的公鸡尾状的尾流。另外还需要特别指出的是,航母虽然庞大,但是可供舰载机起飞、着舰的跑道长度是很有限的。目前世界上大型的航母甲板总长度也不过300多米,而能够提供舰载机起飞、着舰使用的只有其中的100米左右。如美国的“尼米兹”级航母首舰“尼米兹” 号航母,该舰长332.1米,宽40.8米;飞行甲板长338,8米,宽76.8米。

图集详情:舰载机着舰航母相当于每小时300公里坠毁在航母甲板上,每一次降落和起飞都是一次生命的挑战,都是对舰载战斗机飞行员从身体极限、飞行技术、意志品质、到心理素质的极端考验。航空母舰 (以下简称“航母”) 是一种巨大而复杂的海上作战平台, 是海上移动的机场。飞机着舰与着陆的物理环境有很大差别, 主要表现在甲板尺寸受限, 航母处于运动状态, 存在甲板风和舰尾气流以及驾驶员的视景受限。正是这些差别, 使得飞机着舰难度更大, 不安全因素更多, 撞机、撞舰、坠海事故时有发生。因此, 着舰安全一直是世界各国航母发展和使用中的重大课题。(来源:环球网)

危险性和复杂性

飞机的起飞着陆通常是事故多发状况,而舰载机的着舰比陆基飞机着陆还具危险性和复杂性。首先,舰载机着舰进场速度小,受舰上扰流因素影响相对较大,客观上使得舰载机轨迹稳定性变差。然而舰载机着舰条件要求反而相对苛刻(如前所述:着舰可用甲板长度有限,作为着舰平台的航母自身是六自由度运动体,以及出舰海上作战的技战术要求等),恰恰又要求飞机进舰下滑时的轨迹稳定性比陆基飞机还要高,这个矛盾对舰载机初期的发展形成了较大的制约。60年代以前,舰载机着舰的事故率是很高的,以后随着着舰下滑引导技术及其它辅助着舰技术的发展,事故率才有所下降,但相比陆基飞机着陆事故率仍然较高。舰载机在下滑着舰时,对垂直平面内下滑航迹控制要求很高,而气流、海面状况等一些客观不确定

因素,航母着舰引导、飞行员驾驶等也存在主观不确定因素,都可能导致航迹控制不当而未能在预定着舰点着舰,这将可能直接导致着舰失败,甚至引发严重事故。而陆基飞机的着陆,由于跑道是静止的且跑道长度余量通常较大,因此对着陆点的控制要求不像舰载机着舰那么严格。

起落架以及机体结构

由于航母着舰区长度的限制和舰载机着舰下滑过程中对下滑跟踪角和下滑航迹的严格控制,它采用的是无平飘且同定下滑角的着舰方式。在这种着舰方式下,飞机着舰的下沉速度要比陆基飞机大得多,引发撞击式着舰(也称硬着舰)。接着,为了强制飞机在50~70米距离内迅速减速制动,需要通过安装在机体尾部下方经过特殊设计的拦阻挂钩,拉住横置于航母跑道甲板上的拦阻索,利用拦阻力来强行制动。着舰瞬间的撞击载荷、拦阻索强制制动载荷特点与陆基飞机着陆受载差异较大,使得舰载机的起落架以及机体结构,特别是与起落架安装密切相关的结构都需要根据这些客观条件进行重新设计。通过以上介绍,不难看出舰载机下滑着舰和舰上制动,与陆基飞机平飘下滑着陆以及靠阻力伞和刹车制动有很大区别。

进舰过程

为了更好地说明问题,现将舰载机一般的进舭过程描述如下:飞机从舰尾方向进人,在距离舰尾3700米(2海里)左右,450米高度上,以 550~650千米/小时的速度由航母右舷通过;在速度为220~280千米/小时时,放下起落架和襟翼,180度转弯后,由航母左舷通过;在距离脱尾 1850米(1海里)左右时,180度转弯后对准跑道,最后45度时距离舰尾900米左有(约0,5海里),然后在助降系统导引下沿着标定的下滑通道着舰。舰载机进舰下滑不像陆基飞机那样有固定参考点,而是只能以活动平台上的助降标志作为调节油门一迎角的参考。

助降系统

这里提到的助降系统是指“目视光学助降系统”,通常称作“菲涅耳(Fresnel)透镜系统”。该系统的突出特征就是能发出直线性极好的柱形光束,只有在空间的某一特定角度才能看见该光束,因此它能为舰载飞机指示正确的下滑航迹。“菲涅耳(Fresnel)透镜系统”的具体工作原理可参考有关资料介绍,在这里就不再赘述了。实际上,从助降系统的发展历史来看,“菲涅耳(Fresnel)透镜系统”已经是第二代的助降系统装置了。20世纪50 年代出现“反射式光学助降镜”是第一代的助降系统,有趣的是它竟然是在生活中的一个偶然机会中激发灵感而发明的。20世纪60年代,舰载机的速度逐渐加快,反射式助降镜越来越难以适应飞机着舰的需要,迫使人们研制新的助降装置,于是有了“菲涅耳(Flesne])

透镜系统”的问世。随着科技的进步和助降理论的成熟,20世纪70年代以后,第二代的助降系统已经面世,并率先在美国海军投入装备使用,这就是“全天候电子助降系统”。这种助降系统通过装设在航空母舰上的精确跟踪雷达,测得飞机在降落过程中的实际位置和运动情况,将这些测得的参数输入舰载计算机中心,得出舰载机正确的着舰位置,并将舰载机的实际位置和正确位置在计算机中心进行比较,然后发射到舰载飞机的终端设备内,指令舰载飞机的自动驾驶仪自动修正误差从而准确着舰。这样,不论晴天还是雨天雾天,舰载飞机都能以几十秒的间隔不断地降落到狭窄的航空母舰甲板上。然而到目前为止,在实际进舰着舰过程中,目视着舰仍然不能完全被替代,舰载机飞行员同样需要具有目视着舰的技术能力,以适应各种未知情况。所以,有一些细节还是值得一提,比如说舰载机的对中。

对中

所谓对中,就是舰载飞机在进舰下滑直至着舰的过程中,一定要尽量对准甲板跑道的正中轴线,否则就可能在降落后撞上甲板上的其它建筑或停放在跑道旁的其它飞机。还由于通常航母的飞行甲板均设计成从舰尾到舰首靠航母左舷一侧,与航母轴线形成一个向外的夹角,在舰载机下滑接近舰尾的过程中,由于航母不断地向前行进,造成待降的甲板跑道随着航母运动而不断向右前方平移。所以,飞行员在初次对中成功后, 还要在降落前的下滑过程中根据跑道的平移情况,将飞机航向不断向右修正,保证航向始终尽量对准跑道中线,直到舰载机安全降落在甲板上。

“逃逸复飞”

即使有了如此这般的各种措施和设备来辅助着舰,相比而言,舰载机着舰仍然较陆基飞机的着陆风险系数要大。

而且即使正确着舰,还需要在飞行甲板上通过拦阻索在50~70米内有效制动,整个着舰过程才算成功。于是,为了最大限度地保证着舰安全性,舰载机着舰程序中还设计有非常重要的一环,就是舰载机的“逃逸复飞”。比较陆基飞机的着陆复飞机动,“逃逸复飞”是指制动挂钩挂拦阻索失败后,飞机的复飞机动。从运动学角度来看,逃逸复飞机动是一种初速度(该初始速度应取着舰下滑过程末端,舰载机与航母的啮合速度)不为零的加速直线运动。如要舰载机安全复飞,要求舰载机能在规定的甲板长度内加速到安全离舰速度,重新起飞后再谋求下一次的安全着舰。综上所述,舰载机的着舰是一个建立在机舰适配性上的综合过程,与陆基飞机的着舰有着显著区别,是一个始终贯穿舰载机设计、使用甚至改进的重要一环。

世界各国航母舰载机指挥手语图解

世界各国航母舰载机指挥手语图解 由于飞机起降时声音巨大,所有的口令都是通过手势来表达。在一个起落架次中,记者就看到了30多种手势。有关人士对各种手势的含义作了详细的解答。双臂上举,食指上指,做圆周运动。“这是命令偏流板升起。” 一条手臂从头顶垂直方向扫向水平方向,再回到头顶。“这是着舰区甲板引导员给出的甲板畅通手势。” 图为中国航母起飞助理的起飞手势,中国海军飞行助理的规范手势显然模仿了美军。 起飞助理对着飞行员向上伸出拇指。“这是示意飞行员检查完毕,一切正常。” 飞行助理下蹲屈身,右手臂迅速上扬,“这是示意放下止动轮挡和偏流板,飞机起飞。因其姿势酷似举枪射击,因此飞行助理又被戏称为‘射手’。” “飞行员头靠座椅后枕,抬起右手行礼,这是向起飞助理示意可以起飞。” 战斗机在航母上起飞,离不开航母特装人员的紧密配合。仅完成起飞动作,就需要65个流程,任何一个流程都容不得差错。在着舰起飞过程中,飞行员无法感知外界因素。“因此,

我们的手势要求及时、准确、规范。”有关人士称,“为了达到这个要求,大家都刻苦练习,经常累得手都抬不起来。” 图为俄罗斯海军舰载机起飞时,起飞助理的手势,请注意他只是站起身做了一个简单的手势。 图为美军舰载战斗机起飞,当飞行员敬礼表示准备妥当,弹射指挥官面向前面,再转身对着飞机,蹲下,手向前指,他的手按在甲版上的同时,发射员按下发射按钮,弹射器压力快速加大,扣在前起落架后面的扣子松开,飞机在剎那间向前冲。 舰载机准备着舰前,身着七种颜色服装的舰面人员排着紧密的两行队形,从飞行甲板一端走向另外一端反复检查甲板,如同七色彩虹在甲板上延伸。 在舰面上,各战位的人员都身着五颜六色的服装,这与传统军舰上统一颜色的着装要求产生了极大的差别。“你看,这些官兵头盔、马甲、长袖套衫的不同颜色以及他们背后不同的图案和符号,表明了他们的战位和职责,外行看起来,仿佛在甲板上看到了七彩的‘彩虹’,因此我们也称之为‘甲板彩虹服’。”李晓勇详细介绍了每一种颜色的含义,“紫色代表燃油

舰载机着舰训练

舰载机有固定翼飞机和旋翼飞机,这里要谈到的舰载机着舰是指固定翼飞机。大家知道,舰载飞机的起降主要以航空母舰为基地,那么它就需要适应航母这个海上“移动的陆地”。在此,拟通过对舰载飞机着舰过程与陆基飞机着陆过程的分析比较,一窥舰载机着舰的突出特点,以及整个着舰过程对各种主要相关结构、装置、设施的特殊要求。 “移动的陆地” 说到舰载机,我们不妨先简单谈淡航空母舰。航空母舰出勤时,是一个海上六自由度运动的平台,它不仅在海平面上作平面运动,而且在海浪的作用下还会产生纵向和横向的摇动以及升沉运动。航母上的大气紊流情况也比较复杂,除了陆地机场通常存在的大气紊流以外,由于航母庞大的舰体以及自身的运动还会在舰首产生上洗气流,并在舰尾处形成较强的公鸡尾状的尾流。另外还需要特别指出的是,航母虽然庞大,但是可供舰载机起飞、着舰的跑道长度是很有限的。目前世界上大型的航母甲板总长度也不过300多米,而能够提供舰载机起飞、着舰使用的只有其中的100米左右。如美国的“尼米兹”级航母首舰“尼米兹” 号航母,该舰长332.1米,宽40.8米;飞行甲板长338,8米,宽76.8米。 图集详情:舰载机着舰航母相当于每小时300公里坠毁在航母甲板上,每一次降落和起飞都是一次生命的挑战,都是对舰载战斗机飞行员从身体极限、飞行技术、意志品质、到心理素质的极端考验。航空母舰 (以下简称“航母”) 是一种巨大而复杂的海上作战平台, 是海上移动的机场。飞机着舰与着陆的物理环境有很大差别, 主要表现在甲板尺寸受限, 航母处于运动状态, 存在甲板风和舰尾气流以及驾驶员的视景受限。正是这些差别, 使得飞机着舰难度更大, 不安全因素更多, 撞机、撞舰、坠海事故时有发生。因此, 着舰安全一直是世界各国航母发展和使用中的重大课题。(来源:环球网) 危险性和复杂性 飞机的起飞着陆通常是事故多发状况,而舰载机的着舰比陆基飞机着陆还具危险性和复杂性。首先,舰载机着舰进场速度小,受舰上扰流因素影响相对较大,客观上使得舰载机轨迹稳定性变差。然而舰载机着舰条件要求反而相对苛刻(如前所述:着舰可用甲板长度有限,作为着舰平台的航母自身是六自由度运动体,以及出舰海上作战的技战术要求等),恰恰又要求飞机进舰下滑时的轨迹稳定性比陆基飞机还要高,这个矛盾对舰载机初期的发展形成了较大的制约。60年代以前,舰载机着舰的事故率是很高的,以后随着着舰下滑引导技术及其它辅助着舰技术的发展,事故率才有所下降,但相比陆基飞机着陆事故率仍然较高。舰载机在下滑着舰时,对垂直平面内下滑航迹控制要求很高,而气流、海面状况等一些客观不确定

舰载机着舰导航与定位技术

舰载机着舰导航与定位技术 郝帅,程咏梅,马旭,王小旭 (西北工业大学自动化学院,陕西西安710072) 摘要:首先介绍了舰载机的重要性及舰载机安全着舰的困难性、复杂性,并详细论述了早期舰载机所使用的着舰技术,其中包括人工着舰引导和光学助降技术。然后对舰载机安全着舰的关键技术——舰载机导航和定位技术进行了分析,其中主要包括舰载机捷联惯导传递对准、组合导航,以及舰载机相对航母雷达的跟踪定位、视觉辅助定位等技术,并总结了目前国内外对舰载机导航和定位技术的研究成果及动态。最后,指出了舰载机着舰导航与定位技术未来的研究方向。 关键词:舰载机;着舰技术;导航与定位;视觉导航;组合导航 中途分类号:U666.1 文献标识码:A Carrier-based Aircraft Landing Navigation and Positioning Technology HAO Shuai,CHENG Yong-mei,MA Xu,W ANG Xiao-xu (College of Automation, Northwestern Polytechnical University, 710072, Xi’an, China) ABSTRACT:First, the importance of carrier-based aircraft and difficulty, complexity of safe landing technology are introduced and the early landing technique is introduced in detail, including artificial landing guidance and optical auxiliary landing technology. Then carrier-based aircraft safe landing key technology is analyzed which includes carrier-based aircraft landing navigation and positioning technology. The research content mainly includes the strapdown inertial navigation transfer alignment technology of carrier-based aircraft, integrated navigation, tracking and location of carrier-based aircraft relative to aircraft carrier radar and visual auxiliary positioning. And research result and status of carrier-based aircraft navigation and positioning are concluded. Finally, carrier-based aircraft landing navigation and positioning technology in the future is pointed out. KEYWORDS:carrier-based aircraft; landing technology; navigation and positioning; vision-based navigation; integrated navigation 1 引言 航空母舰是当今世界上拥有最强大综合战斗力的海上“钢铁堡垒”,拥有全面的作战打击能力,凭借舰载机的强大作战能力可以使舰队的作战半径扩大到数百公里,对压制敌方空中和海上力量有着重要意义。舰载机飞行员被认为是从事世界上最危险的职业,当舰载机执行完作战、训练、侦查等任务后,安全顺利着舰是件惊心动魄的工作,在广袤无垠的大海上航空母舰犹如一片树叶,所以想在有限的空间内安全着舰对飞行员个人技术及生命都是巨大的挑战。与陆基飞机着陆相比,舰载飞机在甲板上着舰更为困难,这是因为航空母舰是一个长度有限的海上浮动平台,当舰载机下滑着舰时,对垂直平面内下滑航迹控制要求很高,而气流、海面状况等一些客观不确定因素,以及航母着舰引导、飞行员驾驶等也存在主观不确定因素,这些都可能导致航迹控制不当而未能在预定着舰点着舰,最终导致着舰失败,甚至引发严重事故。 舰载机着舰过程如图1所示。图中的着舰方式为目视着舰,能见度超过5千米以上。当舰载机进行着舰时,在航母上空按长方形航线进行左回旋飞行,此时的航母位于长方形的右边线的中心,记为PL1;第二、三、四个边线中心分别记为PL2、PL3和PL4。 图1 舰载机着舰示意图 基金项目:研究得到航空科学基金资助(项目编号:20100853010)。

一着惊海天——目击我国航母舰载战斗机首架次成功着舰 优秀教案

一着惊海天——目击我国航母舰载战斗机首架次成功着舰 【学情分析】 八年级的学生是第一次学习通讯,在教学中老师除了帮助学生了解新闻“六要素”以外,还需要求学生了解消息和通讯的区别,感受通讯独特的写作特点。同时八年级的学生已具备一定的阅读能力,所以要更进一步培养学生的阅读能力。 【教学目标】 ①能根据新闻的结构理清内容、层次,初步感知通讯语言的准确、简洁。 ②学习文章的写作方法,赏析文章的精彩语段。 ③培养学生的爱国热情和民族自豪感。 【教学重难点】 ①学习文章写作方法,赏析文章的精彩语段。 ②培养学生的爱国热情和民族自豪感。 【教学方法】 ①圈点勾划法:预习生字词,在文中圈点勾划重点词句。 ②查阅资料法:查阅有关辽宁舰的资料以及“航母战斗机英雄试飞员”戴明盟的资料。 ③讨论探究法:品味文章的语言特色时,运用自主、合作、探究的学习方式,来解决课堂教学中出现的教学重难点。 【教学过程】 (一)导入新课 1.老师展示辽宁舰舰载机起降视频和辽宁舰的相关图片资料。 2.同学们!在观看完我国“辽宁”舰航母舰载机首架次着舰成功的视频后,你们有什么感想呢?(学生讨论并发言) 分享完大家的感想后,老师想说我国“辽宁”舰航母舰载机首架次着舰成功的现场,记者亲身感受并记录了这一精彩感动的瞬间,让我们走进今天的课文《一着惊海天》,一起去感受我们祖国伟大的军事力量。 (二)整体感知 1.教师检查预习情况

(1)学生对重点字词的落实情况。 (2)学生对课文的预习效果以及相关资料的查阅情况。 2.学生快速浏览课文,用简明的语言概括本文的主要内容。 讨论并归纳:本文记叙了我国“辽宁”舰航母舰载战斗机首架次着舰试验并取得重大成功的过程。 3.能根据新闻的结构理清内容、层次,初步感知通讯语言的准确、简洁。 (1)(1—4):介绍了时间、地点及事件的重要意义和风险。 (1—2):检查甲板,做好着舰前最后一次准备。 (3—4):交代这次舰机着舰的重要意义和风险。 (2)(5—19):详细报道了舰载机成功着舰的过程。 (5—16):记叙了舰、机默契配合。 (17—19):展现了舰载机成功着舰。 (3)(20—27):描写了舰载机着舰成功的重大意义以及人们的激动喜悦心情。 (三)问题探究: 1.声如千骑疾,气卷万山来。惊心动魄的一幕出现了:9时08分,伴随震耳欲聋的喷气式发动机的轰鸣声,眨眼之间,舰载机的两个主轮触到航母甲板上,机腹后方的尾钩牢牢地挂住了第二道阻拦索。刹那间,疾如闪电的舰载机在阻拦索系统的作用下,滑行数十米后,稳稳地停了下来。(试从表达技巧和表达效果的角度来进行赏析) 答案示例: (1)运用细节描写,生动形象地描写舰载战斗机着舰时的情景。 (2)运用对偶和比喻的修辞手法,“声如千骑疾,气卷万山来”生动形象地表现了战斗机着舰时的浩大声势,同时增强文章气势,具有感染力。 思路解析:此句的解析可以从两个方面来进行分析:一是表达技巧,抓住本句的一些关键词进行赏析:从“震耳欲聋”、“轰鸣”、“眨眼之间”、“刹那间”、“疾如闪电”等可以看出作者主要运用了细节描写,从“声如千骑疾,气卷万山来”可以看出作者运用了对偶、比喻的修辞手法。二是分析其表达效果。细节描写的作用在于生动地展示,增强语言的感染力。对偶和比喻的运用在于增强文章气势和使描写生动形象。 2.某大国一名上将曾说:“我们可以把航空母舰送给你们,但是,十年之内,你们不可能让舰载机上舰!”(试从表达效果的角度分析此句在全文中的作用) 答案示例:运用引用的修辞,表现出某国上将对我国海军建设的歧视,暗示当时我国航母舰载机着舰面对的困难之大,同时这也更加激发了我国科研人员自主创新、为国争光的斗志,

学习笔记——舰载机进舰着舰过程仿真建模_王延刚

舰载机进舰着舰过程仿真建模_王延刚 收稿日期:2007-07-17 修回日期:2008-11-24 第20 卷第24 期系统仿真学报 摘要:航母—舰载机—起落架,多体动力学系统,进舰着舰系统仿真模型,驾驶员和LSO 的行为特征,考虑风场扰动,海浪等因素。该模型不仅适于航母-舰载机适配性问题,还可研究进舰着舰任务中LSO 对驾驶员行为的影响。通过仿真示例验证该模型的合理性和可行性。引言:首先介绍舰载机进舰着舰的基本过程,并从飞行动力学的角度出发,阐述涉及的相关问题,然后对仿真系统各模块进行分析,并提出相应建模方法,最后给出数字仿真结果,以验证其合理性。 1、舰载机进舰着舰过程描述 ?菲涅尔透镜光学助降系统(Fresnel Lens Optical Landing System, FLOLS); ?舰载机沿下滑道保持大约-3.5°的航迹角下滑; ?平行于下滑道的5层光束,最中间为橙色,为理想航迹; ?LSO综合甲板运动、飞机特性、驾驶员技术要求调整飞行状态或者复飞。 ?常规飞机着陆:拉平;舰载机:助降系统引导,撞击式着舰,通过拦阻系统强制飞机在50——70m内减速止动,有时LSO警告驾驶员做逃逸机动。 2、建模方法 2.1航母运动建模 ?海上运动包括前向行驶运动和海浪造成的扰动运动,工程实践中,前者按定常直线运动处理,而后者采用平稳随机过程理论描述。 ?文献[10]提供一种拟合窄带平稳随机过程频谱的实用有效的工程方法——成形滤波器法,以白噪声输入一个拟合的航母运动近似传递函数,得到航母扰动运动,再叠加航母行驶运动最终得到用于仿真的舰船运动。 图1舰载机着舰示意图 2.2航母扰流建模 ?航空母舰扰流的模拟方式有频域法、数据库法和工程化方法三种,仿真模拟较为普遍采用的是第三种方法。 ?该方法主要是根据航母扰流的物理特性和成因建立模型,以美军标1797A推荐的模型较为完善,给出的航母舰尾流(包括稳态分量、自由紊流分量、周期性分量以及随机分量)扰动速度的空间分布,能满足工程需要。 ?航母舰尾流(包括稳态分量、自由紊流分量、周期性分量以及随机分量),同舰尾流对舰载机着舰轨迹和动态响应的影响研究_胡国才中舰尾流模型一致。

简单说一下舰载机着舰的过程

简单说一下舰载机着舰的过程 为了保证舰载机能够正确的返航和着舰,一般航母都配备有战术空中导航系统、空中交通管制系统和着舰引导系统多个系统,对舰载机进行引导,在现代航母上,这些系统已经能够通过数据总线有机相接,形成综合导航和引导系统,同时还可以与航母编队指挥与战术数据处理系统进行联接,实现资源的共享和作战、归航等作业的更好的协调,一航而言,航母的战术空中导航系统在300公里左右为归航的舰载机提供指挥引导,到了距离母舰100公里处,由空管雷达接手,对返航的飞机进行编组,确定着舰的顺序,然后舰载机进入等待着舰阶段,舰载机按进场队形逆航母前进方向平行于航母的右舷飞行,然后转弯飞跃舰艏,转入顺风段,一直到距离航母大约30公里,在这个阶段由航母上的战术空中导航系统进行引导,到达距离母舰大约10公里处,由舰上的自动着舰系统开始引导,一直到距离母舰大约3公里处,进入舰上光学助降系统工作区域,然后据此着舰,由此可见舰载机着舰短短数分钟内,涉及到众多的系统、人员,要想相关系统和人员能够快速、熟练的工作,需要频繁的训练和演练。 舰载机着舰基本方式是目视方式,主要用于晴朗气象、能见度好的情况下,飞行员进入等待区后,由航母飞行指挥控制室引导,进入等待航线,这个航线是一个直径为5海里的逆时针圆形航线,不同的飞机等待高度不同,最低的等待高度大约在600米左右,舰载机每次经过航母上空的时候,与着舰指挥官进行联系,以便获得着舰许可,考虑到有些飞机执行任务回来后有可能燃料不足,所以在高空还安排了加油机给燃料不足的飞机进行空中加油,在接收到着舰的命令以后,舰载机在距离母舰10公里左右的地方脱离等待航线,高度下降到300米左右,航母后方5公里处进入着舰航线,然后根据着舰飞机的多少,以水平转弯曲或者盘旋动作进入下滑航线,进入下滑航母前,舰载机需要关闭武器系统,确认飞机的重量符合航母着舰的标准,然后打开减速板、放下拦阻钩及起落架等,表示要着舰,飞机在航母左侧一海里外,再次转弯,到达着舰中心延长线的后方,进入光学助降系统的工作范围,然后开始下滑降落。如果气象不佳,如云层高度较低,那么飞机在进入航母战术空中导航系统的作用范围后,由后者进行引导至距离航母大约15公里处,如果能够目视发现航母,则转入目视着舰方式,如果气侯条件恶化,则进入全自动着舰系统引导模式。在这个模式下,可以允许舰载机的方位与母舰有大约30度的偏离,等待航线飞行大约需要6分钟,其中两个180度转弯需要1分钟,两边飞行各需要2分钟,当飞机被航母精密跟踪转达截获以后,即 可转入全自动引导着舰模式。 自动着舰系统有多种工作模式,可以供飞行员或者着舰指挥官进行选择或者切换,其中模式1是全自动着舰模式,它是利用数据链联接航空母舰和舰载机,由后者根据前者传递来的信息进行自动着舰,需要指出的是航母自动着舰的控制信息不是由航母上的作战中心发出的,而是由航母空中交通控制中心负责,目前美国航母空中交通控制中心凭借数据链可以同时控制2架飞机在相隔30秒钟内相继在航母上着舰,需要指出的是美国航空自动着舰系统采用的数据链并不是现在美国海军和空军大量装备的LINK-16,而是上一代LINK-4A型数据链,并且在工作中中使用LINK-4A的单向通信模式,实际上美国研制数据链的最初目的就是为自动着舰配套,随着LINK-16数据链的完善和发展,预计2015年以后,LINK-4才会完全被LINK-16所替代。模块2与模式1基本上相同,只是在距离母舰1公里左右之后,舰载机开始接受光学助降系统的引导,模式3属于所谓的半自动着舰方式,在这种方式下,自动着舰系统与舰载机的自动着舰系统并不交联,而是通过仪表或者显示器向飞行进行显示相关数据,由飞行员根据这些信息操纵飞机下滑着舰,最后一种是人工方式,由着舰指挥官观察雷达显示屏,对舰载机位置进行确定,然后获得舰载机的方位和高低角误差,然后用语音告诉飞行员进行修正,直到转动光学助降系统的工作范围,进入新世纪美国海军对于自动着

舰载机如何着舰

原文载自《航空周刊》请勿随意转载,劲风收集制作 对舰载机飞行员来讲,在航母上着舰是能展示自己高超的驾驶技术并使大伙略英雄本色的最佳机会.因航母上的着舰难度极高,甚至有人说在航母上的着舰是"人为控制的坠落".现在每个舰载机驾驶员都以自己的着舰次数来作为证明自己过硬本领的依据.这里就对大家感到好奇的着舰方式进行详细的叙述. VF-154 在大海中驰骋的“跑道”上降落,比“登天”还难 对航母舰载机驶员来讲,弹射起飞并不难。因为弹射器的压力调整、弹射等几乎所有的操作是由飞行甲板上的弹射器小组来负责进行。难的是着舰.着舰时驾驶员需要从很远处发现航母,确认着舰装置的状态.并与其他着舰机相互进行飞行状态的沟通。随着航母的航行而时刻变动的飞行航线。不断摇晃的着舰甲板……,地上飞机驾驶员是无法想像飞行甲板上的着舰难度的。对飞行员来讲,远离陆上机场在一望无际的大海中进行的着舰是一个沉重的压力。

弹射起飞中的雄猫 着舰过程 根据离航母的距离可分为引导一待机一进场三个阶段。 着舰机从作战空域返回航母时,首先要接到来自E-2C预警机的指示。但是E-2C的主要任务是在作战空域里的警戒监视一旦E-2C忙于进行空中预警时,舰载机是无法受到E-2C的导航服务的,此时根据作战空域到航母的距离。增派一架E-2C预警机担当“导航参谋”的任务,以协助舰载机返航。舰载机从E-2C预警机得到的情报主要是离所属航母的位置和周边空中交通状况。 tomcat 如果舰载机驾驶员发现自己的飞机出现燃料不足或机械故障.可直接与航母通话.使航母调整着舰机的着舰顺序.另外还能根据情况的需要,接受空中加油或通过航母与陆上基地取得联系进行紧急着陆.在正常状态下着舰时,着舰机在离航母200海里(1海里=1.85千米)远处接受航空飞行管制中心的航行管制和指挥,航空飞行管制中心设置在着舰甲板的舰桥下方的战斗指挥所的一角.航空飞行管制中心操作台的显示器上的黄色标志,是通过雷达捕捉到的航母周围200海里半径内的画面.从这里直接向着舰机或其他的己方飞机提供情报.

【科技】归家的明灯——浅谈舰载机着舰下滑引导系统

【科技】归家的明灯——浅谈舰载机着舰下滑引导系统 14-01-25 作者:佚名编辑:石腾 从“辽宁”号服役至今,它的一举一动都是国人关注的焦点,然而本文先要把时间拉回到2012年11月24日这个历史性的时刻,在这一天,歼-15舰载机顺利完成了第一次拦 阻着舰,并在随后进行了滑跃起飞。我们知道,相比于滑跃起飞,着舰的意义更大。航母着舰引导系统这盏“归家明灯”的作用更是难以低估。 从“示牌进场”到镜面光学助降系统 1917年,英国把大型巡洋舰“暴怒”号改装成世界上第一艘简易航母。但由于舰上高耸的 塔式桅杆和烟囱的阻碍,飞机只能从舰上起飞而无法降落。1917年8月2日,英海军少校邓宁冒险驾驶“幼犬”战斗机进行着舰,他凭借高超的驾驶技术用侧滑着陆的方式艰难地将飞机降落在航行中的“暴怒”号前甲板上,这是人类第一次将飞机降落在航行中的军舰上。但在几天后的重复降落时,邓宁不幸遇难。从此舰载机在执行完作战、训练、侦察等任务后,着舰便成了一件惊心动魄的工作。承担着这项危险任务的飞行员需要从很远处发现航母平台,确认着舰装置的状态,并与其他着舰机互相进行飞行状态的沟通。另外,在跌宕起伏的大海上,航母时时刻刻的六自由度扰动(纵摇、横摇、首摇、起伏、纵荡和横荡)、异常复杂的大气紊流(海面无遮挡,海风往往较强,航母庞大的舰体以及自身运动的特点,还会在舰首产生上洗气流,并在舰尾处形成较强的公鸡尾状的尾流),以及极其有限的甲板长度等等(美国满载排水量近10万吨的核动力超级航母甲板总长度也不过300多米,而能够提供舰载机起飞、着舰使用的跑道只有其中点的100多米),这些都对舰载机着舰提出了更高的要求。舰载机着舰进场速度小。受舰上扰流因素影响相对较大,客观上使得舰载机轨迹稳定性变差。然而舰载机着舰条件要求反而相对苛刻、恰恰又要求飞机下滑时的轨迹稳定性比陆基飞机还要高,这一切使得舰载机着舰引导问题成为航母战斗力发挥的关键技术之一。舰载机要降落在航母的甲板上,必须依靠一系列完备的着舰辅助技术手段。除了早已有之的拦阻索和拦阻网外,着舰下滑引导系统是着舰降落中最为关键的重中之重。

相关主题
文本预览
相关文档 最新文档