当前位置:文档之家› 高速钢热处理问答

高速钢热处理问答

高速钢热处理问答
高速钢热处理问答

高速钢热处理问答

纵观现在世界上所有的钢种,无论其化学成分、组织、性能之间的复杂关系,还是冶炼、浇注、锻造、轧制、拉丝、塑性成形、焊接和热处理等整个制造过程的难度,高速钢无疑是最难搞的钢种之一。高速钢自问世至今已有100多年历史,一直以制造金属切削刀具著称。有人说“高速钢奥妙无穷”,也有人说“高速钢变化莫测”。长期以来,人们对高速钢进行了大量的基础研究和改革创新,丰富了热处理宝库。笔者1968年大学毕业后,从事高速钢热处理整整50个春秋,积累了不少经验,也记录了一些失败的教训,总结出高速钢热处理值得关注的23个问题,和同行们商讨,不妥之处请批评指正。

碳是高速钢中最重要的元素,作用机制是碳化物的形成及转变——溶解、析出、聚集。含量必须适当,不可过多,也不能太少。当含量较低时,不能形成足够数量的复合碳化物,因而在淬火加热时溶入固溶体的碳化物减少,会降低钢的硬度、红硬性及耐磨性;若含碳量高,淬火加热时,碳和合金元素的浓度增高,使钢的硬度、红硬性提高,但也带来一些不利影响:在碳化物不均匀度增大、塑性降低脆性增加、工艺性能变坏(锻造、轧制易开裂)、降低钢的熔点,所以容易产生过热过烧。含碳量增高,会使淬火后残留奥氏体(rR)增多,增加回火难度。以前的M35钢因含碳量偏低(0.80%~0.90%),淬回火后根本达不到67HRC以上的高硬度;501钢(M2A1)因含碳量偏高,问题不少,现在两钢都回归到正常的含碳量了。GB/T9943新标准和原标准相比,最大的亮点莫过于碳的变化。

高速钢中究竟含多少碳好?应遵循定比碳法则确定。钢厂生产的高速钢成分虽都符合国家标准,但不一定适合你。工具厂应根据自家的产品,选择有竞争力适中的含碳量钢种。

平衡碳是给出钢中所有的碳化物形成元素,按定比碳关系达到平衡时的碳含量,通常按下式进行近似地计算。

Cs=0.33W+0.063Mo+0.06Cr+0.2V

式中,Cs是理论上计算的“平衡碳”,“平衡碳差值”表示计算出来的Cs与实际含碳量的差值,即ΔC= Cs-C实

C实/Cs的比值即为碳饱和度,常用“A”来表示。

例如:M2钢的实际化学成分为(质量分数:%):0.85C、5.97W、4.95Mo、3.97 Cr、1.82V。平衡碳、平衡碳差值、碳饱和度计算式分别为:

平衡碳(Cs)=0.033×5.97+0.063×4.95+0.06×3.97+0.2×1.82=1.103

平衡碳差值(ΔC)=1.103-0.85=0.253

碳饱和度(A)=0.85/1.103=0.771

笔者统计分析了M2钢267个炉号340t含碳量,并热处理试验A值对钢性能的影响,结论是:A值在0.76~0.83时,综合性能佳。

在正常的淬火温度范围内,每提高11~13℃,晶粒度就升高1级,如果按9.5~10.5级晶粒度组织生产,对于M2钢淬火温度(t)与A值有一定的对应关系,笔者的经验是:

A=0.70 t=1227~1238℃

A=0.73 t=1222~1233℃

A=0.76 t=1218~1231℃

A=0.79 t=1212~1223℃

A=0.82 t=1210~1221℃

A值越高,淬火温度越低,反之亦然,根据A值确定淬火温度是科学的,行之有效的,已被国内同行认可。

知道了A值,就能准确地预测淬回火后的硬度,经验式为:

对于M2钢而言:HRC=A/(0.01285A+0.00185)例如M2钢A值为0.77,则HRC=0.77/0.01285×0.77+0.00185=0.77/0.0117445≈65.6。实际生产中的刀具硬度在65~66HRC,非常吻合,要想硬度高,必须选择A值高的钢制作。

高速钢属高合金工具钢,含有众多的合金元素,导热性差、塑性低,所以高速钢淬火必须经过预热,有四大好处。

(1)减少应力及变形开裂的几率。

(2)缩短高温加热时间,减少氧化、脱碳倾向。

(3)先在空气炉中预热再到盐浴炉预热,避免发生爆炸危险,有利于安全生产。

(4)中温预热一般在850℃左右,使珠光体向奥氏体转变在较低温度下进行,有利于减少最后相变应力。

严重的碳化物不均匀度将使钢的硬度及红硬性下降,若呈网状堆积,破坏了钢组织的连续性,导致刀具在使用过程中易脆断或崩刀。高速钢碳化物不均匀在×100倍显微镜下观察。GB/T9943-2008《高速工具钢》将共晶碳化物分为8级,诠释如下,供参考。见表 1.

表 1 高速钢碳化物不均匀度级别

标准细则

1碳化物分布均匀

2碳化物呈微细状

3带系——细带宽约2mm,网系——细网中局部有不明显分叉

4带系——有明显集中带,带宽约4mm;网系——有明显的微细分叉

5带系——集中带宽约7.5mm;网系——网状残余

6带系——集中带宽约11mm;网系——破碎网及少量堆积

7带系——集中带宽约15mm;网系——拉长多形网有明显堆积

8带系明显集中带宽约19mm;网系封闭完整网有明显堆积

高速钢中大块角状碳化物和大颗粒碳化物统称为大块碳化物,根据GB/T9943-2008,大块碳化物的评级分W系和W-M0系,见表2和表 3.

表2高速钢中大块碳化物评级标准(W系)

1234

大块角状碳化物最大尺寸/μm18212325

大颗粒碳化物最大尺寸/μm16182123表 3 高速钢中大块碳化物评级标准(W-M O系)

123456

碳化物最大尺寸/μm- 6.18.312.515.622.1检查大块碳化物应在试样直径或对角线的1/4处的纵向截面上进行,以视场中最严重为判据,试样按规定的热处理工艺淬火后于680~720℃×1~2h回火,试样厚度10~12mm,×500倍下观察。

对于高速钢来讲,碳化物是一把双刃剑,它既是保证了高速钢具有高硬度、耐磨性、红硬性等使用性能,同时又是产生各种质量问题的重要根源。为了提高刀具寿命,必须深入研究高速钢中的碳化物,深刻理解碳化物的生成和变化规律。高速钢的热处理,无非是在做碳化物的转变与转换工作,必须高度重视。

高速钢的碳化物类型有M3C、M23C6、M7C3、M6C、MC、M2C等。高速钢加热时碳化物溶解情况决定了奥氏体中碳合金元素的含量,并影响晶粒度,从而影响钢淬火后的力学性能及使用性能。碳化物溶解越充分,硬度越高,耐磨性、红硬性越高。但韧性下降脆性增大,炉前金相一定要注视碳化物的溶解情况,只看晶粒号不看碳化物溶解度是很不全面的。

我们在实践摸索出判断碳化物溶解度的简易方法:在一颗奥氏体晶粒中,5~8颗粒溶解充分,8~12颗溶解一般,﹥12颗溶解不好。在现实生产中,视刀具类别及使用情况,控制碳化物溶解度非常重要,这也是高速钢热处理的精髓。

HSS及HSS-E钢淬火后显示奥氏体晶粒度常用4%硝酸酒精溶液(体积分数),温室,侵蚀时间灵合掌握,也有用7%~13%三氯化铁水溶液。HSS-L钢淬火后显示奥氏体晶粒度用10%硝酸酒精或10%三氯化铁水溶液。

不管什么类别的高速钢回火后再显示奥氏体晶粒度是很难的,需专配。我们的配方1:100ml乙醇+10ml盐酸+3ml硝盐。配方2:100ml甲醇+10ml盐酸+3ml 硝酸。

2004年笔者在全国工具厂厂长经理会上作“制定热处理工艺应该个性化”的学术报告【文章载《机械工人-热加工》2005年第6期】,受到一致好评。我举同成分的M2钢为例,制作不同的工具,热处理工艺见表4.

表 4 M2钢制作不同刀具的热处理工艺

淬火温度冷却工艺晶粒度

/级

回火工艺回火后

硬度

过热

程度

高速钢热处理问答

高速钢热处理问答 纵观现在世界上所有的钢种,无论其化学成分、组织、性能之间的复杂关系,还是冶炼、浇注、锻造、轧制、拉丝、塑性成形、焊接和热处理等整个制造过程的难度,高速钢无疑是最难搞的钢种之一。高速钢自问世至今已有100多年历史,一直以制造金属切削刀具著称。有人说“高速钢奥妙无穷”,也有人说“高速钢变化莫测”。长期以来,人们对高速钢进行了大量的基础研究和改革创新,丰富了热处理宝库。笔者1968年大学毕业后,从事高速钢热处理整整50个春秋,积累了不少经验,也记录了一些失败的教训,总结出高速钢热处理值得关注的23个问题,和同行们商讨,不妥之处请批评指正。 碳是高速钢中最重要的元素,作用机制是碳化物的形成及转变——溶解、析出、聚集。含量必须适当,不可过多,也不能太少。当含量较低时,不能形成足够数量的复合碳化物,因而在淬火加热时溶入固溶体的碳化物减少,会降低钢的硬度、红硬性及耐磨性;若含碳量高,淬火加热时,碳和合金元素的浓度增高,使钢的硬度、红硬性提高,但也带来一些不利影响:在碳化物不均匀度增大、塑性降低脆性增加、工艺性能变坏(锻造、轧制易开裂)、降低钢的熔点,所以容易产生过热过烧。含碳量增高,会使淬火后残留奥氏体(rR)增多,增加回火难度。以前的M35钢因含碳量偏低(0.80%~0.90%),淬回火后根本达不到67HRC以上的高硬度;501钢(M2A1)因含碳量偏高,问题不少,现在两钢都回归到正常的含碳量了。GB/T9943新标准和原标准相比,最大的亮点莫过于碳的变化。 高速钢中究竟含多少碳好?应遵循定比碳法则确定。钢厂生产的高速钢成分虽都符合国家标准,但不一定适合你。工具厂应根据自家的产品,选择有竞争力适中的含碳量钢种。 平衡碳是给出钢中所有的碳化物形成元素,按定比碳关系达到平衡时的碳含量,通常按下式进行近似地计算。 Cs=0.33W+0.063Mo+0.06Cr+0.2V 式中,Cs是理论上计算的“平衡碳”,“平衡碳差值”表示计算出来的Cs与实际含碳量的差值,即ΔC= Cs-C实 C实/Cs的比值即为碳饱和度,常用“A”来表示。 例如:M2钢的实际化学成分为(质量分数:%):0.85C、5.97W、4.95Mo、3.97 Cr、1.82V。平衡碳、平衡碳差值、碳饱和度计算式分别为: 平衡碳(Cs)=0.033×5.97+0.063×4.95+0.06×3.97+0.2×1.82=1.103 平衡碳差值(ΔC)=1.103-0.85=0.253 碳饱和度(A)=0.85/1.103=0.771 笔者统计分析了M2钢267个炉号340t含碳量,并热处理试验A值对钢性能的影响,结论是:A值在0.76~0.83时,综合性能佳。 在正常的淬火温度范围内,每提高11~13℃,晶粒度就升高1级,如果按9.5~10.5级晶粒度组织生产,对于M2钢淬火温度(t)与A值有一定的对应关系,笔者的经验是:

W18Cr4V热处理工艺

W18Cr4V热处理工艺 W18Cr4V钢为W系高速钢,是在T8A钢的基础上主要加入W、Cr、V元素形成的,W18Cr4V钢常用来制造高速切削,也可以用来制造冷作模具。 ⒈W18Cr4V钢的特性⑴、由于W18Cr4V钢中加入大量W、Cr、V 元素,使Fe-C相图中的ES线上升并左移,所以钢中出现大量的共晶莱氏体碳化物,其组织形态有布直接影响钢的性能及使用。故W18Cr4V钢需经反复锻造加工,使其组织中出现的铸态鱼骨状共晶碳化物碎裂成细小的碳化物颗粒,并呈弥散分布,才能使用。⑵、W18Cr4V钢中加入Cr元素,主要是提高钢的淬透性,固溶于基体强化基体组织,并改善钢的回火稳定性;同时形成Cr的碳化物作为钢中的强化相。⑶、W18Cr4V钢中加入W、V元素主要是形成碳化物,作为钢中的强化相,提高钢的强度、硬芳与耐磨性;同时细化晶粒,改善钢的韧性。尤其是V元素细化晶粒作用较强。⑷、W18Cr4V钢在奥氏体化时,W、V元素可随时其碳化物少量地固溶于奥氏体中,进一步提高钢的淬透性,同时冷却后存在于基体组织中,强化基体组织和提高钢的回火稳定性。⑸、W18Cr4V钢中加入大量的C、W、Cr、V元素,会使MS线(马氏体相变开始点)下移,淬火后组织中存在大量的残余奥氏体,在经回火冷却时会转变成马氏体,即出现二次淬火现象。而淬火组织中的马氏体因溶有大量的W、Cr、V元素,使其保持相当稳定。在270℃回火时才有碳化物ε相析出,至400℃,碳化物ε转变为Fe3C相并进行聚集,此时马氏体硬度下降。回火温

度升至400℃以上,开始生成特殊碳化物,400℃至500℃,主要析出铬的碳化物。500℃至600℃,部分Fe3C重新溶解而自回火马氏体中开始析出弥散度很高的碳化物W2C和VC,使硬度回升,即出现二次硬化现象。由于回火马氏体中溶有大量的W、Cr、V元素,使回火马氏体保持较高的硬度,而析出的碳化物聚集的速度较缓慢,因而会产生显著的红硬性。⑹、W18Cr4V钢中加入W元素可以消除钢的回火脆性。⑺、W18Cr4V钢中存有少量的Si、Mn、Mo元素,除提高淬透性外,主要也固溶于基体组织中,起到强化基体组织和改善钢的回火稳定性的作用。 ⒉W18Cr4V钢主要化学成分:0.70%~0.80%C、0.20%~0.40%Si、 0.10%~0.40%Mn、 3.80%~4.40%Cr、17.50%~19.00%W、≤0.30%Mo、1.00%~1.40%V、≤0.030%P、≤0.030%S。 ⒊W18Cr4V钢的热处理工艺:W18Cr4V钢相变点为: AC1 820℃、Accm1330℃、Ar760℃、Ms210℃。W18Cr4V钢的始锻温度1120~1140℃,终锻温度950℃,锻造后堆集冷却或砂中冷却。W18Cr4V钢常见的热处理工艺热处理工艺工艺参数硬度要求工艺特点等温球化退火加热860~880℃,保温3h,740~760℃等温,保温5h,炉冷至550℃以下出炉空冷≤255HBS Ac1820℃,Accm1330℃,加热温度应在Ac1~Accm线之间,等温温度低于Ar1760℃线以下,以获得粒状珠光体组织+碳化物不完全退火加热860~880℃,保温2h,炉冷至550℃以下出炉空冷≤277HB加热温度应在Ac1~Accm线之间,有利于粒状珠光体组织的获得淬火一次

高速钢W18Cr4V的锻造及热处理

W 18Cr4V钢热处理工艺研究 摘要通过对W 18Cr4V钢的性能特点进行了分析、对W 18Cr4V 钢的锻造工艺以及对W 18Cr4V钢进行退火、淬火及回火等热处理研究,得到了在实际生产中, W 18Cr4V钢采用正确的锻造及热处理工艺处理后, 用它生产的刃具及冷作模具综合力学性能好, 使用寿命长. 关键词 W 18Cr4V钢;锻造;热处理 ;退火;淬火;回火 一、对W 18Cr4V钢的介绍 高速钢W 18Cr4V是一种高合金工具钢,钢中含有钨、钼、铬、钒等合金元素, 其总量超过 10%.特点是红硬性和耐磨性高,淬透性好,并且具有一定的韧性, 因而在实际生产中常用来制造刃具和冷作模具. 我们在产品使用中发现,决定其使用寿命的主要因素是锻造和热处理工艺的合理制定. 1、 W 18Cr4V钢的性能特点

W18Cr4V钢的化学成分见表 1。在钢中, 碳的质量分数为0. 70% ~ 0. 80%, 它一方面要保证能与钨、铬、钒形成足够数量的合金碳化物,又要有一定的碳量溶于奥氏体中,使淬火后获得碳含量过饱和的马氏体, 以保证高硬度和高耐磨性, 以及良好的热硬性。 钨是使高速钢具有热硬性的主要元素, W18Cr4V 钢在退火状态下钨与钢中的碳形成合金碳化物Fe4W2C, 淬火加热时, 一部分Fe4W2 C 溶入奥氏体,淬火后形成含有大量钨及其他合金元素, 有很高回火稳定性的马氏体。在 560℃回火时钨又以W2C形式弥散析出,造成二次硬化现象, 使钢具有高的热硬性,未溶的合金碳化物起阻碍奥氏体晶粒长大及提高耐磨性作用.。 铬对高速钢性能的主要影响是增加钢的淬透性并改善耐磨性和提高硬度。 钒与碳的结合力比钨或钼大,碳化物很稳定,淬火加热时高温下才可溶解, 能显著阻碍奥氏体晶粒长大。并且碳化钒的硬度高,颗粒细小、均匀,对提高钢的硬度、耐磨性和韧性有很大影响, 回火时钒也引起二次硬化现象.。 2 组织结构特点 W18Cr4V钢的铸态组织中有大量的莱氏体, 莱氏体中有粗大、不均匀分布的鱼骨状碳化物, 这些碳化物的存在导致高速钢在使用中容易崩刃和磨损。而这些粗大的碳化物不能用热处理的方法消除, 只能用锻造的方法将其击碎,并使它均匀分布,再用来制造各种刃具

高速钢刀具的热处理

高速钢刀具的热处理 张成云 摘要:随着现代制造技术的发展,高速钢刀具在切削加工中被广泛使用。本文通过对高速钢刀具材料的化学成分、性能及使用工作条件的阐述以及加工中对刀具材料的技术要求,经过严格的热处理工艺方法如;退火、淬火、和多次高温回火才能满足其技术要求和使用性能。本文参考了一些“金属材料、工艺学”教材和经过多年的实践摸索总结而成。 关键词:高速钢刀具热处理 1、引言 1.1高速钢:它是含有w、cy、v等合金元素较多的合金工具钢。如w18cv4v是国内使用最为普遍的刀具材料,广泛的用于制造较为复杂的各种刀具。如钻头、铣刀、铰刀、拉刀和其他成型刀具。高速钢俗称锋钢或风钢;称锋钢是因为用高速钢w18cv4v制造的刀具硬度能达到HRC62-65度非常锋利。称为风钢是针对热处理操作而言,一般的钢铁材料制造的刀具要想满足技术要求在加热后需借助油或水中快速冷却,而高速钢制造的刀具在有效厚度小于5mm的工件,加热后在流动的空气中(风中)就能淬上火,就能获得相当的硬度(HRC55-60),因此而得名。 1.2刀具在工作时,由于摩擦作用,势必引起刀具刃部温度的升高,当切削速度达到一定量刃部温度能达到500-600℃。随着机械制造业的发展和制造工艺的成熟,切削加工速度的提高,刀具刃部的工作温度还可能增加。这就要求刀具材料不仅具有一般刀具材料的所必需的硬度、强度、耐磨性和一定的韧性,还要求刀具在较高的温度下具有高硬度、强度和耐磨性(俗称红硬性或热硬性)。而碳素工具钢和低合金工具钢在200℃以下可以保持其工作性能,当工具受热超过250度时,硬度就显著下降,失去切削效能。高速钢经热处理以后,其热硬性好,因此在生产实践中被广泛使用。 2.常用刀具材料 2.1高速钢常用的材料有W18Cr4V、W9Cr4V2、W6MO5Cr4V2、W12Cr4v4Mo等几种。其中以W18Cr4V钢产量最多,应用最广泛,历时最长。为世界各国所通用。

W18Cr4V钢热处理工艺研究

W18C r4V钢热处理工艺研究 胡鹏 (机电11-1 四号) 摘要:本文主要阐述了对W18C r4V钢热处理工艺的研究,通过查阅书籍资料,询问有经验人士,以及个人对于W18C r4V钢的了解分析,得出了W18C r4V钢的热处理工艺主要有三大方面,分别是:退火、淬火、回火。本文就主要围绕这三个方面作了较为详细的阐述。以此来简单谈谈本人对W18C r4V钢热处理工艺的一点小小的探究。错误之处请多多指正! 关键词:W18C r4V钢、二次硬化、油冷淬火、热硬性 高速钢W18Cr4V是一种高合金工具钢,钢中含有钨、钼、铬、钒等合金元素,其总量超过10%. 特点是红硬性和耐磨性高,淬透性好,并且具有一定的韧性,在实际生产中常用来制造刃具和冷作模具。在产品使用中,决定其使用寿命的主要因素是锻造和热处理工艺的合理制定。 1.1 W18Cr4V钢的化学成分: 其中碳的质量分数为0. 70%~0. 80%, 它一方面要保证能与钨、铬、钒形成足够数量的合金碳化物,又要有一定的碳量溶于奥氏体中,使淬火后获得碳含量过饱和的马氏体,以保证高硬度和高耐磨性,以及良好的热硬性。钨是使高速钢具有热硬性的主要元素,W18Cr4V 钢在退火状态下钨与钢中的碳形成合金碳化物Fe4W2C, 淬火加热时,

一部分Fe4W2C溶入奥氏体,淬火后形成含有大量钨及其他合金元素。有很高回火稳定性的马氏体.。在560℃回火时钨又以W2C形式弥散析出,造成二次硬化现象,使钢具有高的热硬性,未溶的合金碳化物起阻碍奥氏体晶粒长大及提高耐磨性作用。铬对高速钢性能的主要影响是增加钢的淬透性并改善耐磨性和提高硬度。钒与碳的结合力比钨或钼大,碳化物很稳定,淬火加热时高温下才可溶解,能显著阻碍奥氏体晶粒长大。并且碳化钒的硬度高,颗粒细小、均匀,对提高钢的硬度、耐磨性和韧性有很大影响,回火时钒也引起二次硬化现象。 1.2组织结构特点: W18Cr4V钢的铸态组织中有大量的莱氏体,莱氏体中有粗大、不均匀分布的鱼骨状碳化物,这些碳化物的存在导致高速钢在使用中容易崩刃和磨损。而这些粗大的碳化物不能用热处理的方法消除,只能用锻造的方法将其击碎,并使它均匀分布,再用来制造各种刃具和模具。 1.3 用途: 如车、刨、铣、铰、拉刀、钻头、各种齿轮刀具及丝锥、板牙等,适于加工软的或中等硬度(300~320HB以下) 的材料。及制作高温耐磨机械。 2 热处理工艺: 2.1退火: 锻件锻后应立即放入白灰箱或干砂箱中严埋缓冷,冷却后应立即进行退火,退火的目的是为了消除

高速工具钢热处理工艺

2.热处理工艺 预热分别采用箱式电阻炉(或井式炉)和中温盐浴炉,最后加热在高温盐浴炉中进行。在硝盐炉或电阻炉回火。 (1)预热 按拉刀的直径不同可分为一次预热和二次预热,目的是消除加工应力,使内外温度一致,减小拉刀的变形。温度分别为550~600℃和800~850 C,预热时间为最后加热时间的3倍和2倍。 (2)淬火加热 拉刀的晶粒度控制在9~10级,加热系数为10~15s/mm,拉刀的热处理工艺如表4-12所示。 (3)冷却 采用分级或等温淬火,分级温度为580~620 C,盐浴成分为50% BaCl2+30% KCl+ 20%NaCl(简称2-3-5盐),当表面温度到650~700℃时,转人220~250℃的硝盐中保温30~40mino (4)热校直 快速从硝盐炉中取出,将拉刀放在螺旋压力机上进行校直,考虑到冷速太快,要在不低于20℃的温度下校直,采取校过的措施,以防止其反弹。 (5)清洗回火 开水槽煮净拉刀表面的残盐,拉刀垂直向上插入圆形回火筐中挤紧回火,介质为100%KN03,温度为540~5600C,保温80~100min,回火3次。 (6)热校直

出炉后用手动压力机校直拉刀,一般冷至400℃左右开始加压,冷到室温卸去压力。当两把弯曲拉刀的凸面紧贴在一起,中间塞上斜铁,两头放人炉中回火,也可有良好的效果。 (7)柄部处理 将柄部在850℃的盐浴炉中加热到表面颜色与盐浴一致时,挑出油冷或空冷。另外也可借柄部来校直拉刀,将导向部分压弯来满足减少韧部偏摆的要求。 W18Cr4V拉刀的热处理工艺见图4-23所示。 高速钢刀具在热处理生产工序中,常见的缺陷有过热与过烧、硬度不足、表面腐蚀、茶状断口和裂纹等、 (1)过热与过烧 过热的特征是断口呈粗瓷状,在金相组织中奥氏体晶粒长大,碳化物颗粒呈角状或沿晶界出现不同程度的网络状。 过烧的特征是刀具表面呈被烧熔的皱皮,断口呈粗糙状,金相组织中奥氏体晶粒更为粗大,碳化物呈共晶鱼骨状或沿晶界形成黑色的氧化物状。 W18Cr4V及W6Mo5Cr4V2Al钢的过热与过烧组织,如图69所示。产生过热与过烧的原因,主要是: ①淬火加热温度过高,超过了正常的加热温度, ②铆材碳化物不均匀度严重,过热敏感性大,在碳化物少的区域,正常加热就有产生晶粒长大的可能; ③在盐浴炉加热时,刀具靠近电极而使其表面过热或熔化过烧。 一刀具轻微过热,如有晶粒长大倾向,碳化物变形或呈不严重的断续网

高速钢淬火的回火工艺【详解】

高速钢淬火的回火工艺 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 高速工具钢由于合金化程度高,适合于制作高速切削刃具,可保证刃部在650℃时实际硬度仍高于50HRC,具有优良的切削性和耐磨性。根据钢中的主要元素成分,高速钢可分成3类:钨系高速钢、钼系高速钢和钨钼系高速钢。 高速钢导热率低,为减少工件在加热时的变形开裂,缩短高温保温时间以减少脱碳,可采用预热处理。一次预热采用温度800~850℃,两次预热即在800~850℃前加一次500~600℃预热。一般工具可采用一次预热工艺,形状复杂的工具或大型工具宜采用两次预热。 淬火工艺在高温盐浴炉中进行,短时保温以防止刃部脱碳和过热,一般用油淬+空冷,对细长件和薄片刃具采用分级淬火,一般用580~620℃一次分级或再在350~400℃作第二次分级。我公司采用的冷却方式为580~650℃、280~320℃的二次分级淬火。 高速钢(W18Cr4V)淬火后的显微组织如图1所示,具有细晶粒组织,奥氏体晶界因淬火时有微量二次碳化物析出而易于浸蚀。淬火高速钢回火的目的是从马氏体

中析出弥散碳化物,产生次生硬化效应,消除残留奥氏体和淬火内应力。淬火后的残留奥氏体合金度高,稳定性大,在回火加热过程中不易分解,在500~600℃保温时也仅从中析出合金碳化物,使残留奥氏体合金度有所降低,因而Ms点升高,在冷却到低温时,部分残留奥氏体发生马氏体转变,残留奥氏体含量由20%~25%减少到约10%左右。但还需进一步降低残留奥氏体含量,消除新产生的马氏体引起的内应力,高速钢一般需在560℃回火3次。 W18Cr4V钢回火时的硬度变化如图2所示,回火次数与残留奥氏体量和硬度的关系如图3所示,回火后的组织为回火马氏体+碳化物。 图1 高速钢(W18Cr4V)常规淬火温度淬火组织

高速钢HSS

高速钢 1. 概述 高速钢High Speed Steels 又名风钢或锋钢,意思是淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分复杂的合金钢,含有钨、钼、铬、钒、钴等碳化物形成元素。合金元素总量达10~25%左右。它在高速切削产生高热情况下(约500℃)仍能保持高的硬度,HRC 能在60以上。这就是高速钢最主要的特性——红硬性。而碳素工具钢经淬火和低温回火后,在室温下虽有很高的硬度,但当温度高于200℃时,硬度便急剧下降,在500℃硬度已降到与退火状态相似的程度,完全丧失了切削金属的能力,这就限制了碳素工具钢制作切削工具用。而高速钢由于红硬性好,弥补了碳素工具钢的致命缺点,可以用来制造切削工具。 高速钢的热处理工艺较为复杂,必须经过退火、淬火、回火等一系列过程。退火的目的是消除应力,降低硬度,使显微组织均匀,便于淬火。退火温度一般为860~880℃。淬火时由于它的导热性差一般分两阶段进行。先在800~850℃预热(以免引起大的热应力),然后迅速加热到淬火温度1190~1290℃(不同牌号实际使用时温度有区别),后油冷或空冷或充气体冷却。工厂均采用盐炉加热,现真空炉使用也相当广泛。淬火后因内部组织还保留一部分(约30%)残余奥氏体没有转变成马氏体,影响了高速钢的性能。为使残余奥氏体转变,进一步提高硬度和耐磨性,一般要进行2~3次回火,回火温度560℃,每次保温1小时。

(1)生产制造方法:通常采用电炉生产,近来曾采用粉末冶金方法生产高速钢,使碳化物呈极细小的颗粒均匀地分布在基体上,提高了使用寿命。 (2)用途:用于制造各种切削工具。如车刀、钴头、滚刀、机用锯条及要求高的模具等。 2. 主要生产厂 我国上钢五厂、河冶科技是生产高速钢的主要生产厂。 3. 主要进口生产国家 我国主要从日本、俄罗斯、德国、奥地利、法国、乌克兰、巴西等国进口。 4. 种类 有钨系高速钢、钼系高速钢和钴系高速钢三大类。钨系高速钢有W 18 CR 4 V,钼系高速钢有W 6 Mo 5 Cr 4 V 2 ,钴系高速钢有W6Mo 5Cr 4 V 2Co5、W 2 Mo 9 Cr 4 V Co 8等。 5. 规格和外观质量 规格主要有圆钢和方钢、板材。钢材的表面要加工良好,不得有肉眼可见的裂纹、折叠、结疤和发纹。冷拔钢材表面应洁净、光滑、无夹杂和氧化皮等。 6. 化学成分 我国国标和日本工业标准中主要钢号的化学成分如表6—7—26。 . 物理性能

高速钢的基本知识

高速钢是一种具有高硬度、高耐磨性和高耐热性的工具钢,又称高速工具钢或锋钢。高速钢是美国的.泰勒和M.怀特于1898年创制的。高速 钢的工艺性能好,强度和韧性配合好,因此主要用来制造复杂的薄刃和耐冲击的金属切削刀具,也可制造高温轴承和冷挤压模具等。除用熔炼 方法生产的高速钢外,20世纪60年代以后又出现了粉末冶金高速钢,它的优点是避免了熔炼法生产所造成的碳化物偏析而引起机械性能降低和 热处理变形。高速钢是一种含多量碳(C)、钨(W)、钼(Mo)、铬(Cr)、钒(V)等元素的高合金钢,热处理后具有高热硬性。当切削温度高达600℃ 以上时,硬度仍无明显下降,用其制造的刀具切削速度可达每分钟60米以上,而得其名。常见的普通高速钢有两种:钨系高速钢和钨钼系高速钢。钨系高速钢典型牌号为w18Cr4V,热处理硬度可达63-66HRC,抗弯强度可达3500MPa, 可磨性好。钨钼系高速钢典型牌号为W6Mo5Cr4V2,目前正在取代钨系高速钢,具有碳化物细小分布均匀,耐磨性高,成本低等一系列优点。热 处理硬度同上,抗弯强度达4700MPa,韧性及热塑性比w18Cr4V提高50%。常用于制造各种工具,例如钻头、丝锥、铣刀、铰刀、拉刀、齿轮刀具 等,只是它的脱碳敏感性稍强。另一牌号的普通高速钢为W9Mo3Cr4V,这是中国近几年发展起来的新品种。强度及热塑性略高于W6Mo5Cr4V2, 硬度为HRC63-64,与韧性相配合,容易轧制、锻造,热处理工艺范围宽,脱碳敏感性小,成本更低。 高性能高速钢具有更好的硬度和热硬性,这是通过改变高速钢的化学成分,提高性能而发展起来的新品种。具有更高的硬度、热硬性,切削温 度达摄氏650度时,硬度仍可保持在60HRC以上。耐用性为普通高速钢的倍,适用于制造加工高温合金、不锈钢、钛合金、高强度钢等难加 工材料的刀具。主要品种有4种,分别为高碳系高速钢、高钒系高速钢、含钴系高速钢和铝高速钢。钴高速钢牌号有W2Mo9Cr4VCo8。其特点为: 含钒量不高(1%),含钴量高(8%),钴能促使碳化物在淬火加热时更多地溶解在基体内,利用高的基体硬度来提高耐磨性。这种高速钢硬度、热 硬性、耐磨性及可磨性都很好。热处理硬度可达67-70HRC,但也有采取特殊热处理方法,得到67-68HRC硬度,使其切削性能(特别是间断切削) 得到改善,提高冲击韧性。铝高速钢牌号为W6Mo5Cr4V2Al W6Mo5Cr4V5SiNbAl等,主要加入

W18Cr4V挤压杆热处理工艺设计(1)

热处理工艺 课程设计说明书 课程名称: 金 属 热 处 理 工 艺 学 设计题目: W18Cr4V 挤压杆热处理工艺的设计 院 系: 机 械 工 程 学 院 班 级: 材料成型及控制工程 0801 学 号: 0 8 1 1 0 4 1 2 6

学生姓名:吴欣桐 设计题目W18Cr4V挤压杆热处理工艺的设计 学生姓名吴欣桐院系专业机械工程学院材料0801 指导教师:黄新 热处理工艺课程设计任务书

设计要求: 1.相变点的确定 2.热处理工艺参数的制定 3.热处理设备的选择 4.组织特点和性能的分析 5.夹具的设计或选用 6.工艺卡片填写 学生应完成的工作: 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各种热处理工序的工艺参数的选择依据和各种热处理后的显微组织作出说明。 推荐参考文献阅读: 1《热处理工程师手册》,樊东黎主编,机械工业出版社; 2《热处理技师手册》,张玉庭主编,机械工业出版社; 3《热处理手册(共4卷)》,中国机械工程学会热处理学会,机械工业出版社; 4《热处理实用数据速查手册》,叶卫平主编,机械工业出版社; 5《金属热处理工艺学》,夏立芳,哈尔滨工业大学出版社; 6《热处理常见缺陷分析与对策》,王忠诚主编,化学工业出版社;等。 任务下达日期:2011年1月9日 任务完成日期:2011年1月15日 答辩日期: 指导教师:黄新 学生签名: 目录 1 热处理工艺课程设计的目的 --------------------4 2 零件的技术要求及选材 ------------------------4

热处理工艺复习题

2017热处理工艺复习题 一、 填空题 1.钢的热处理工艺由 、 、 三个阶段所组成。 2.热处理工艺基本参数: 。 3.钢完全退火的正常温度范围是 ,它只适应于 钢。 4.球化退火的主要目的是 ,它主要适用于 钢。 5.钢的正常淬火温度范围,对亚共析钢是 ,对过共析钢 是 。 6.当钢中发生奥氏体向马氏体的转变时,原奥氏体中碳含量越高,则M S 点越 ,转变 后的残余奥氏体量就越 。 7.改变钢整体组织的热处理工艺有 、 、 、 四种。 8.淬火钢进行回火的目的是 ,回火温度越高,钢 的强度与硬度越 。 9.化学热处理的基本过程包括 、 、 等三个阶段。 10.欲消除过共析钢中大量的网状渗碳体应采用 ,欲消除铸件中枝晶 偏析应采用 。 11.低碳钢为了便于切削,常预先进行 处理;高碳钢为了便于 切削,常预先进行 处理; 12.感应加热表面淬火,按电流频率的不同,可分为 、 、和 三种。而且感应加热电流频率越高,淬硬层越 。 13.钢的淬透性主要取决于————————————,马氏体的硬度主要取决于————————————,钢的 表层淬火,只能改变表层的————————————,而化学热处理既能改变表层的————————————,又能 改变表层的————————————。 14.钢在一定条件下淬火后,获得一定深度的淬透层的能力,称为钢的淬透性。淬透层通 常以 的深度来表示。 15. 中温回火主要用于处理__ ____零件,回火后得到 组织。

16.45钢正火后渗碳体呈状,调质处理后渗碳体 呈状。 17.形变热处理是将塑性变形的强化与热处理时 的强化结合,使成型工艺与获得最终性能统一起来的一种综合工艺。 二、单选题 1.电阻炉空载功率小,说明炉子热损失: A)小;B)大;C)厉害;D)可忽略不计。 2.检测氮碳共渗零件的硬度时应选用:A)洛式硬度计;B)维氏硬度计;C)布氏硬度计; D)肖氏硬度计。 3.可控气氛炉渗碳时排出的废气:A)必须燃烧后排放;B)不燃烧直接排放;C)通入水中排 放; D)通入碱水中排放。 4.在生产中,用来消除过共析钢中的网状渗碳体最常用的热处理工艺是:A)完全退火; B)正火;C)不完全退火;D)回火。 5.气体渗氮的主要缺点是:A)周期太长;B)劳动强度大;C)硬度低;D)渗层浅。 6.镗床主轴通常采用38CrMoA1钢进行:A)氮碳共渗;B)渗碳;C)渗氮;D)渗硫。 7.确定碳钢淬火加热温度的基本依据是:A)Fe-Fe C相图;B)“C”曲线;C)“CCT”曲线; 3 D)淬透性曲线图。 8.为获得良好的综合力学性能,38CrMoAl钢制造的氮化件预先热处理应采用:A)退火;B) 正火;C)调质;D)渗碳。 9.高速钢淬火冷却时,常常在580~600℃停留10~15分钟,然后在空气中冷却,这种操作 方法叫做:A)双介质淬火;B)等温淬火;C)分级淬火;D)亚温淬火。 10.某零件调质处理以后其硬度偏低,补救的措施是:A)重新淬火后,选用低一点的温度回火; B)再一次回火,回火温度降低一点;C)重新淬火后,选用高一点的温度回火;D)再一次回火,回火温度提高一点。 11.钢感应加热表面淬火的淬硬层深度,主要取决于:A)钢的含碳量;B)冷却介质的冷却能 力;C)感应电流频率;D)感应电流电压。 12.为增加T12钢的强韧性,希望控制淬火马氏体的含碳量,减少孪晶马氏体的相对量及获得

高速钢W18Cr4V的热处理

W18Cr4V高速钢处理研究 (南湖机自三班蒋嵩 24111900279) 高速钢W18Cr4V是一种高合金工具钢,钢中含有钨、钼、铬、钒等合金元素,其总量超过10%.特点是红硬性和耐磨性高,淬透性好,并且具有一定的韧性,因而在实际生产中常用来制造刃具和冷作模具.我们在产品使用中发现,决定其使用寿命的主要因素是锻造和热处理工艺的合理制定.1W18Cr4V钢的性能特点1.1化学成分特点表1W18Cr4V钢的的化学成分(质量分数)(%)C W Cr V Mo Si0.70~0.8017.50~19.003.80~4.401.00~1.40≤0.30≤0.40W18Cr4V钢的化学成分见表1.在钢中,碳的质量分数为0.70%~0.80%,它一方面要保证能与钨、铬、钒形成足够数量的合金碳化物,又要有一定的碳量溶于奥氏体中,使淬火后获得碳含量过饱和的马氏体,以保证高硬度和高耐磨性,以及良好的热硬性.钨是使高速钢具有热硬性的主要元素 ●W18Cr4V高速钢特性及适用範圍: 是使用最廣泛的鎢系通用型高速鋼,硬度、紅硬性及高溫硬度較高,易于磨削加工。适用作工作溫度在600℃以下仍能保持切削性能的刀具,如車、刨、銑、鉸、拉刀、鑽頭、各種齒輪刀具及絲錐、闆牙等,适于加工軟的或中等硬度(300~320HB以下) 的材料。及制作高溫耐磨機械零 ●W18Cr4V高速钢化學成份: 碳C :0.70~0.80(答應偏差:±0.01) 矽Si:0.20~0.40(答應偏差:±0.05)

錳Mn:0.10~0.40(答應偏差: 0.04) 硫S :≤0.030 磷P :≤0.030 鉻Cr:3.80~4.40(答應偏差:±0.05) 鎳Ni:答應殘餘含量≤0.30 銅Cu:答應殘餘含量≤0.25 釩V :1.00~1.40(答應偏差:±0.05) 钼Mo:≤0.30(答應偏差:尺寸≤6,±0.05;尺寸>6,±0.10) 鎢W :17.50~19.00(答應偏差:尺寸≤10,±0.10;>10,±0.20) ●W18Cr4V高速钢力學性能: 硬度:交貨硬度:(其他加工方法)≤269HB; (退火)≤255HB。試樣熱處理制度及淬回火硬度:≥63HRC ●W18Cr4V高速钢熱處理規範及金相組織: 熱處理規範:淬火,820~870℃預熱,1270~1285℃(鹽浴爐)或1270~1285℃(箱式爐)加熱,油冷,550~570℃回火2次,每次1h。

高速钢材料与热处理

高速钢材料与热处理 原材料(GB9943-1988摘自材料汇总-中外材料对比) 1、供货状态:五种:钢棒、大截面锻制钢材、钢板、热轧钢带(机用锯条用料)、钢丝 钢棒:在φ120mm以下的热轧、锻制、剥皮、冷拉及银亮高速钢钢棒 钢棒交货:热轧、锻制、冷拉钢棒以及退火状态交货;或热轧、锻制钢棒退火后在经过其他加工方法(剥 皮、轻拉、磨光或抛光等)加工后交货。 高速钢订货的钢棒就已经进行了锻制,所以,制作刀具时,可直接进入机加工。 2、化学成分 牌号 C Mn P S Si Cr V W Mo Co W18Cr4V 0.7-0.8 0.1-0.4 ≤0.03 ≤0.03 0.2-0.4 3.8-4.4 1.0-1.4 17.5-19.0 ≤0.3 W6Mo5Cr4V2 0.8-0.9 0.15-0.4 ≤0.03 ≤0.03 0.2-0.45 3.8-4.4 1.75-2.2 5.5-6.75 4.5-5.5 W6Mo5Cr4V2Al 1.05-1.2 0.15-0.4 ≤0.03 ≤0.03 0.2-0.6 3.8-4.4 1.75-2.2 5.5-6.75 4.5-5.5 Al:0.8-1.2 W2Mo9Cr4Vco8 1.05-1.15 0.15-0.4 ≤0.03 ≤0.03 0.2-0.65 3.5-4.25 0.95-1.35 1.15-1.85 9.0-10.0 7.75-8.75 注:1、W2Mo9Cr4Vco8(M42)是属于高钴超硬型高性能高速钢,在刀具材料中是比较好的,价格很贵。 为了取代这种材料,我国自己研制的高铝高性能高速钢W6Mo5Cr4V2Al(M2A,501,也有人称为M2Al),它是在W6Mo5Cr4V2(M2)基础上改进而成,比M42低2-4倍。 2、阳光就是使用M2A制作专用的铣刀、丝锥、铰刀等,也曾试用或M42。 3、W18Cr4V是最通用的高速钢,为钨系类,M2为钨钼系。 钢材允许化学成分偏差表: 化学元素 C Mn Si Cr V W Mo Co 适用范围/mm ≤10 >10 ≤6 >6 允许偏差±0.01 +0.04 ±0.05 ±0.05 ±0.05 ±0.1 ±0.2 ±0.05 ±0.1 ±0.15 3、冶炼方法 钢应用电炉或其他适宜的方法冶炼 4、宏观组织 低倍组织不得有肉眼可见的缩孔、气泡、翻皮、肉裂和夹杂,并按GB1979评定中心疏松、一般疏松和偏析的合格级别为:不大于1级 断口:不得有荼状断口,如供方能够保证,可不检验。

高速钢刀具的热处理

高速钢刀具的热处理内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

高速钢刀具的热处理 张成云 摘要:随着现代制造技术的发展,高速钢刀具在切削加工中被广泛使用。本文通过对高速钢刀具材料的化学成分、性能及使用工作条件的阐述以及加工中对刀具材料的技术要求,经过严格的热处理工艺方法如;退火、淬火、和多次高温回火才能满足其技术要求和使用性能。本文参考了一些“金属材料、工艺学”教材和经过多年的实践摸索总结而成。 关键词:高速钢刀具热处理 1、引言 高速钢:它是含有w、 cy、 v等合金元素较多的合金工具钢。如w18cv4v 是国内使用最为普遍的刀具材料,广泛的用于制造较为复杂的各种刀具。如钻头、铣刀、铰刀、拉刀和其他成型刀具。高速钢俗称锋钢或风钢;称锋钢是因为用高速钢w18cv4v制造的刀具硬度能达到HRC62-65度非常锋利。称为风钢是针对热处理操作而言,一般的钢铁材料制造的刀具要想满足技术要求在加热后需借助油或水中快速冷却,而高速钢制造的刀具在有效厚度小于5mm的工件,加热后在流动的空气中(风中)就能淬上火,就能获得相当的硬度(HRC55-60),因此而得名。 刀具在工作时,由于摩擦作用,势必引起刀具刃部温度的升高,当切削速度达到一定量刃部温度能达到500-600℃。随着机械制造业的发展和制造工艺的成熟,切削加工速度的提高,刀具刃部的工作温度还可能增加。这就要求刀具材料不仅具有一般刀具材料的所必需的硬度、强度、耐磨性和一定的韧性,还要求刀具在较高的温度下具有高硬度、强度和耐磨性(俗称红硬性或热硬性)。而碳素工具钢和低合金工具钢在200℃以下可以保持其工作性能,当工具受热超过250度时,硬度就显着下降,失去切削效能。高速钢经热处理以后,其热硬性好,因此在生产实践中被广泛使用。 2.常用刀具材料 高速钢常用的材料有W18Cr4V、W9Cr4V2、W6MO5Cr4V2、W12Cr4v4Mo等几种。其中以W18Cr4V钢产量最多,应用最广泛,历时最长。为世界各国所通用。 经过一定的热处理才能体现出来)。

高速钢W18Cr4V的锻造及热处理

W 18Cr4V钢热处理工艺研究 王梦思 11级机电二班42号 摘要通过对W 18Cr4V钢的性能特点进行了分析、对W 18Cr4V钢的锻造工艺以及对W 18Cr4V钢进行退火、淬火及回火等热处理研究,得到了在实际生产中, W 18Cr4V钢采用正确的锻造及热处理工艺处理后, 用它生产的刃具及冷作模具综合力学性能好, 使用寿命长. 关键词W 18Cr4V钢;锻造;热处理;退火;淬火;回火 一、对W 18Cr4V钢的介绍 高速钢W 18Cr4V是一种高合金工具钢,钢中含有钨、钼、铬、钒等合金元素, 其总量超过10%.特点是红硬性和耐磨性高,淬透性好,并且具有一定的韧性, 因而在实际生产中常用来制造刃具和冷作模具. 我们在产品使用中发现,决定其使用寿命的主要因素是锻造和热处理工艺的合理制定. 1、W 18Cr4V钢的性能特点

W18Cr4V钢的化学成分见表1。在钢中, 碳的质量分数为0. 70% ~ 0. 80%, 它一方面要保证能与钨、铬、钒形成足够数量的合金碳化物,又要有一定的碳量溶于奥氏体中,使淬火后获得碳含量过饱和的马氏体, 以保证高硬度和高耐磨性, 以及良好的热硬性。 钨是使高速钢具有热硬性的主要元素, W18Cr4V 钢在退火状态下钨与钢中的碳形成合金碳化物Fe4W2C, 淬火加热时, 一部分Fe4W2 C溶入奥氏体,淬火后形成含有大量钨及其他合金元素, 有很高回火稳定性的马氏体。在560℃回火时钨又以W2 C形式弥散析出,造成二次硬化现象, 使钢具有高的热硬性,未溶的合金碳化物起阻碍奥氏体晶粒长大及提高耐磨性作用.。 铬对高速钢性能的主要影响是增加钢的淬透性并改善耐磨性和提高硬度。 钒与碳的结合力比钨或钼大,碳化物很稳定,淬火加热时高温下才可溶解, 能显著阻碍奥氏体晶粒长大。并且碳化钒的硬度高,颗粒细小、均匀,对提高钢的硬度、耐磨性和韧性有很大影响, 回火时钒也引起二次硬化现象.。 2 组织结构特点 W18Cr4V钢的铸态组织中有大量的莱氏体, 莱氏体中有粗大、不均匀分布的鱼骨状碳化物, 这些碳化物的存在导致高速钢在使用中容易崩刃和磨损。而这些粗大的碳化物不能用热处理的方法消除,

高速钢的淬火

高速钢的淬火 高速钢属莱氏体钢,含有大量合金元素,冶炼后形成大量一次共晶碳化物和二次碳化物(约占成分总量的18%~22%),这对高速钢刀具的淬火质量及使用寿命有很大影响。高速钢淬火温度接近熔点, 淬火后组织中仍有25%~35%的残余奥氏体,致使高速钢刀具容易产生裂纹和腐蚀。下面分析影响高 速钢刀具淬火裂纹和腐蚀的原因,并提出相应预防措施。 1 高速钢原材料的冶金缺陷高速钢中所含大量碳化物硬而脆,为脆性相。一次共晶碳化物呈粗大骨骼状(或树枝状)分布于钢基体内。钢锭经开坯压延和轧制后,合金碳化物虽有一定程度的破碎和细 化,但碳化物偏析依然存在,并沿轧制方向呈带状、全网状、半网状或堆积状分布。碳化物不均匀度随 原材料直径或厚度的增加而增加。共晶碳化物相当稳定,常规热处理很难消除,可导致应力集中而成为 淬火裂纹源。钢中硫、磷等杂质偏析或超标也是导致淬裂的重要原因。高速钢的导热性和热塑性差、变 形抗力大,热加工时易导致金属表层和内层形成微裂纹,最终在淬火时因裂纹扩展而导致材料报废。大 型钢锭在冶炼、轧制或锻造等热加工过程中形成的宏观冶金缺陷如疏松、缩孔、气泡、偏析、白点、树 枝状结晶、粗晶、夹杂、内裂、发纹、大颗粒碳化物及非金属夹渣等均易导致淬火时应力集中,当应力

大于材料强度极限时便会产生淬火裂纹。预防措施为:?选用小钢锭开坯轧制各种规格的刀具原 材料;?选用二次精炼电渣重熔钢锭,它具有纯度高、杂质少、晶粒细、碳化物小、组织均匀、无宏观 冶金缺陷等优点;?对不合格原材料进行改锻,击碎材料中的共晶碳化物,使共晶碳化物不均匀度?3级;? 2 高速钢过热、过烧组织高速钢过热、过烧组织的特点为晶粒显著粗化,合金碳化物出现粘连、 角状、拖尾状及沿晶界呈全网状、半网状或连续网状分布;钢组织内部局部熔化出现黑色组织或共晶莱 氏体,形成过烧组织,显著降低晶间结合力和钢的强韧性。引起高速钢过热、过烧组织的主要原因有: 淬火加热温度过高,测温和控温仪表失准;盐浴炉淬火加热时,因盐浴表面烟雾导致辐射高温计测温出 现误差;变压配电盘磁力开关失灵;刀具加热时离电极太近或埋入炉底沉积物中;原材料存在大量角状 碳化物或碳化物不均匀度等级太高等。高速钢过热、过烧组织极易导致淬火裂纹。预防措施为:?严格控制原材料质量,共晶碳化物级别应?3~3.5级;?原材料入库和投产前应作金相检查,确保无 宏观冶金缺陷;?刀具淬火加热前用试片校验高温盐浴炉,检查晶粒等级与淬火加热温度的关系是否合 理(参见下表);?采用微机控温与测温,测温精度达到?1.5?。共晶碳化物不均匀度等级出现过热(晶粒度8#)的淬火温度(?5?) ?3 1260? 3.5 1250? 4.5 1245? 7.5 1240

钢材的热处理工艺

淬火 Hardening or Quenching cui hu ǒ (行业内,淬读 " z àn" 音,即读“ z à n hu ǒ”) 钢的淬火是将钢加热到临界温度 Ac3(亚共析钢)或 Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体[1]化,然后以大于临界冷却速度的冷速快冷到Ms以下(或 Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。 通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能。 淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织(或贝氏体组织)。钢淬火工艺最早的应用见于河北易县燕下都遗址出土的战国时代的钢制兵器。 淬火工艺最早的史料记载见于《汉书 . 王褒传》中的“清水焠其峰”。“淬火”在专业文献上,人们写的是“淬火”,而读起来又称“蘸火”。“蘸火”已成为专业口头交流的习用词,但文献中又看不到它的存在。也就是说,淬火是标准词,人们不读它,“蘸火”是常用词,人们却不写它,这是我国文字中不多见的现象。 淬火是“蘸火”的正词,淬火的古词为蔯火,本义是灭火,引申义是“将高温的物体急速冷却的工艺”。“蘸火”是冷僻词,属于现代词,是文字改革后出现的产物,“蘸”字本义与淬火无关。“蘸火”本词为“湛火”,“湛”字读音同“蘸”,而其字形又与水、火有关,符合“水与火合为蔯”之意,字义与“淬火”相通。“湛火”为本词,“蘸火”则为假借词。 淬火将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。常用的淬冷介质有盐水、水、矿物油、空气等。淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。与钢中其他组织相比,马氏体硬度最高。钢淬火的目的就是为了使它的组织全部或大部转变为马氏体,获得高硬度,然后在适当温度下回火,使工件具有预期的性能。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。为此必须选择合适的冷却方法。根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火 淬火效果的重要因素,淬火工件硬度要求和检测方法: 4 类。

轧辊材料及热处理工艺

轧辊材料及热处理工艺 轧辊材料及热处理工艺 轧辊的寿命主要取决于轧辊的内在性能和工作受力,内在性能包括强度和硬度等方面。要使轧辊具有足够的强度,主要从轧辊材料方面来考虑;硬度通常是指轧辊工作表面的硬度,它决定轧辊的耐磨性,在一定程度上也决定轧辊的使用寿命,通过合理的材料选用和热处理方式可以满足轧辊的硬度要求。概述了传统的轧辊选材及其热处理工艺,同时,对轧辊材料及其热处理工艺的发展进行了展望。传统冷轧辊材料及其热处理方式冷轧辊在工作过程中要承受很大的轧制压力,加上轧件的焊缝、夹杂、边裂等问题,容易导致瞬间高温,使工作辊受到强烈热冲击造成裂纹、粘辊甚至剥落而报废。因此,冷轧辊要有抵抗因弯曲、扭转、剪切应力引起的开裂和剥落的能力,同时也要有高的耐磨性、接触疲劳强度、断裂韧性和热冲击强度等。国内外冷轧工作辊一般使用的材质有GCr15、9Cr2、9Cr、9CrV、9Cr2W、9Cr2Mo、60CrMoV、80CrNi3W、8CrMoV、86CrMoV7、Mo3A等。20世纪50~60年代,这一时期的轧件多为碳素结构钢,强度和硬度不高,所以轧辊一般采用1.5%~2%Cr锻钢。此类钢的最终热处理通常采用淬火加低温回火,常见的淬火方式有感应表面淬火和整体加热淬火。其主要任务是考虑如何提高轧辊的耐磨性能、抗剥落性能,并提高淬硬层深度,尽量保证轧辊表面组织均匀,改善轧辊表层金属组织的稳定性。从20世纪70年代开始,随着轧件合金化程度的提高,高强度低合金结构钢(HSLA)的广泛应用,轧件的强度和硬度也随之增加,对轧辊材料的强度和硬度也提出了更高的要求,国际上普遍开始采用铬含量约2%的Cr-Mo型或Cr-Mo-V型钢工作辊,如我国一直使用的9Cr2Mo、9Cr2MoV和86CrMoV7、俄罗斯的9X2MΦ、西德的86Cr2MoV7、日本的MC2等。这类材质的合金化程度较低,在经过最终热处理后,其淬硬层深度一般为12~15mm(半径),仅能满足一般要求,而且使用中剥落和裂纹倾向严重,轧制寿命低。通过改进热处理方式,即进行重淬1~2次,提高了该类轧辊的淬硬层,但每次重淬不仅需要一定的热处理费用,而且会使轧辊直径都要损失5mm左右,同时轧辊在经过多次热处理后容易变形,难以满足高精度轧辊的形位公差要求。因此,研制深淬硬层冷轧辊不仅可以大幅度地降低冷轧辊的消耗,减少轧辊在使用过程中的重新淬火次数,延长轧辊寿命,具有重大的经济效益。为了减少重淬消耗,提高轧辊的淬硬层深度、接触疲劳强度、韧性,延长其使用寿命,从20世纪70年代后期到80年代中期,国内外开始研究使用铬含量在3%~5%的深淬硬层冷轧工作辊钢。3%铬冷轧辊不需重淬,且有效淬硬层深度可达到25~30mm,5%Cr冷轧辊有效淬硬层深度则达到40mm,其耐磨性和抗事故性能也有显著提高。在这一阶段,国内试制了9Cr3MoV钢,国外一些制造厂也先后开发推广了深淬硬层冷轧辊,如美国的3.25%Cr钢和5%Cr钢,日本的KantocRP53、FH13、MnMC3和MC5等。这些钢都采用高碳高合金材料,具有良好的硬度和耐磨性,但轧辊淬硬表面脆性大,接触疲劳寿命低,质量不稳定。为提高淬硬层深及接触疲劳寿命,降低淬硬层脆性及过热敏感性,同时也为满足轧件对冷轧工作辊力学性能和使用性能的进一步要求,自20世纪80年代中、后期,国外轧辊生产厂对5%Cr冷轧辊钢进行了化学成分的优化工作,主要是在5%Cr钢中增加钼、钒的含量或加入钛、镍等元素。添加0.1%左右钛的5%Cr钢轧辊中,钛以碳氮化合物(TiCN)形式在基体中微细析出,经过摩擦损耗后TiCN脱落,在轧辊表面形成划痕,使适度的粗度再生。在镀锡板轧机的实际操作中,有效利用粗糙度降低小的优点,从轧制初期就可高速轧制。在最终热处理过程中,对轧辊钢的淬火和加热限制在奥氏体中含碳量不超过0.6%的程度,然后进行尽可能强烈的冷却,这样就可以得到较深的淬硬层。此时,轧辊的淬硬层组织除隐针马氏体(以板条为主)外,尚有约4%的碳化物和10%左右的残留奥氏体。轧辊的表面硬度(包括残余压应力的影响)约为HS(D)95~99。

相关主题
文本预览
相关文档 最新文档